
changes when they perceive that they can improve their driving con-
ditions by moving to another lane although it is not necessary to do
so. Toledo et al. (8, 9) proposed an integrated lane choice model that
allows joint evaluation of mandatory and discretionary considerations
and captures trade-offs between these considerations. The model in
Toledo et al. consists of two levels: an explicit choice of a target lane
and gap acceptance decisions (9). The direction for an immediate
lane change is dictated by the target lane choice. The model pro-
posed in this paper adopts and extends this model structure. Other
directions of improvement to lane-changing models have been pro-
posed, including introduction of models that capture additional lane-
changing mechanisms, such as cooperation and forcing [e.g., Hidas
(10) and Toledo et al. (11)], to better represent behavior in heavy
congestion or macroscopic lane changing rate models [e.g., Laval
and Daganzo (12)].

Although the models listed above differ in their specification
details, they share an important limitation in that they assume that
drivers’ choices are instantaneous and independent of those they
made earlier. Lane changes are modeled as discrete events occurring
at specific points in time, with the decision process being repeated at
every time step of the simulation. However, it may be more realistic
to assume that drivers persist in their lane choices, and so their target
lane choice at any time point may depend on earlier ones.

This paper develops a framework and presents estimation results
for a lane-changing model that explicitly takes into account correla-
tions and dependencies in the lane-changing decisions drivers make
over time. To that end, the model incorporates two mechanisms:
(a) an individual-specific error term in all components of the model
captures correlations among the decisions made by the same driver
across choices and over time and (b) a state-dependence formula-
tion captures persistence and inertia in driving choices through
the impact of earlier choices on later ones. The state dependence is
assumed in the latent desired lane choices. A hidden Markov model
(HMM) is used to model this process.

The rest of this paper is organized as follows: the next section
briefly introduces the theory of HMMs and their application in the
field of driving behavior. The following section presents the integra-
tion of the HMM structure within lane-changing models and the
detailed formulation of the resulting model. Next, the data used for
model estimation and the likelihood function derived for these data
are presented. That is followed by the estimation results and compar-
ison with similar models that do not incorporate state dependency.
Finally a summary and discussion are presented.

HIDDEN MARKOV MODELS

Markov models are well accepted to model the dynamics of systems
that can transition between finite numbers of states. The assumption
of these models is that at each time step the system may remain in
its current state or change to another. The transition from state i to
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Lane changes have a substantial impact on traffic flow characteristics.
The lane-changing model is therefore an important element in micro-
scopic traffic simulations. Lane changing is commonly modeled in two
steps: lane choice, which captures the desire to change lanes, and the
decision about whether a desired lane change can be completed, which
is captured by gap acceptance models. Most current models assume that
these decisions are repeated at every time step of the simulation inde-
pendently of previous decisions. However, it may be more realistic to
assume that drivers persist in their lane choices, and so their desired
lane at any time point depends on earlier choices. To capture persistency
in lane-changing behavior, a model that integrates a hidden Markov
model (HMM) structure is presented. The evolution of lane choices,
which are the underlying hidden states, is modeled using a Markovian
process. The observed lane-changing actions depend on these hidden
lane choices. An important difficulty that arises with this model struc-
ture is the problem of unobserved initial conditions on the hidden states.
A method to address this problem is proposed. Estimation results of the
resulting model are presented and compared with a model that does not
incorporate state dependence.

Lane changes have a substantial impact on traffic flow character-
istics. The lane-changing model is therefore an important element
in microscopic traffic simulations. Lane changing is commonly
modeled in two steps: lane choice, which captures the desire to
change lanes, and the decision about whether a desired lane change
can be completed, which is captured by gap acceptance models.
Modeling the lane-changing decision process is complex because
of the many factors a driver considers before making a decision.
Furthermore, the decision process is latent in nature, with the only
observable part being the lane change action, if any, that the driver
executes. The desire to change lanes that underlies these actions
cannot be observed.

Most current lane-changing models assume that lane choices are
affected by two basic considerations: gaining speed or queue advan-
tage and being in the correct lanes to follow the vehicle’s path. Thus,
lane changes are often broadly classified as either mandatory or dis-
cretionary [e.g., Gipps (1), Halati et al. (2), Zhang et al. (3), Hidas and
Behbahanizadeh (4), Ahmed (5), Hidas (6), and Barcelo and Casas
(7)]. Drivers undertake mandatory lane changes when they must leave
their current lane to follow their travel path, to bypass a lane block-
age, or to comply with traffic signs. They perform discretionary lane
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state j occurs with a known transition probability pij. These probabil-
ities do not depend on any previous states the system was in before
the current one. Thus, every future state is conditionally independent
of every previous state.

However, there may be cases in which the system state is not
directly observable and only the outcome of another process that prob-
abilistically depends on the system state is observed. HMMs are
used to model these cases (13). HMMs assume that there exists a
latent process that transitions the system from state to state and that
this process could be studied using the observable outputs of another
process that is affected by the underlying system state. The observable
output is a realization of random variables with a density function that
depends on the hidden state. Mathematically, the HMM is defined by
(Π, A, B). Π is a vector of the probabilities πi that initially the system
is in state i. A is the state transition matrix with entries aji = p(xi⎟ xj) that
represent the probability of moving to hidden state i from hidden state
j. B is the confusion matrix that contains the probabilities bik = p(yk⎟ xi)
of observing outcome k when the hidden system state is i. Note, that in
the classic model, the matrices A and B are time independent. That is,
the probabilities do not change in time as the system evolves.

To illustrate the HMM structure, Figure 1 shows the state transi-
tion diagram of an HMM. Each of the two hidden states (xi) maps to
one of the three observable outcomes (yk) with some probability
(bik). The state transition probabilities (aji) are the probabilities of
moving from one hidden state to another.

A few applications of HMMs have been reported in the field of
driving behavior, mainly in the context of behavior recognition in
advanced driving assistance systems. In these applications HMMs are
used to identify actions and maneuvers that drivers intend to undertake
using observations from various sensors in the vehicle. For example,
Pentland and Liu used information on changes in the vehicle heading
and acceleration as the observable outcomes of a model that aimed to
identify the hidden intended actions of the driver (e.g., stop, turn,
change lanes, overtake) during the first few preparatory steps of the
maneuver (14). Kuge et al. used a similar framework to predict the hid-
den lane change intentions of drivers (15). Data on the steering angle,
steering angle velocity, and steering force were the observable out-
comes. Dapzol proposed a model that identifies 40 different driving sit-
uations as hidden states using outcomes measured in the steering
wheel, clutch, brake, and accelerator pedals (16).

An application closer to the present work was presented by Zou
and Levinson (17 ). The observable outcomes are defined as combi-
nations of data on changes in speed (acceleration, deceleration, or
cruising) and on whether the vehicle is in conflict with other vehicles
to study the hidden attitudes toward traffic conditions of drivers that
approach an intersection. The hidden states were defined using clus-

82 Transportation Research Record 2124

tering analysis and meant to capture the heterogeneity in the driver
population. In the case study presented, the HMM fitted the data bet-
ter than simpler models in estimation and in prediction of drivers’
behavior. But the authors do not provide any interpretation of the
resulting hidden clusters.

In summary, most applications of HMM in driving modeling
focused on identifying the intention of the driver using observed
behavior (i.e., acceleration, steering angle). These models can, for
example, detect whether a driver is changing lanes at the time of the
observation but do not attempt to explain why the lane change is under-
taken and so cannot predict lane changes ahead of time. They therefore
cannot be used for traffic simulations. In this paper, an HMM formu-
lation is incorporated within a lane-changing model to capture persis-
tence in lane-changing decisions drivers make and through that
improve the ability to predict the occurrence of lane changes.

INTEGRATION OF HMM 
IN A LANE-CHANGING MODEL

Overall Structure

As noted above, the lane change decision process is assumed to have
two steps: the target lane choice and acceptance of a gap in the direc-
tion of the target lane. The target lane is the lane the driver perceives
as the best choice. This decision process is latent because the target
lane choice is unobservable. For example, it may be observed that a
driver stays in the current lane, but the reason that caused the driver
to stay there cannot be observed. The driver may have chosen not to
pursue a lane change at all or may have chosen to move to another
lane but could not complete the lane change. In the terminology of
HMM the target lane selection can be viewed as the dynamic latent
process that evolves from state to state. The observable outcome is
the lane the vehicle is in at any time step. The process that relates the
underlying hidden states (target lane choices) to the lane observations
is the gap acceptance function.

Figure 2 demonstrates the structure of the resulting model. In the
figure ovals represent latent states and rectangles represent observed
outcomes. The decision process is shown for a vehicle that is currently
in Lane 2 (lane numbers are ordered from right to left) and that previ-
ously chose Lane 3 as the target lane. The arrows from Lane 3 to all
lanes indicate the dependence of the target lane choice probabil-
ities on the previous target lane choice. The target lane choice deter-
mines the choice of the immediate change direction the driver will
consider. The driver then evaluates the available gap in the adjacent
lane in this direction and either accepts it and changes lanes or
rejects it and does not change lanes. Thus, the observable lane outcome
depends on the hidden target lane the driver chose.

The target lane choice and gap acceptance decisions are affected
not only by the hidden states but also by variables that capture the
driver’s tactical driving goals and personal characteristics and the
conditions in the neighborhood of the vehicle. In the next sections
the specification of the two submodels to capture these effects are
presented.

Target Lane Model

The target lane model assumes that the driver chooses a target lane
among all the available lanes in the roadway. Each lane has an asso-
ciated utility to the driver, and the lane with highest utility is chosen.
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FIGURE 1 State transition diagram of a hidden Markov
model.



Lane utilities may depend on explanatory variables, such as those
that capture the conditions in the immediate neighborhood in each
lane (e.g., leader speeds in each lane and presence of heavy vehicles)
and path plan considerations (e.g., the distance and number of
required lane changes to a point where the driver must be in specific
lanes to follow the path). In most cases information about the char-
acteristics of drivers and their vehicles (e.g., aggressiveness, driving
skill, vehicle’s speed and acceleration capabilities) is not available.
Therefore, an individual-specific error term is introduced in the util-
ity model to capture the unobserved characteristics of the driver. The
resulting utility of being in lane i to driver n at time t is given by

where

Ui
nt = utility of lane i to individual n at time t;

Xi
nt and βi = vector of explanatory variables and the corresponding

parameters, respectively;
δi

n,t−1 = dummy variable = 1 if lane i is the target lane at
time t−1 and 0 otherwise (this variable captures the
dependence of the current target lane choice on the
one in the previous time step);

ρ = parameter of this variable, which captures the strength
of the state dependence in target lane choices (it can
be interpreted as a measure of drivers’ persistence in
their target lane choices);

υn and αi = individual-specific error term and the associated
parameter, respectively; and

�i
nt = generic random term.

Assuming that �i
nt are independently and identically Gumbel dis-

tributed and that �i
nt and υn are independent of each other, the target

lane choice probabilities for the various lanes, conditional on υn and
the previous target lane choice, are given by

where TLnt is the target lane for driver n at time t.
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Gap Acceptance Model

The choice of the target lane dictates the direction for lane change
(right, left, or none). If a lane change is required, the driver evaluates
the available gap in the adjacent lane in this direction. The available
gap is defined by the lead and lag vehicles in the adjacent lane. The lead
gap is the clear spacing between the rear of the lead vehicle and the
front of the subject vehicle. Similarly, the lag gap is the clear spacing
between the rear of the subject vehicle and the front of the lag vehicle.
One or both of these gaps may be negative if the vehicles overlap.

The model assumes that the available lead and lag gaps are com-
pared with the corresponding critical gaps, which are the minimum
acceptable gaps. Therefore, an available gap is accepted only if it is
greater than the critical gap. Critical gaps vary for different individ-
uals and with the situation. The critical gaps are therefore modeled
as random variables whose means are functions of explanatory vari-
ables and incorporate the individual-specific error term to capture
unobserved driver characteristics. An exponential functional form
is used to ensure that critical gaps are always positive:

where

CGg,TL
nt = critical gap g in adjacent lane in direction of target

lane;
Xg,TL

nt and βg = vector of explanatory variables and the correspond-
ing parameters, respectively;

αg = parameter of the individual-specific random term;
and

�g
nt = generic error term.

The gap acceptance model assumes that the lead gap and the lag
gap must be acceptable for the vehicle to change lanes. The proba-
bility of changing lanes, conditional on the individual-specific term
and the target lane, is therefore given by
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where Glead,TL
nt and Glag,TL

nt are the available lead and lag gaps, respec-
tively. lTL

nt is an indicator to the lane changing outcome, which takes
the value 1 if the vehicle changes lanes in the target lane direction
and 0 otherwise.

Assuming that �g
nt ∼ N(0, σ2

g), the conditional probability that a gap
is acceptable is given by

where Φ[•] denotes the cumulative standard normal distribution.

MODEL ESTIMATION

Data

The data set of vehicle trajectories used to estimate the lane chang-
ing model was collected in a four-lane section of I-395 southbound
in Arlington, Virginia, using video cameras (18). The section is
shown schematically in Figure 3. This data set is particularly useful
for estimation of the model because of the geometric characteristics
of the site: the site is 997 m long with two off-ramps and an on-ramp
and therefore includes weaving sections that allow capturing the
effect of the path plan on driving behavior.

The data set contains observations of the position, lane, and dimen-
sions of every vehicle in the section every 1 s. Explanatory variables
required by the model, such as relations between the subject and other
vehicles (e.g., relative speeds, time and space headways), were inferred
from the raw data set. The data used for model estimation include
442 vehicles for a total of 15,632 observations. On average a vehicle
was observed for 35.4 s (observations). All vehicles are first observed
at the upstream end of the freeway section. At the downstream end
76% of the vehicles stayed on the freeway and 8% and 16% used the
first and second off-ramps, respectively. Observed speeds ranged
from 0.4 to 25.0 m/s., with a mean of 15.6 m/s. Densities ranged from
14.2 to 55.0 veh/km/lane, with a mean of 31.4 veh/km/lane. The level
of service in the section ranged from D to E.

Likelihood Function

The path plan has an important impact on drivers’ lane choices. It
is captured by variables such as the distance to the point where the
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driver needs to be in certain lanes to follow the path. However, this
information is not known for vehicles that exit the freeway down-
stream of the observed section. These distances are therefore modeled
as latent variables. A discrete distribution of the distances from the
downstream end of the observed section to the exit points, based on
the locations of downstream off-ramps, is used. The probability mass
function of distances beyond the downstream end of the section to the
off-ramps used by drivers is given by

where, π1 and π2 are parameters that represent the proportions of
drivers using the first and second downstream off-ramp, respec-
tively. d1, d2, and d3 are the distances beyond the downstream end
of the section to the first, second, and subsequent exits, respectively.
For the subsequent exits an infinite distance is assumed (d 3 = ∞),
which implies that drivers that use these exits ignore path plan con-
siderations in their lane choice.

The joint probability density of a combination of the lane change
outcome observed for driver n at time t and the target lanes at time
t and t−1, conditional on the individual specific variables, υn, and
the distance to the exit point, d, is given by

where P(TLnt⎟ TLn,t−1, dn, υn) and P(lTL
nt⎟ TLnt, υn) are given by Equa-

tions 2 and 4, respectively. P(TLn,t−1⎟ dn, υn) is calculated recursively
as follows:

where J is the set of alternative lanes in the section.
Given the initial target lane probabilities, P(TLn,0⎟ dn, υn), these val-

ues can be calculated for any t. The lane-changing outcomes of
driver n are observed over a sequence of T consecutive time intervals.
With the assumption that conditional on dn and υn these observations
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are independent, the joint probability of the sequence of observations
is given by

where, ln is the sequence of lane changing outcomes. The depen-
dence on the initial conditions stems from the recursive calculation
of Pn(TLt−1⎟ dn, υn).

The unconditional individual likelihood function is obtained by
integrating (or summing, for the discrete variable dn) the conditional
probability over the distributions of the latent variables:

where p(d) is given by Equation 6 and f(υ) is the standard normal
probability density function.

Assuming that observations of different drivers are independent,
the log likelihood function for all N individuals in the sample is
given by

The maximum likelihood estimates of the model parameters are
found by maximizing this function.

INITIAL CONDITIONS

The state dependence creates dependence on the initial hidden
states. However, these initial conditions are not observable. Further-
more, they do not represent the true starting point of the process (the
initial observation point is dictated by the data collection system)
and so are not fixed, but generated by the dynamic process, which
depends on the individual-specific terms. Therefore, the initial con-
ditions are not exogenous to the model. Treating them as exogenous
generally results in inconsistent parameter estimates.

To overcome this difficulty an approach proposed by Heckman
for dynamic discrete choice models with state dependence was
adapted to the present problem with the hidden Markov assumption
(19). In this approach the distribution of the initial conditions,
conditional on the individual-specific error term, is approximated.
Specifically, for the initial observation for each driver in the sample
the utility functions are approximated by a reduced form:

where Ui
n,0 is the utility of target lane i to driver n at time t = 0. β0,i are

the reduced form model parameters, which are not restricted to equal
those used in the model for the other time steps (Equation 1). α0,i is the
parameter of the individual-specific error term. It is also allowed to dif-
fer from the one used in other time steps, and so allows correlation
between the utilities in the initial observation and subsequent ones to
assume any value. �i

n,0 is a generic error term.
The resulting model is estimated with the additional parameters

for the utilities of the target lanes in the initial observations. This sub-
stantially increases the number of parameters to be estimated. But
these additional parameters are introduced only for consistent model
estimation. They are not used when the model is applied to predict
driving behavior, for example in microscopic traffic simulation.
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ESTIMATION RESULTS

All parameters of the state dependency lane changing model were
estimated jointly using the likelihood function presented above.
First, all parameters in the initial conditions model were allowed to
differ from those used for the other observations. However, many of
these parameters did not differ significantly, and so were restricted
to have the same values. The results of this more parsimonious
model are presented in Table 1.

Target Lane Model

Estimation results for the target lane model show that different
types of variables affect target lane choices. These include lane-
specific attributes, variables that capture driving conditions in the

TABLE 1 Estimation Results of Lane-Changing Model

Variable Parameter t-Statistic

Target Lane Model

Lane attributes
Lane 1 constant −1.859 −3.43
Lane 2 constant −0.649 −2.034
Lane 3 constant −0.034 −0.18
Current lane dummy 3.264 14.10
Two or more lane changes from current lane −4.132 −1.97

Driving neighborhood
Front vehicle spacing (m) 0.026 4.09
Relative front vehicle speed (m/s) 0.134 2.67

Path plan
Distance to exit and number of lane −2.604 −5.98

changes required
Next exit dummy, lane change(s) required −1.624 −3.04
Remaining distance power, θMLC −1.283 −2.67
Probability of taking 1st exit, π1 0.0002 0.01
Probability of taking 2nd exit, π2 0.047 2.044

Heterogeneity (individual-specific error
coefficients)
Lane 1, α1 1.143 3.02
Lane 2, α2 0.270 0.96
Lane 3, α3 1.803 6.46
Lane 4, α4 0.453 1.84

State dependency
Persistence dummy, ρ 0.131 4.53

Initial conditions
Initial current lane dummy 4.804 1.84
Initial path plan impact, two or more −1.309 −1.99

lane changes required to the exit
Initial front vehicle spacing (m) −0.017 −1.92

Lead Critical Gap

Constant 1.706 6.03

Relative lead speed positive, max(ΔVnt
lead, 0) −6.323 −3.31

(m/s)

Relative lead speed negative, min(ΔVnt
lead, 0) −0.155 −2.51

(m/s)

Heterogeneity coefficient of lead gap, αlead 0.099 0.35

Standard deviation of lead gap, σlead 0.939 4.18

Lag Critical Gap

Constant 1.429 5.63

Relative lag speed positive, max(ΔVnt
lag, 0) 0.512 5.84

(m/s)

Heterogeneity coefficient of lag gap, αlag 0.211 1.27

Standard deviation of lag gap, σlag 0.775 5.87



neighborhood of the vehicle, and variables that relate to the path
plan. With respect to the model structure, the use of the individual-
specific error and the state dependency formulation is justified by
the results. A detailed discussion of the variables used and the spec-
ification of the systematic part of the target lane model was pre-
sented in previous works that used similar models (9). The focus of
this paper is on the inclusion of state dependence in these models.
Nevertheless, a brief discussion of the important estimation results
is presented.

The estimated values of the lane-specific constants imply that,
everything else being equal, the rightmost lane, Lane 1, is the most
undesirable and that lanes to the left are increasingly more attractive.
The estimated parameter values for the current lane dummy and the
dummy variable for two or more lane changes that are required from
the current lane indicate that drivers strongly prefer to stay in their
current lane and to avoid making lane changes.

Driving conditions in the immediate neighborhood of the vehicle
are reflected by two variables that capture the interactions of the
vehicle with vehicles around it: the relative speed and the spacing
with respect to the vehicles in front in the current or adjacent lanes.
The signs of these parameters are positive, thus the utility of the cur-
rent lane increases with the speed of the front vehicle and with the
spacing between the two vehicles. The utilities of adjacent lanes also
increase with the speed of the lead vehicles in these lanes.

The path plan impact variables indicate that the utility of a lane
decreases with the number of lane changes that the driver needs to
undertake to follow the intended path. This effect is magnified as the
distance to the off-ramp decreases (θMLC = −1.283, see Equation 13).

The parameters of the individual-specific error term (α1, α2, α3,
and α4) capture the effects of unobserved driver characteristics on the
target lane choice, thus accounting for correlations between observa-
tions of the same individual. α1 and α3 are more positive compared
with α2 and α4. These are the rightmost lanes of the two freeways that
merge at the upstream end of the section. Therefore, the individual-
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specific error term υ can be interpreted as positively correlated to the
driver’s timidity. A timid driver (i.e., υn > 0) is more likely to choose
the right lanes over the left compared with a more aggressive driver.

The state-dependency coefficient, ρ, is positive and significant.
The utility of a lane increases if it is chosen as the target lane in the
previous period. This implies that drivers are persistent in selecting
their short-term lane-changing plan. To illustrate the impact of this
variable, consider a case of a four-lane road, in which the vehicle is
currently in Lane 2. Further assume that the lane attributes of all lanes
are equal. Figure 4 shows the probabilities of choosing Lane 2 as the
target lane depending on the target lane in the previous time step.
The probability of choosing the lane is highest if it was also chosen
in the previous time step and lower if another lane was chosen. Fur-
thermore, the probability of choosing a lane is higher if the previously
chosen lane was generally less attractive (i.e., had a lower probability
of being chosen). The probability of choosing Lane 2 is the highest if
the driver also decided to stay in this lane in the previous time period.
However, if the previously chosen lane is not Lane 2, the probability
of choosing Lane 2 in the current time period is highest if Lane 4 was
previously chosen and lowest if Lane 3 was previously chosen. This
is also the reverse order of the probabilities of choice of these lanes.
Thus, the model predicts that the probability that the driver will per-
sist with a previously chosen target lane increases with its quality. If
the driver chose a weak plan (one that has a low choice probability),
the probability of aborting it and choosing another one is higher
compared with when the previously selected plan is strong.

To demonstrate further the effect of the state dependency on the
behavior dynamics, consider a situation in which a driver in Lane 2
needs to change to Lane 1 to use an off-ramp and follow the path.
Figure 5 shows the predicted probabilities of choosing Lane 1 for
the target lane as a function of the distance to the off-ramp, for
drivers that chose Lane 1 in the previous time step and for those that
did not. In both cases, the probability of choosing Lane 1 is very low
when the vehicle is far from the off-ramp, gradually increases as it

0.94

0.93

0.92

T
ar

ge
t l

an
e 

ch
oi

ce
 p

ro
ba

bi
lit

y

0.91

0.9
1 2

Previous target lane

3 4

FIGURE 4 Target lane choice probabilities depending on previously chosen lane.
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FIGURE 5 Predicted probabilities of choosing target lane closest to off-ramp used in path.

nears the exit, and asymptotically approaches a unit when the vehi-
cle is very close to the exit point. However, the predicted probabil-
ity of choosing Lane 1 is higher if the driver has already chosen this
lane in the previous time period at any distance from the off-ramp.
The figure also demonstrates that accounting for the state depen-
dence in the behavior generates variability in the dynamics of the
lane selection process among drivers.

In summary, the target lane utilities are given by

where

βi = constant of lane I;
ΔXi,front

nt and ΔSi,front
nt = spacing and relative speed of front vehicle

in lane i, respectively;
δi,adj/CL

nt = indicator with value 1 if i is the current or an
adjacent lane, and 0 otherwise;

δi,CL
nt = 1 if i is the current lane, and 0 otherwise;

δi,ΔCL≥2
nt = indicator that takes value 1 if two or more

lane changes are required from current lane
to lane i, and 0 otherwise;

d exit
nt = distance to off-ramp driver intends to use;

Δexiti = number of lane changes required to get from
lane i to the exit lane;

δnext exit
nt = indicator with value 1 if the driver intends

to take the next exit, and 0 otherwise;
δ i,Δexit≥1

nt = indicator with value 1 if lane i is not the exit
lane, and 0 otherwise; and

δi,i
n,t−1 = state indicator with value 1 if lane i was the

target lane in time t−1.
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Gap Acceptance Model

The estimated lead and lag gaps are given by

where ΔV lead
nt and ΔV lag

nt are the relative lead and lag speeds, respec-
tively. They are defined as the speed of the lead (or lag) vehicles less
the subject speed.

The lead critical gap decreases with the relative lead speed, that
is, it is larger when the subject is faster relative to the lead vehicle.
The effect of the relative speed is strongest when the lead vehicle is
faster than the subject. In this case, the lead critical gap quickly
reduces to almost zero as the relative speed is increasingly positive.
This result suggests that drivers perceive very little risk from the
lead vehicle when it is getting away from them.

Inversely, the lag critical gap increases with the relative lag speed:
the faster the lag vehicle is relative to the subject, the larger is the lag
critical gap. In contrast to the lead critical gap, the lag gap does not
diminish when the subject is faster, but keeps a minimum critical gap.

Estimated coefficients of the unobserved driver characteristics
variable are positive for lead and lag critical gaps. This result is con-
sistent with the interpretation of this variable as positively related to
timid drivers that require larger gaps for lane changing compared
with more aggressive drivers.
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Model Selection

To evaluate the importance in regard to model fit of the integration of
the HMM structure in the lane changing model, the proposed model
was compared with a model with similar structure and explanatory
variables that does not account for state dependency. The maximum
likelihood values and numbers of parameters of three different models
(the model with no state dependence and two state dependence mod-
els, with the full set of initial conditions parameters and the final model
presented above) are shown in Table 2. The numbers of parameters in
parentheses are only those that are actually used for prediction (exclud-
ing the parameters for the initial conditions model and those that
capture the impact of the unobserved downstream path plan).

Likelihood ratio tests were applied to select among these models.
The test statistic value for the comparison between Models 1 and 2 is
10.76 with 13 degrees of freedom (p = .63). Therefore, Model 1 can-
not be rejected. The test statistics for Models 1 and 3 are 8.32 with four
degrees of freedom (p = .08), and so Model 3 may be preferred.

CONCLUSION

This paper presented a lane-changing model that accounts for state
dependence in the underlying target lane choices drivers make over
time. The model is based on integration of an HMM within the struc-
ture of the lane-changing model. The resulting model accounts for
heterogeneity in the driver population by introducing an individual-
specific error term and for dependence of target lane choices drivers
make on previous ones. The model includes two choice components:
the selection of a target lane and gap acceptance. A random utility
approach is adopted to model both choices.

The inclusion of state dependence in the model creates condition-
ality on the initial target lane the driver chose. However, the initial
conditions are not observed and depend on the individual-specific
error term. Ignoring this endogeneity results in inconsistent param-
eter estimates. A method to overcome this problem is proposed and
applied to estimate the model parameters using detailed trajectory
data. The estimation results indicate that the impacts of heterogene-
ity and state dependence are significant in lane-changing behavior.
Statistical tests for model selection recommend the state dependence
model over a model that ignores state dependence.

Although the results presented in this paper are promising, addi-
tional tests with more data sets are needed to validate the usefulness
of incorporating state dependence in lane-changing models. The
HMM frame presented could also be incorporated in multilevel lane-
changing models [e.g., Hidas (10) and Toledo et al. (11)] that can
better represent behavior in heavily congested traffic. Furthermore,
the model presented here assumed Markovian state dependency.
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Other forms of dependency, such as semi-Markovian models, in which
the time a driver has been in a specific state (targeting the same lane)
is modeled, may be more appealing. Finally, the impact on the emer-
gent macroscopic traffic flow characteristics also needs to be studied
through their implementation in microscopic simulation models.
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TABLE 2 Likelihood Values of Estimated Models

Likelihood
Model Value Parameters

1 No state dependence model −880.35 25 (23)

2 State dependence model with initial −874.97 38 (24)
values for all the variables

3 State dependence model −876.19 29 (24)


