Effect of Real-Time Transit Information
on Dynamic Path Choice of Passengers
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Real-timeinformation (RTI) isincreasingly being implemented in tran-
sit networks worldwide. The evaluation of the effect of RTI requires
dynamic modeling of transit operations and of passenger path choices.
The authors present a dynamic transit analysis and evaluation tool that
represents timetables, operation strategies, RT1, adaptive passenger
choices, and traffic dynamics at the network level. Transit path choices
aremodeled as a sequence of boarding, walking, and alighting decisions
that passengers undertake when carrying out their journey. The model
wasapplied totheMetro network area of Stockholm, Sweden, under var-
iousoper ating conditionsand infor mation provision scenarios, asa proof
of concept. An analysisof resultsindicated substantial path choice shifts
and potential time savings associated with more comprehensive RTI
provision and transfer coordination improvements.

Public transportation systems are becoming increasingly complex
with the incorporation of various modes, services, information and
communication technologies, and transit operation strategies.
Advanced public transportation systems, such as automatic vehicle
location and automatic passenger counts, enable transit agencies to
implement dynamic control strategies and provide travelers with
real-timeinformation (RTI) aimed to support their travel decisions.

Transit assignment models assign passengers to transit routes to
predict passenger |oads on transit lines and segments. These loads
are then used to obtain the respective levels of service and service
performance measures. These models are classified into two cate-
gories: frequency based and schedule based (1). Frequency-based
models are commonly static. They often assume constant headways
and distribute the demand among competing routes according to
their sharein the combined frequency. The underlying assumptions
are that passengers arrive randomly at stops and board the first bus
that arrives at their origin stop. This approach was extended from
the deterministic case (2, 3) to the probabilistic case (4, 5). Spiess
and Florian introduced the concept of strategies to model the avail-
able transit alternatives (6). A strategy is defined by a set of rules
that when applied allows travelers to reach their destinations. For
example, apassenger can follow astrategy of taking thefirst busthat
will go to a certain transfer stop in the first 10 min of waiting, and
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wait for the direct bus after that. Nguyen and Pallottino formulated
how each strategy can be represented as adirected graph connecting
the origin to the destination defined as hyperpath (7).

In contrast, schedule-based models consider service timetables,
transfer coordination, and passenger arrival processes that follow
from the schedule (8, 9). In networks with dynamic time-dependent
network conditions and passenger loads, it may not be realistic to
model path choices based on the shortest path in regard to the sum
of the shortest trip segments between each pair of intermediate
stops, as used in conventional shortest-path algorithms. Hall intro-
duced the concept of adaptive path choice as the chosen path
depends on passenger arrival time and time-dependent uncertain
travel times (10). Furthermore, the en route dynamic path choice can
befurther extended to day-to-day dynamicsby incorporating learning
processes (11-13).

The increasing number of transit agencies providing travelers
with enroute RTI (14) calls for modelsthat will represent passen-
gers response to RTI to evauate provision of information and re-
finetheir design. Providing RTI can assist and support passenger
decisions by reducing the level of uncertainty involved with using
the transit system, providing time-specific information, informing
them about unusual conditions, and providing knowledge about less
familiar aternatives. Hickman and Wilson developed an analytical
framework for modeling the adaptive boarding choice when RTI
about the next bus arrival is available at the stop (15). Gentile et al.
investigated the same problem in the frequency-based context with
different service reliability conditions (16). RTI can also support
alighting decisions by referring to transfer alternatives. Nokel and
Wekeck formulated frequency-based route choice models and con-
cluded that the influence of transfer information on passenger loads
isasimportant asarrival times at the boarding stops (17). However,
previous studiesdid not consider how transit performanceand service
disruptionsinteract with dynamic passenger path decisionsunder var-
iousinformation provision strategies. A more realistic representation
is needed to analyze how system components evolve over time.

The aim of this paper isto present a dynamic transit operations
and assignment model that represents the role of RTI in passenger
path choice and to demonstrate its application. A dynamic transit
simulation model must capture the interactions of three main com-
ponents: passengers, transit operations, and traffic dynamics at the
network level. The developed model enablesanalysisof theinterac-
tions of timetables, traffic conditions, operation strategies, RTI, and
adaptive choices by passengers.

The remainder of this paper is organized asfollows: the next sec-
tion presents the framework of the dynamic transit model, focusing
on passenger path choice modeling and the role of information.
After that isadescription of the details of the Metro system experi-
ment in Stockholm, Sweden, and the scenarios that had been applied
asaproof of concept. The corresponding transit assignment results
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are analyzed afterward, followed by a summary of the main results
and adiscussion of future research directions.

DYNAMIC TRANSIT MODELING

The dynamic transit model, BusMezzo, is used as the platform for
modeling transit operationsdynamically. BusMezzo consists of three
components: traffic dynamics, transit operations, and passenger
demand. Theintegration of these components enablesajoint car and
public transportation model. Demand for cars and public transporta-
tion is considered separately. The model can be used either as an
external part of alarger planning model that includes mode choice or
asastand-alonemodel for ajoint traffic and transit operations analy-
sis. BusMezzo is an open-source model that was devel oped and val-
idated by Toledo et al. (18). Themodel outputsinclude the passenger
assignments at the singletrip, line, and the entire path levels, aswell
asdetailed operational data(e.g., time, headway, passenger volumes)
for every transit vehicle at each stop visited.

Traffic Dynamics

A mesoscopic traffic simulation model, Mezzo, captures traffic
dynamics. It modelsindividual vehiclesbut without representing their
second-by-second movement. Links are divided into two parts with
dynamic boundaries: running part and queuing part. Travel timeson
therunning part are defined by aspeed—density function. Travel times
on the queuing part are determined by individual stochastic queue
servers. Themesoscopiclevel of representation providesan appropri-
atetrade-off between thelevel of detail, on the one hand, and the abil -
ity to analyze at the systemwide level, on the other hand. A complete
description of the structure of Mezzo and its implementation details
is presented in Burghout et al. (19).

Transit Operations

Thetraffic smulation model incorporatestransit componentsdesigned
to enable the analysis and eval uation of transit operations, especially
in the context of advanced public transportation systems. BusMezzo
incorporates the main sources of service uncertainty: passenger
demand and arrival process, dwell time functions, and trip chaining.
The dwell time function structure was obtained from TCRP Report
100 (20). In addition, through the interaction with Mezzo, it also
incorporates uncertainty caused by general traffic conditions.

Trip chainingismodeled explicitly. Transit vehiclesfollow asched-
ule with allist of trips that are carried out sequentially. The actua
departure time of a chained trip is calculated as the maximum of the
scheduled departure time or the time the bus vehicle is available to
depart after it completed its previoustrip, including aminimal recov-
ery time. The explicit representation of trip chaining allows the sm-
ulation to capture the propagation of delays from one trip to the next
anditseffect onthelevel of service. Furthermore, it allowstaking into
account fleet size constraintsthrough the respective recovery time pol-
icy. A detailed description of thetransit-related simulation framework
aswell asmodel validation is presented in Cats et a. (21).

Passenger Demand

The developed model enables several levels of passenger demand
representation to suit various application interests and data avail-
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ability. At the aggregate level, passenger demand can berepresented
by passenger arrival rates and alighting fractions for each stop and
line. In this case, the model represents flows and not individual pas-
sengers. Alternatively, theindividual passengers may be generated,
and explicitly used inthe model, from amatrix of trips between pairs
of stops. Vehicle capacity constraints are modeled explicitly in al
cases. When individual passengersare considered, thetransit assign-
ment model consists of two submodels: choice set generation and
path choice process.

Generation of Choice Set

The generation of the choice set aims to reproduce the set of alter-
natives that is considered by passengers and cannot be directly
observed. This process has to be, on the one hand, limiting enough
to excludeirrelevant paths and, on the other hand, flexible enough to
include all the paths that may be chosen. In BusMezzo, transit path
alternatives are defined as ordered combinations of the elements that
compose the trip. These elements are transit stops; transit lines; and
connection links (access, egress, and transfer links that can be car-
ried out by walking between two points). The choice set generation
algorithm initially looks for al direct paths between each pair of
origins—destinations (O-Ds) in the network. It then searches for all
possible paths with a single transfer and gradually considers paths
with increasing numbers of transfers. This recursive search method
is terminated when a maximum allowed number of transfers is
reached. This maximum is defined relative to the path with the min-
imum number of transfers that was found for the specific O-D pair.
Generated pathsthat do not fulfill logical constraints(e.g., apath that
has passengers get off a bus and wait to board the next bus on the
same line) are eliminated from the choice set.

Following Androutsopoulos and Zografos (22), the generated
paths are screened, and only those that are not dominated by other
path aternatives (in regard to number of transfers, total travel time,
and total walking time) are retained in the choice set. The dominancy
rules incorporate perception thresholds to determine if a path alter-
native exceeds the maximum allowable digression relative to other
path aternatives. Furthermore, nondominated alternativesthat imply
longer in-vehicle time than the shortest path alternative by a given
threshold are also excluded from the choice set. In the common case
of severd transit lines using the same corridor and therefore allow-
ing several equivalent transfer |ocations, alternativesare merged into
asingle path aternative (4).

Path Choice Model

Once the set of alternative paths has been generated for each O-D
pair, the path choice model determines how passengers progress
in the network. Unlike with static assignment models, passengers
do not only select a path from the predefined choice set, but they
make a sequence of path decisions as they progress through the
network. All passenger decisions are based on random utility
discrete choice models. Each decision is defined by the need to
choose the next path element (stop, line, or walking connection),
taking into account all the path alternatives associated with this
element.

The passenger path choice process is presented in Figure 1.
When passengers start their trip, they first choose whether to stay
at the origin stop or walk to a nearby stop, by considering all path
alternatives associated with traveling from each candidate stop to
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their final destination. At the stop, when atransit vehicle arrives,
passengers decide whether to board it or not. Thisdecisioninvolves
the comparison of the utility associated with boarding versus that
of staying and waiting for vehicles on the other pathsin the choice
set. After boarding a transit vehicle, passengers decide at which
downstream stop to alight. If onboard information isavailable, pas-
sengers can revisetheir alighting decision. After alighting at astop,
passengers choose to stay at the same stop, walk to anearby trans-
fer stop or, if possible, walk directly to thefinal destination. In case
the alighting stop is a transfer stop, then boarding, alighting, and
connection decisions are repeated until the passenger reaches the
final destination.

The deterministic part (V;) of the utility function takes the same
form for all travel decisions:

Vi =2 BX &

where 3 isavector of coefficients, and X isan attribute of path alter-
native i. The utility function can include passenger expectations
about various attributes, such aswaiting times, comfort, and mone-
tary cost. Alternatives are bundled according to different criteriain
varioustravel decisions, and their joint utility iscalculated based on
the expected maximum utility (logsum) term (23).

Stay at the
same stop?

Board the
arriving vehicle?

Alight at the
next stop?

Arrived at
destination?

Process of path choice of passengers.

Traveler Information

Passengers’ expectations about time components (waiting time, in-
vehicle time, walking time when transferring, and access and egress
times) associated with each path alternative depend on their prior
knowledge and information available en route. Transit assignment
models commonly assume that travelers have a priori knowledge on
network configuration and expected riding times (24). However, mod-
elsvary in their assumptions on traveler information with regard to
transit linesarrival time at stops. In the context of urban networkswith
high-frequency transit services, it isappropriateto assumethat passen-
gersknow only or take into account the planned headways rather than
the complete timetables.

Transit operators provide passengers with RTI to reduce the
uncertainty involved with undertaking transit trips and to enable
passengersto makeinformed path decisions. RTI provision canvary
by itslocation (at stops, on board); comprehensiveness (single stop,
cluster of connected stops, complete network); and nature (expected
arrival times, expected travel times). The level of RTI compre-
hensiveness determines which path decisions are influenced by the
information provided, whileitslocation determineswhen thisinflu-
ence takes place. For example, RTI at atransfer hub in regard to a
cluster of connected stops affects connection and boarding decisions
both. Passengers' alighting decisions may incorporate RTI if it is
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provided for the entire network. With growing popularity of smart-
phones and other personal devices, more travelers have access to
web-based RTI.

BusMezzo models different levels of information at different
decision stages. A modular structure enables representation of each
decision situation with the appropriate service characteristics and
the level of information available to passengers. In the case study
presented next, RTI provides the expected remaining time until the
next arrival of each relevant busline. Thisinformation is calculated
according to the current location of the transit vehicle and the ex-
pected travel times between its current location and the given stop.
In case of irregular service conditions, RTI aso contains the
expected delay in downstream riding times.

The underlying assumption of the model is that whenever pas-
sengers have RTI available, their prior expectations about waiting
and in-vehicle times are updated by the RTI provided. These
expectations are explicitly incorporated into the utility function
components.

CASE STUDY
Description of Experiment

As aproof of concept, the dynamic transit operations and assign-
ment model is applied to the Stockholm Metro network. This
network consists of seven routes clustered into three main lines
identified by their color: blue (T10and T11); red (T13 and T14); and
green (T17, T18, and T19), asshown in Figure 2. The complete net-
work was coded into BusMezzo, with the real-world timetables
and walking distances between platforms. The network consists
of 210 platforms situated at 100 stations. The Metro operates high-
frequency service, with scheduled headways of 10 min in each
branch. Passengers are assumed to plan their trip without consider-
ing the timetables, implying a Poisson arrival process at the origin
stop. However, Metro dispatching isregul ated based on thetimetable,
and a schedule-based holding control isapplied at all stopswith the
scheduled departuretime asthe earliest exit time [ see Koutsopoul os
and Wang (25) for a discussion of holding strategies in the context
of urban rail operations).

The choice set generation algorithm was used as a preprocess
step to thesimulation runs. It resulted in 14,699 alternative pathsfor
the entire network. The execution timewas 3:10 minand 10 son a
standard PC.

Design of Scenarios

Thecasestudy considersRTI provision at al stationsin the Stockholm
Metro network with three levels of comprehensiveness:

1. Platform. RTI for al trains departing from aspecific platform,

2. Station. RTI for al trains departing from all platforms of a
specific station, and

3. Network. Complete RTI for all trainsin the network.

In this network, stops consist of separate platformsfor each main
line. Platform-level RTl isavailableat all platforms. Therefore, RTI
at the platform-level isregarded as the base case scenario. Further-
more, all routes of the same main line have a common platform.
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Therefore, choosing a platform stop is equivalent to choosing a
metro line. RTI at the platform-level can influence passenger board-
ing decisions only when traveling to a stop that is not served by all
line routes. Otherwise, there are no path choice implicationsto pro-
viding RTI at the platformlevel, for passengers areindifferent about
different routes of the same main line. In addition, it is not realistic
that passengers will choose to walk to a nearby stop in the case of
information on long waiting times as headways are short relative to
walking times. In contrast, providing RTI at the station level can be
used for choosing another platform in the connection decision. Pro-
viding real-time arrival and riding times at the network level may
influence passenger path decisions at al stages, including alighting
decisions.

In addition, the case study includesthree operationa conditions. The
base case scenario of normal operations and two possible disruptions
were examined (see Figure 2):

e R. Normal operating conditions with real-world travel times
and timetables,

e DR. A 15-min delay in riding time on the Blue Line from
Fridhemsplan to T-Centralen, and

e DF. A reductionin frequency onthe Green Linefrom 18 vehicles
perhto6.

RTI provision can be particularly advantageousin the case of ser-
vice disruptions, causing longer than expected riding or waiting
times. These kinds of disruptions may be caused by mechanical,
operational, or technical problems. For example, Stockholm Metro
was subject to major service disruptions during the winter of 2010,
with frozen tracks caused by extreme weather conditions.

The experimental design consistsof threelevelsof RTI provision
(platform, stop, and network); and three network operational condi-
tions, as defined earlier (R, regular; DR, riding time disruption; and
DF, frequency disruption), resulting in nine scenarios. For each sce-
nario, 10 simulation runs were conducted for a 3-hour period with
uniform passenger demand. The number of replications was found
to be sufficient with an allowable error of 2% for the average pas-
senger travel time, which isthe outcome of interactions between all
random processesin the system (21).

RESULTS

Results show that passenger stop and line choices are affected by the
service disruption scenarios and incorporate the available level of
RTI. Analysis of the results focuses on the O-D pair of Stadshagen
(S) and Gamla Stan (G) (Figure 2). Focusing on a single O-D pair
enables a clear interpretation of the results.

No directs lines connect stops S and G. Two possible transfer
stops are available: Fridhemsplan (F) and T-Centralen (T). The
choice set generation model generated three alternative paths for
this O-D pair:

Path A. BlueLineto F and transfer to the Green Line,
Path B. BlueLineto T and transfer to the Green Line, and
Path C. BlueLineto T and transfer to the Red Line.

The generated path alternatives were merged according to joint
transfer stops and routes, for the choice set generation phase guar-
anteesthat each alternative path containsall routesthat use the same
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FIGURE 2 Stockholm Metro: (a) network and (b) inner city part of network.

stretch. Paths that include more than a single transfer were elimi-
nated during the choice set generation procedure since they were
dominated by more attractive alternatives. The network configura-
tion and corresponding travel attributes associated with the relevant
componentsareillustrated in Figure 3. Thetrip fareisfixed regardless
of the chosen path.

Utility function coefficients were estimated based on a stated-
preference survey. A more detail ed description can befound el sewhere
(26). The utility function (U;) takes the following form:

U; =By T_wait; + B, T_ivt, + B T_Walk; + B - trans + ;. (2)

where

T wait, T_ivt, T walk;, and trans
= waiting time, in-vehicle time, walking time, and number of
transfers, respectively, involved with path dternativei;
B = corresponding coefficients; and
€ = error term.

Waiting time and walking time have the same coefficient, whichis
about double that of in-vehicle time. The disutility associated with
carrying out atransfer is equivalent to 4.77 in-vehicle min. These
coefficient values are in line with results of previous studies. The
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FIGURE 3 Network configuration and travel attributes of relevant trip components.

different information scenarios may affect passenger expectations
inregard to waiting and in-vehicle times and therefore the disutility
associated with an alternative. The level of uncertainty involved
with a path aternative is not included in the utility function. It is
assumed that passengersregard the RTI as accurate and fully incor-
porate the RTI that isavailable at each decision point. Each passen-
ger is assigned with preferences and walking speed sampled from
truncated normal distributions.

Table 1 shows a summary of the average total journey time and
its components of in-vehicle time and out-of-vehicle time. Figure 4

TABLE 1 Time Components of Average Passenger Journey

Changein Out-of-

Total Journey Total Journey In-Vehicle  Vehicle
Scenario Time(s) Time (%) Time(s) Time(s)
R1 1,081 554 527
R2 1,046 -3.2 557 489
R3 1,035 -4.3 538 497
DF1 1,418 553 865
DF2 1,293 -8.8 545 748
DF3 1,260 -11.1 523 737
DR1 1,771 1,116 655
DR2 1,733 -2.2 1,115 617
DR3 1,603 -95 1,054 549

shows the distribution of passengers between the three possible
paths.

Compared with the base case scenario of platform-level informa-
tion, providing real-time arrival information on al platformsin a
transfer stop can be beneficial inthe case of T. Moreover, providing
real-time arrival and riding times for the whole network may influ-
ence both alighting decisions (T or F) and connection decisions (red
or green in the case of transferring at Stop T).

In the base case scenario, 63% of the passengers choose to trans-
fer at T since the riding time between F and T is three times longer
on the Green Line than on the Blue Line. In addition, when transfer-
ring at T, 55% of the passengers transfer to the Green Line (Path B)
owing to the higher frequency and dlightly shorter walking distances
between platforms. The multinomial logit model used in this appli-
cation may overestimate the probability of transferring at T asaresult
of itswell-known independence of irrelevant alternatives character-
istic (27). More general discrete choice models can account for cor-
relations among alternatives, a problem that received only little
attention in the transit path context (28).

Under normal operating conditionswith platform-level RTI (R1),
theaveragejourney timeis 1,081 s. Waiting timesand walking times
account for 49% of the total time. When station-level RTI was pro-
vided, the shares of passengers choosing to transfer at Fand T did not
change, for thisinformation does not affect alighting decisions. How-
ever, passengerstransferring at T used thisinformation when choos-
ing the platform and line that minimize their waiting time, leading to
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almost equal shares between Paths B and C and 3% savingsin total
journey time. When passengers have access to network-level infor-
mation, the share of passengers transferring at F decreased in rela-
tion to the other information scenarios. The situation is the effect
of information at the origin stop on the alighting stop decision. This
shift resulted in time savings because of substantial reduction in
the average time spent on board. Nevertheless, it simultaneously
implies longer out-of-vehicle time, for transferring at T involves
longer walking distances.

In the case in which the frequency on the Green Line is sharply
reduced because of service disruptions (DF), the total journey time
obviously increases compared with the regular condition scenario
owing to longer waiting times, whereas in-vehicle times remain
unchanged. Thisincrease can bereduced by providing more compre-
hensive RTI to passengers. With station-level information, more pas-
sengerstransferring at T chooseto continue with the Red Line rather
than the Green Line, resulting in an increase of 44% in the market
share of Path C compared with the platform-level RTI scenario. The
availability of station-level RTI can influence only passengers con-
nection decision (to which stop to walk) and not at which stop to
alight. When RTI pertaining to expected arrival timesat downstream
stops is available to passengers at the time they make the alighting
decision, the share of Path A decreases compared with that of the
platform-level scenario. Morethan 16% of the passengerswho trans-
ferred at F choose to continue on the Blue Lineto T, where there are
more attractive transfer alternatives. Compared with the base case,
RTI yieldsin this case substantial time savings of 9% when provided
at the station level and 11% when it is provided at the network level.

When a disruption that causes severe delays on the Blue Line
occurs (DR), passengers experience longer travel times, mainly
caused by longer in-vehicle times. Waiting times also increase as
delays are propagated and affect trip chaining and service regular-
ity. Providing RTI at the station level did not affect passengers
decisionsin thiscase, for service disruption almost did not influence
arriving timesat T. However, when passengerswereinformed about
the expected delay, they shifted dramatically to F—an increase of
30% inthemarket share of Path A to avoid the disrupted service seg-
ment. In this case, information provision results in a reduction of
over 9% in average passenger journey time compared with that of
the base case.

When lacking RTI, passengers carry out decisions on the basis of
their prior knowledge. Therefore, path market shares are almost the
samefor all base case scenarios, regardless of operational conditions.
Under al operational conditions, RTI provision affected passenger
path decisions and brought substantial time savings. Owing to the
specification on utility function, the uncertainty imposed by service
disruption is not taken into account. Presumably, route choice shifts
could be more dramatic if service disruption involved high uncer-
tainty levels. As expected, increasing level of RTI comprehensive-
ness leads to increased time savings. However, the marginal benefit
from providing additional RT| depends on network configuration and
service conditions. These factors determine the importance of more
informed choice of platform and decisions on alighting.

The previous scenarios are based on the real-world timetable.
However, an investigation of the Blue and Green Lines schedul es at
F indicated that a potential for improving transfer coordination.
Coordination was based on setting the scheduled time of the Green
Line at F to follow the scheduled time of the Blue Line. The exact
coordination was cal culated according to the 80th percentile of the
distribution of walking time between the two platforms. The depar-
turetimes of the Green Linetrains from all other stops were shifted
accordingly, basically implying slightly shifted dispatching times
from the origin terminal. To benefit from this coordination, passen-
gers must be informed with RTI about downstream transfer stops.
This scenario was simulated under regular operational conditions,
when the effect of scheduled coordination could be evaluated.

Results indicate that the transfer coordination improvement can
lead to substantial journey time benefits. The shifted dispatching
times of the Green Line resulted in a decrease of 18% in average
waiting time compared with the base case under the same level of
information provision. However, the overall time savings are only
5% because more passengers transferred at F—taking aslower line.
But by doing so, they reduced their waiting and walking times. Per-
haps some of the time savings yielded from coordination could be
achieved eveninthe absence of RTI by communicating it to travelers
and day-to-day learning.

Dynamic transit assignment enables one to analyze how passenger
path choice evolves during the simulation time and varying opera-
tiona conditions in the transit network. For example, similar aggre-
gated market shares can be obtained from various time-dependent
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FIGURE 5 Coefficient of variation of number of boarding
passengers at Stop F on Green Line.

load performances. Figure 5 presents the coefficient of variation of
boarding passengers at Stop F on the Green Line. The variation was
calculated over al trips of Green Lineroutes. The coefficient of vari-
ation varies between scenarios that yielded the same market shares
(seeFigure4). Thevariability isvirtually the samefor platform-level
and stop-level scenarios with the same operation conditions, since
both levelsdo not influence passenger alighting decision. In contrast,
network-level RTI isassociated with higher variability in passenger
loads. Because passengers incorporate time-dependent information
in their decision process, passenger activity has a more uneven pat-
tern. The case of scenario DR3 isdifferent because the main function
of RTI isto inform passengers about the exceptional riding timeson
theBlueLine. The large numbers of passengers choosing to alight at
F are the reason for the decrease in the coefficient of variation indi-
cator. Similarly, the lower levels of variability under the DF scenar-
ios stem from the accumulation of passengers during the long service
headways. The coordination scenario described earlier (noted by C3)
reduced the variability of boarding volumes compared with the base
case. With the current timetable, RTI| at the network level leads to
more uneven passenger patterns at F, depending on the respective
expected arrival time. However, when transfer at F is coordinated,
passengers consistently chooseto transfer therewhen thisinformation
isavailable.

CONCLUSIONS

Trangit trips involve sequential path decision making that relies on
passengers’ prior knowledge and available RTI en route. Evaluation
of the effectsof RTI requires dynamic modeling of transit operations
and passenger path choice. BusM ezzo, amesoscopic transit and traf-
fic simulation model, represents traffic dynamics, dwell times, time-
tables and vehicle scheduling, control strategies, and passenger
path choice process. Themodel considers passengers progressinthe
transit network as a sequence of discrete choice decisions. At each
decision point, the time-dependent expectations of passenger about
travel time components are taken into account.

Thismodel was used as an eva uation and analysistool for acase
study based on the Stockholm’s Metro network. The choice set
generation model composed all reasonable paths, and the dynamic
path choice model processed passenger decisions under various
operational conditionsand RTI provision scenarios. Resultsindicate
that providing more comprehensive RTI has the potential to lead to
path choice shifts and time savings. It is presumed that an applica-

a3

tion for a more extensive network will yield greater gains. The
experiment suggeststhat operators should provide RTI at the station
level to enable moreinformed travel decisionsthat will resultintime
gains. Thisinformation can be displayed at the decision point within a
trangit facility or by providing RTI about nearby stops. Inaddition, sig-
nificant benefits can be achieved by simple improvementsin transfer
coordination.

Thedynamictransitloading model isyet to bevalidated withasys-
temwide case study and real-world data. Furthermore, the model has
to be estimated by associating travel attributes (i.e., time components,
transfer characteristics, monetary cost) with path alternatives (29). An
important concern for such an application is how to capture correla-
tions among overlapping path aternatives, possibly by applying a
path-size logit model in the context of transit trips (30). In addition,
the model can be further developed to enable a mixed frequency-
based and schedule-based passenger arrival patterns as realistic
networks consist typically on both services.
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