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Abstract 

This paper focuses on path-based solution algorithms to the SUE and investigates their 

convergence properties. Two general optimization methods are adapted to solve the logit 

SUE problem. First, a method that closely follows the GP algorithm developed for the 

deterministic problem is derived. While this method is very efficient for the deterministic 

user equilibrium problem, we use a simple example to illustrate why it is not suitable for 

the SUE problem. Next, a different variant of gradient projection, which exploits special 

characteristics of the SUE solution, is presented. In this method the projection is on the 

linear manifold of active constraints.  

 

The algorithms are applied to solve simple networks. The examples are used to compare 

the convergence properties of the algorithms with a path-based variant of the Method of 

Successive Averages (MSA) and with the Disaggregate Simplicial Decomposition (DSD) 

algorithm.  
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1. Introduction 

This paper investigates path-based algorithms to solve the stochastic user equilibrium 

(SUE) problem. Daganzo and Sheffi (1977) define the SUE as a state in which no driver 

can improve his/her perceived travel time by unilaterally changing routes. The SUE 

assignment problem is that of finding the link (and path) flows on a traffic network given 

travel demand between origins and destinations and the corresponding path choice sets 

(either explicit or implicit) and assuming a probabilistic route choice model. 

 

The SUE problem has long been studied in the literature. Thorough reviews are presented 

in Sheffi (1985), Thomas (1991), Patriksson (1994), and Bell and Iida (1997). The SUE 

problem may be formulated and solved either in the space of link flows or in the space of 

path flows. Most solution algorithms proposed in the literature are link-based. An 

important advantage of link-based solutions is that they do not require explicit 

enumeration of the path choice set, and so, may be easily applied to large-scale networks. 

Instead of enumerating paths, link-based solutions assume an implicit choice set, such as 

the use of all efficient paths (Maher 1998, Dial 1999), or all cyclic and acyclic paths (Bell 

1995, Akamatsu 1996). The correctness of the solution necessitates these implicit choice 

sets, which, however, may be unrealistic from a behavioral standpoint. It is clearly 

difficult to justify the assumption that cyclic paths should be used, but there may also be 

efficient paths that are unrealistic, such as paths involving repeatedly getting on and off a 

freeway. Path-based formulations allow a more flexible definition of the choice set that 

can accommodate these considerations.  

 

New choice set generation methods that have been developed in recent years facilitate the 

use of path-based approaches. A well-known example is the labeling method proposed by 
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Ben-Akiva et al (1984). In this method, a large number of optimality criteria are defined 

on the basis of surveyed choice motivations. These criteria (labels) include the shortest 

route, the quickest route, the best signposted route, the route that maximizes motorway 

use, and so on. An optimal path is found for each criteria and the choice set consists of all 

the paths generated by the various criteria. The study found that six labels covered 

approximately 90% of all traveled routes, thus showing that choice sets need not be 

exhaustive. Cascetta et al (1996, 1997) incorporated the labeling method coupled with k-

shortest path methods in solving the SUE problem. 

 

At the same time, route choice behaviors have been further investigated, and new models 

were developed in an attempt to better capture the similarity among routes. While a 

unique one-to-one mapping between link-based and path-based solutions exists for SUE 

assuming a logit route choice model, it may not be so for other route choice models. 

Therefore, a path-based solution may be required in order to obtain path related 

information. Moreover, many of the link-based solution approaches, such as Dial (1999), 

are specific to the logit route choice model and may not be adapted to other route choice 

models. While the work presented in this paper focuses on the logit SUE assignment, it 

can be adapted to SUE formulations using other route choice models.  

 

This paper focuses on path-based solution algorithms to the logit SUE and investigates 

their convergence properties. Two general optimization methods are adapted to solve the 

logit SUE formulation of Fisk (1980). First, a method that closely follows the GP 

algorithm developed for the deterministic problem by Berteskas and Gafni (1982) is 

derived. While this method is very efficient for the deterministic user equilibrium 

problem, we use a simple example to illustrate why it is not suitable for the SUE problem. 
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Second, a different variant of gradient projection, which exploits special characteristics of 

the SUE solution is presented. In this method the projection is on the linear manifold of 

active constraints. These methods are compared with the path-based variant of the 

Method of Successive Averages (MSA) and with the algorithm of Damberg et al (1996), 

which is an adaptation to the SUE problem of the Disaggregate Simplicial Decomposition 

(DSD) algorithm (Larsson and Patriksson 1992).   

 

The rest of this paper is organized as follows: The next section reviews the logit SUE 

problem and algorithms developed to solve it. The adaptation of DSD algorithm for logit 

SUE is also described. Next, two new adaptations of gradient projection methods to the 

SUE problem are described followed by numerical results comparing the more useful of 

these algorithms with the MSA and DSD algorithms for simple networks. We conclude 

the presentation with a discussion of the results.  

 

2. Logit SUE Assignment Problem 

 

2.1 Notations and Formulations 

Consider a directed graph ( ),G N A= , where N and A are the sets of nodes and links, 

respectively. For each link, flow-dependent travel costs are defined, ( ),  a ac x a A∀ ∈ , and 

we assume throughout this paper that the cost functions are continuous and differentiable. 

A set of origin-destination (OD) pairs, RS, with predefined demands for travel, 

 rs
q rs RS∀ ∈ , from origin r to destination s, and sets of alternative paths,  rs

K rs RS∀ ∈ , 

for each OD pair are also given. The logit SUE assignment problem concerns with 

finding the equilibrium flow patterns that will result if route fractions are defined by a 

logit model:   
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( )
( )

exp

exp
rs

rs

krs rs

k rs

j

j K

C
f q

C

θ

θ
∈

−
=

−∑
        (1) 

rs

kf  and rs

kC  are the flow and travel cost on path k connecting OD pair rs, respectively. θ  

is a positive dispersion parameter, which reflects an aggregate measure of drivers’ 

perception of travel costs (Sheffi 1985). Higher values of θ  indicate that drivers have a 

more accurate perception of travel times, and consequently tend to choose the least-cost 

path. As a result, route choices become less “dispersed” when θ  increases.  

 

Two equivalent formulations of the logit SUE problem have been proposed. Sheffi and 

Powell (1982) proposed a general formulation, given by:  

0

( ) ( )
ax

rs rs

a a a a

a A rs RS a

min Z x c x q S c w dw
∈ ∈

= − −∑ ∑ ∑ ∫      (2) 

rs
S  is a satisfaction function, defined as the expected perceived travel cost from r to s: 

{ }
rs

rs rs

k
k K

S E min C
∈

 =   
         (3) 

 

The above formulation may be applied to a variety of route choice models that meet 

certain conditions imposed on the satisfaction function. For the logit model, the 

satisfaction function is given by: 

 ( )1
ln exp

rs

rs rs

k

k K

S Cθ
θ ∈

= − −∑         (4) 

 

This formulation includes path calculations, however, in the case of the logit model, 

coupled with the implicit choice sets described earlier, the objective function may be 

evaluated at the link level. This property is used to derive link-based solution algorithms 

to the logit SUE problem, as in Sheffi (1985) and Maher (1998).  
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Fisk (1980) developed a path-based formulation for the logit SUE problem, using an 

entropy term as follows: 

0

1
( ) ln 

a

rs

x

rs rs

a k k

a A rs k K

min Z c w dw f f
θ∈ ∈

= +∑ ∑ ∑∫       (5) 

Subject to: 

rs

rs rs

k

k K

f q rs
∈

= ∀∑          (6) 

0 ,        rs

kf k rs≥ ∀ ∀         (7)  

 

For 0rs

kf = , the term lnrs rs

k kf f  is defined by its limit and set equal to zero. Similar 

entropy-based formulations have been proposed for SUE assignment based on other route 

choice models, including cross-nested logit and paired combinatorial logit (Bekhor and 

Prashker 1999).   

 

2.2 Link-Based Algorithms 

The well-known method Method of Successive Averages (MSA) developed by Powell 

and Sheffi (1982) was the first algorithm applied to solve the SUE problem. This 

algorithm can be applied with any stochastic network loading method. The step size is 

predetermined by a descent sequence with respect to the iterations.  

 

Maher (1998) developed link-based algorithms for the logit SUE problem, using Sheffi 

and Powell’s formulation. Maher proposed an algorithm that uses the same search 

direction as the MSA algorithm, but calculates an approximately optimal step size in this 

direction, thus improving overall convergence. Two adaptations of the Davidon-Fletcher-

Powell (DFP) method were also considered, but were found inferior to the above method.  
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Another example is the entropy-based algorithm developed by Dial (1999), which is 

specific for the logit route choice model. This algorithm exploits the fact that for the logit 

function, it is possible to map path flows from link flows and vice-versa.  

 

Dial’s and Maher’s algorithms exploit mathematical properties of the logit function to 

develop efficient link-based algorithms. Recent research on path-based algorithms has 

demonstrated and established that it is a viable approach for deterministic traffic 

assignment problems with reasonably large network sizes: see, for example, Chen et al. 

(2002). Much of the attention has been focused on two algorithms: the disaggregate 

simplicial decomposition (DSD) algorithm and the gradient projection (GP) algorithm. 

Adaptations of these algorithms to the logit SUE are presented in subsequent sections. 

 

2.3 Early Path-Based Algorithms 

Several algorithms to solve the logit SUE problem can be found in the literature, 

exploiting Fisk’s formulation. Chen and Alfa (1991) proposed a modification of the 

Frank-Wolfe algorithm regarding the step size computation. This computation requires an 

inverse of a link-path incidence matrix, which makes the algorithm impractical for large 

networks. Huang (1995) proposed an improvement to this algorithm, which avoided the 

matrix inversion. The algorithm uses Dial's (1971) STOCH method to generate the path-

set. However, the “efficient paths” obtained using this method may be different at each 

iteration of the algorithm, which may lead to inconsistent path flows. 

 

 Bell et al (1993) proposed an algorithm in which the step size computation is 

accomplished by iterative balancing, in a similar way to entropy-maximizing trip 
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distribution models. The balancing is performed using the link-path incidence matrix, in 

which each entry in the matrix correspond to the entropy flow, and the marginals 

corresponds to the total link flows and total demand for each OD pair. The algorithm uses 

a column generation procedure to generate routes; therefore, the number of iterations 

limits the number of paths. This means that the dimensions of the problem (the link-path 

incidence matrix) increases with the number of the iterations. Leurent (1997) commented 

that this algorithm cannot guarantee a stable set of efficient paths when application data 

are slightly modified. 

 

2.4 The Algorithm of Damberg-Lundgren-Patriksson 

Damberg et al (1996) extended the DSD algorithm (Larsson and Patriksson 1992) to 

solve the logit SUE problem. This section briefly describes the method. Suppose that at 

iteration n a feasible path-flow solution is given. The first term in Fisk’s formulation 

[equation (5)] is linearized, which amount to assuming that travel costs are fixed at their 

current values. The resulting sub-problem is given by: 

( ) 1
ln 

rs rs

rs n rs rs rs

k k k k

rs rsk K k K

min Z c f f f
θ∈ ∈

= +∑ ∑ ∑ ∑      (8) 

( )rs n

kc  is the travel cost on path k based on the vector of path-flows at iteration n.  

 

The solution to the above sub-problem is given by: 

( )
( )

( )

( )

( )

exp
,

exp
rs

rs n

krs n rs

k rs n

j

j K

c
h q k rs

c

θ

θ
∈

−
= ∀ ∀

−∑
      (9) 
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If the vector ( ) ( )n n
h f−  is nonzero, it defines a descent direction with respect to the 

objective function (5). A line search in this direction is performed to find the optimal step 

size λ as follows: 

[ ]
( )( ) ( ) ( ) ( )

0,1

n n n narg min Z f h f
λ

λ λ
∈

 = + −        (10) 

 

The new solution is given by: 

 ( )( 1) ( ) ( ) ( ) ( ) ,rs n rs n n rs n rs n

k k k k
f f h f k rsλ+ = + − ∀ ∀      (11) 

 

The flows calculated in equation (11) are then used to update link costs and path costs. 

The new sub-problem with the updated path costs is solved using equation (9), to produce 

a new descent direction. This iterative process continues until the convergence criterion is 

satisfied. 

 

3. Alternative Algorithms 

 

3.1 Algorithm GP – Gradient Projection using a reference path flow 

In this section, we present an adaptation of the GP algorithm to solve the SUE problem 

that closely follows the algorithm developed for the deterministic problem by Bertsekas 

and Gafni (1982).  

 

Consider a set of paths rsK  for a given origin-destination pair rs. Assume that 
rsk  is a 

reference path (the specific path will be defined later). The complement set of paths is 

defined as { },rs rs rsK k k K k k= ∈ ≠� . Demand constraints [equation (6)] can be 

expressed by: 
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rs

rs rs rs

k k

k K

f q f
∈

= − ∑ �

� �

         (12) 

 

Fisk’s SUE problem is redefined in the space of the complement-set path-flows: 

0

1
( ) ln

1
ln

a

rs

rs rs

x

rs rs

a k k
a rs k K

rs rs rs rs

k k
rs k K k K

min Z c w dw f f

q f q f

θ

θ

∈

∈ ∈

= +

   
+ − −   

   

∑ ∑ ∑∫

∑ ∑ ∑

� �

� �

� �

� �� �

�

      (13) 

Subject to: 

0 ,rs

k
f k rs≥ ∀ ∀
�

�          (14) 

 

The problem above has only the non-negativity constraints. The gradient for this problem 

is given by: 

( ) ( ) ( )1 1
ln ln ln ln

rs rs rs rs rs rs rs rs

a ak k k krs ak k k k
ak

Z
C f f c c f f

f
δ δ

θ θ
∂

= − + − = − + −
∂ ∑ � � � �

�

�

  (15) 

 

In the deterministic problem, first derivatives include only the path cost difference term. 

The reference path is then chosen to be the minimum cost path. Here, an equivalent 

reference path is the one that minimizes the generalized path cost ( )rs

kG : 

1
, ln

rs

rs rs rs rs

rs k k k k
k K

k arg min G G c f
θ∈

= = +       (16) 

 

Second derivatives of the modified objective function (13) are given by: 

( )( )
2 1 1 1rs rs rs rs rsa

ak alrs rs ak al kl kl
a a kk l k

cZ

f f x f f
δ δ δ δ δ δ

θ
′ ′

′

 ∂∂
= − − + +  ∂ ∂ ∂  

∑ � � �� ��

� � �

�

   (17) 
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kl
δ ��  is equal to 1 if k l=� �  and 0 otherwise. rs

kl
δ
��

is equal to 1 if k�  and l�  connect the same 

OD pair rs, and 0 otherwise. 

 

After calculating the derivatives, the gradient projection step can be evaluated. Given a 

feasible path flow solution at iteration n, link costs are calculated, and reference paths are 

found using equation (16) above. The updated flows on non-reference paths are obtained 

by: 

( ) ( ) ( )1
1

 
n n

rs rs rs rs

kk k k
f f Q G G

++ − = − −  � � �
      (18) 

1
Q

−  is the inverse of a positive definite scaling matrix. The “+” sign indicates projection 

on the positive orthant. This is needed to assure the non-negativity of the path flows. 

Flows on reference paths are obtained using the conservation constraints (12).  

 

A key factor in the implementation of the algorithm is the choice of scaling matrix and 

calculation of its inverse. In the deterministic case, Bertsekas and Gafni (1982) and 

Jayakrishnan et al (1994) used a diagonal approximation of the Hessian matrix, enabling 

easy inversion. The diagonally scaled Newton method generates a “good” descent 

direction because the diagonal elements are dominant in the Hessian matrix. However, 

this may not be the case for the SUE problem, as illustrated by the following simple 

example. 

 

Consider the 9-node grid network with 12 one-way streets and a single OD pair shown in 

Figure 1 below. 

 

[Insert Figure 1 here] 
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Six different routes connect O and D. The following BPR link performance function was 

used: 

4

0
1 0.6 a

a a

a

x
c c

s

  
 = ⋅ +     

        (19) 

0

ac  is the free-flow travel cost on link a, 
ax  and 

as  are the traffic flow and capacity of link 

a, respectively. 

 

Both 0

ac  and as  are input parameters to the assignment process. In this example, the 

capacity of all links is 1000 units. The free-flow travel costs are 1 unit each for links 6 

and 8, and 2 units for the remaining links.  

 

Initial solutions were obtained by applying the logit model with free-flow travel costs. 

Table 1 below summarizes the first derivative calculations for the first iteration. 

 

[Insert Table 1 here] 

 

In deterministic assignment, path 1, which is the least-cost path, would be used as a 

reference. In the stochastic case, path 6 has the minimum value of the generalized cost 

computed according to equation (16), and therefore is set as the reference path. Note that 

the first derivatives are always non-negative. However, the descent direction may be 

negative, depending on the Hessian matrix. Table 2 below shows the elements of the 

Hessian matrix. 

 

[Insert Table 2 here] 
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Inspection of the Hessian matrix above shows that the diagonal elements are not 

significantly larger than the other elements and that the inverse of the Hessian matrix 

contains negative elements. Table 3 compares the updated flows computed using the full 

Hessian matrix with the ones generated by a diagonal approximation of the Hessian 

matrix. An optimal step size was used in this example.  

 

[Insert Table 3 here] 

 

With the diagonally scaled method, since both the gradient and the diagonal elements of 

the Hessian matrix are always positive, flows on non-shortest paths decrease, and the 

flow on the least-cost path increases. This behavior is desirable in the deterministic case, 

because of the equilibrium conditions. However, in the SUE assignment, equilibrium 

conditions also include the entropy term. The descent direction may lead to an increase in 

the flows on some of the non-shortest paths, as in paths 2, 3, 4 and 5. If the new step were 

computed according to the full Hessian, the new solution would be very close to the 

equilibrium solution (last column in Table 3). 

 

Since inversion of the Hessian matrix is not practical for large networks, algorithm GP is 

not suitable to solve the SUE problem. We next propose a different variant of gradient 

projection in which the projection is on the linear manifold of active constraints.  

 

3.2 Algorithm GP2 – Manifold optimization method 
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We first present the manifold optimization method. The discussion follows the 

presentation in Bertsekas (1999). Consider the general nonlinear minimization problem 

with equality constraints, in vector notation: 

( )

. .

min f x

s t Ax b=
          (20) 

 

Suppose that a feasible solution n
x  at iteration n is given. A feasible descent direction, 

n
d , can be found by solving the following sub-problem: 

1
2

( )

. . 0

n
min f x d d Qd

s t Ad

′ ′∇ +

=
        (21) 

Q is a positive definite matrix.  

 

The solution, n
d , satisfies the equality constraints in (20), ( )n n n n

A x d Ax Ad b+ = + = , 

and is therefore a feasible direction. It is also a descent direction since for 0n
d ≠ : 

1
2

( ) 0n n n n
f x d d Qd′′∇ + < , and therefore 1

2
( ) 0n n n n

f x d d Qd′′∇ < − < .   

 

Sub-problem (21) can be easily solved in closed form by applying the Karush-Kuhn-

Tucker (KKT) first order optimality conditions. The solution is given by: 

( )1 ( ) 'n n
d Q f x A λ−= − ∇ +         (22) 

( ) 1
1 1' ( )n

AQ A AQ f xλ
−− −= − ∇        (23) 

 

The application of this algorithm to the SUE problem exploits the fact that the solution 

corresponds to a logit route choice model. The logit model assigns strictly positive choice 

probabilities to all paths in the choice set. This implies that non-negativity constraints will 
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not be binding and can be ignored. Therefore, we can concentrate only on satisfying the 

demand equality constraints (6).  

 

As with the GP algorithm, the selection of the scaling matrix Q must recognize the need 

to invert this matrix. Moreover, the structure of the binary A matrix is such that the 

direction finding problem (21) can be decomposed for each origin-destination pair if Q is 

diagonal (in fact, Q may be block-diagonal assuming it is arranged such that paths are 

ordered by OD pairs). Therefore, a natural selection is the diagonal of the Hessian matrix. 

The diagonal elements of this matrix are given by: 

2

2

ln1 1
rs rs

rs rsk k a
k akrs rs rs rs

ak k k a k

c f cZ
h

f f f x f
δ

θ θ
∂ ∂ ∂∂

= = + = +
∂ ∂ ∂ ∂∑      (24) 

 

The descent direction for path k is then obtained by (omitting the iteration index): 

1

1 1
rs rs

rs rs

rs rs rs

l l k

rs rs rs
l K l Kl k lrs rs

k krs

k
rs rs

l K l Kl l

f f f

h h h
d f

h

h h

∈ ∈

∈ ∈

 ∇ ∇ − ∇
 
 = − ∇ − =
 
  
 

∑ ∑

∑ ∑
     (25) 

 

Another special case of the matrix Q is the identity matrix. In that case the search 

direction further simplifies to: 

ln

ln
rs rs

rs
rs rs l

l l rs
l K l Krs rs rs k

k k k

rs rs

f
f c

f
d f c

K K

θ
θ

∈ ∈

 
∇ +    = − ∇ = − + 

 

∑ ∑
     (26) 

rsK  is the size of the path choice set for OD pair rs.  
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The above expression has an intuitive interpretation: the search direction is proportional 

to the differences between the average generalized cost and the generalized cost of the 

path in question, in an attempt to equalize these generalized costs.   

 

In the examples above, the GP2 algorithm implements approximations of the Hessian 

matrix as the scaling matrix. Variable scaling methods, in which an estimate of the 

Hessian matrix (or its inverse) is updated at each iteration with first order information, 

may also be used. For example, an equality constrained version of the DFP method (e.g. 

Goldfarb 1969) may replace the inverse of the diagonalized Hessian. Maher (1998) 

proposed a similar approach for link-based algorithms using the unconstrained 

formulation of Sheffi and Powel (1982). 

 

Table 4 shows the first iteration solution of the 9-node grid network starting with the free-

flow travel cost solution.  

 

[Insert Table 4 here] 

 

Note that the new solution vector is quite similar to the solution obtained by the exact 

algorithm GP (full Hessian, see Table 3). However, in algorithm GP2, only the diagonal 

elements are needed to obtain an optimized descent direction. Therefore, this algorithm 

can be implemented to solve real size networks with affordable computer resources.  

 

Although not required, it may be useful for the implementation of the algorithm to 

calculate an upper bound on the step size. A maximum step size that will ensure strict 

positive path flows is given by: 
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( ) 0,, <∀







−=

∈

rs

krs

k

rs

k

Kk

n
drs

d

f
Min

rs

α        (27) 

 

In the above example, path 1 is the only one with a negative descent direction. The step 

size has to be strictly smaller than (466.9/50.7) = 9.2.  

 

4. Results 

 

This section presents some performance comparisons between the path-based MSA, DSD 

and GP2 algorithms. The GP algorithm is not compared, since it is clearly inferior, as 

explained in the previous section. A path-based implementation of the MSA algorithm 

using a step size (1/1+n) is presented to provide a benchmark for comparison. Exact step 

sizes were calculated for both the DSD and GP2 algorithms. All three algorithms were 

tested using an “all-at-once” implementation in which link and path costs are updated 

only after assigning all path flows in the network. 

 

4.1 Grid Network 

First, the network presented in Figure 1 (9-node grid network) is used. The demand is 

1000 units. The progress of the various algorithms was evaluated using a measure of the 

deviation from the objective function at equilibrium (Leurent 1997): 

( )

*
ln 1

n
Z

Z
−           (28) 

( )nZ  and *Z  are the values of the objective function evaluated at iteration n and at 

equilibrium, respectively. As Leurent (1997) pointed out, this measure is not 
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representative of a practical application where *Z  would not be known a priori. However, 

it ensures that the testbed is fair to all competing algorithms. 

 

Figure 2 compares the performance of three algorithms (MSA, DSD and GP2).  

 

[Insert Figure 2 here] 

 

The results presented in Figure 2 indicate that both DSD and GP2 outperform the MSA 

algorithm with a slight advantage of the DSD algorithm over the GP2 algorithm. 

However, the example is too simple to draw general conclusions. The next section 

presents comparison results for a more realistic network.  

 

4.2 Sioux Falls Network  

The next network compared is the well-known Sioux Falls network: see, for example, 

Leblanc (1973). This network is composed of 24 nodes, 76 links and 550 OD pairs. The 

paths were generated prior to the assignment, using a combination of the link elimination 

method and the k-shortest path method. In a dense network, the k-shortest path method 

generates routes with high degree of similarity. The link elimination method consists of 

successively removing links and finding shortest paths on the remaining links of the 

network. Only acyclic paths were considered in these methods. For more details on 

choice set generation methods, see Bekhor et al (2001). An average of 6.3 paths were 

generated for each OD pair, and the maximum number of routes generated was 12.  

 

For the purposes of the present analysis, we assumed a value of 0.5 for the dispersion 

parameter θ  based on empirical evidence (Ramming 2001), which shows that the 
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coefficient for travel time ranges from –0.4 to –0.6, depending on the model structure and 

other parameters in the model. This value indicates that given a 5-minute difference 

between two paths, about 8% of the drivers will chose the route with the higher cost.  

 

Figure 3 compares the performance of the algorithms tested (MSA, DSD and GP2). 

 

[Insert Figure 3 here] 

  

In this example, the convergence rates of both DSD and GP2 algorithms are similar. In 

contrary to the grid network example, for increasing precision levels, the GP2 converges 

slightly faster than DSD. 

 

Note that the convergence rate for the GP2 algorithm is slower than for the other two 

algorithms in the first iterations. This may be the result of using an initial solution 

(common to all three algorithms) that was obtained with free-flow times. The GP2 

descent direction yields some large negative flows, because of the big differences in the 

travel times. The step sizes are therefore relatively small, which compromises the speed 

of convergence. It may be possible to avoid this problem by performing a few iterations 

of a deterministic traffic assignment. These first iterations will produce travel times that 

are closer to the equilibrium solution. Once this “warm-up” assignment is finished, the 

GP2 algorithm can be applied. 

 

4.2.1 Sensitivity Analysis 

Many factors affect the performance of the algorithms, including the value of the 

dispersion parameter θ  and the level of congestion in the network. There are well known 
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results (see, for example, Sheffi 1985, and Thomas 1991) showing that as the dispersion 

parameter increases, the SUE solution becomes close to the deterministic UE solution. A 

similar effect is observed with respect to congestion level (Prashker and Bekhor 2000).  

 

We conducted a test of the sensitivity of the performance of the various algorithms to the 

value of θ  by varying its value and performing SUE assignments. Figure 4 presents the 

number of iterations required by the DSD and GP2 algorithms to achieve a solution 

within 0.01% of the equilibrium objective function value. In all cases, the MSA algorithm 

required more than 50 iterations to reach the same precision, and its results are therefore 

omitted. 

 

[Insert Figure 4 here] 

   

The performance of DSD and GP2 for the Sioux Falls network is quite similar for 

different values of θ , with GP2 algorithm performing slightly better than DSD.  

 

A second sensitivity analysis was performed with respect to the total demand. We 

uniformly multiplied the Sioux Falls demand by a constant factor, and performed SUE 

assignment to observe the influence of the congestion level on algorithm performance. 

Since the Sioux Falls matrix is quite congested, we vary this factor from 0.1 to 1.5, in 

intervals of 0.1. Figure 5 presents the number of iterations required by the DSD and GP2 

algorithms to achieve a solution within 0.01% of the equilibrium objective function value. 

As in the previous case, the MSA algorithm requires more than 50 iterations to reach the 

same precision level in all but the 4 lowest levels of demand considered, and is therefore 

omitted from the comparison. 
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[Insert Figure 5 here] 

 

As in the previous example, the performance of DSD and GP2 for the Sioux Falls 

network is quite similar for different demand levels. For very high congestion level, the 

DSD algorithm slightly outperforms GP2. This may suggest that DSD is better when the 

SUE solution approaches the deterministic UE.  

 

4.2.2 Influence of the Path Choice Set  

It is also interesting to examine the impact of the size of the path choice set on the 

equilibrium solution reached. To test that, we varied the maximum numbers of paths 

allowed for each OD pair and preformed SUE assignments. Figure 6 below shows the 

equilibrium objective function values reached (same value for all algorithms).  

 

[Insert Figure 6 here] 

   

The results indicate that for the Sioux Falls network, relatively few paths are needed to 

achieve equilibrium. This is an encouraging result since it suggests that path-based SUE 

assignment may be performed without a need for complete path enumeration.   

 

5. Conclusions 

 

This paper investigated path-based algorithms for the SUE problem. Two new algorithms 

were presented, based on adaptations of gradient projection methods. An adaptation of the 

GP algorithm proposed for the deterministic UE problem was found to be unsuitable for 
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the SUE problem. An different variant based on the projection of the gradient on the 

manifold of demand constraints (called GP2 in this paper) was found to suit better to 

solve the SUE problem. 

  

Comparison results between MSA, DSD and GP2 algorithms were also presented using a 

small grid network and the well-known Sioux Falls network. The performance of DSD 

and GP2 is similar, and as expected, both significantly outperform the path-based MSA 

algorithm.  

 

In this paper we applied a pre-defined path choice set to allow for a fair comparison 

between the algorithms. For larger networks, since it is not possible to enumerate all 

paths, different choice set generation methods should be tested, to verify both the 

convergence properties and the quality of the solution.  

 

In this paper we limited the application to the logit SUE assignment. However, path-

based solution algorithms (both DSD and GP2) may be applied to SUE assignment using 

more sophisticated route choice models within the generalized extreme value (GEV) 

family. 
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 FIGURE 1 9-Node Grid Network 
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 TABLE 1 Algorithm GP: First Derivative in iteration 1 

Path Flow Cost Generalized 

Cost 

First 

Derivative 

1 466.9 6.78 12.93 0.7558 

2 171.8 7.40 12.55 0.3779 

3 171.8 7.40 12.55 0.3779 

4 63.2 8.30 12.45 0.2744 

5 63.2 8.30 12.45 0.2744 

6 63.2 8.03 12.17  
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 TABLE 2 Algorithm GP: Hessian matrix in iteration 1 

 1 2 3 4 5 

1 0.0229 0.0183 0.0183 0.0177 0.0177 

2 0.0183 0.0241 0.0158 0.0159 0.0177 

3 0.0183 0.0158 0.0241 0.0177 0.0159 

4 0.0177 0.0159 0.0177 0.0336 0.0160 

5 0.0177 0.0177 0.0159 0.0160 0.0336 
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 TABLE 3 Algorithm GP: Descent Direction 

  Diagonal Elements Full Hessian  

Path Current 

Solution 

Direction New 

Solution
* 

Direction New 

Solution
 

Optimal 

Solution 

1 466.9 33.0 401.9 74.5 392.4 391.3 

2 171.8 15.7 140.9 -16.0 187.8 186.2 

3 171.8 15.7 140.9 -16.0 187.8 186.2 

4 63.2 8.2 47.1 -10.3 73.5 73.8 

5 63.2 8.2 47.1 -10.3 73.5 73.8 

6 63.2  222.1  85.1 88.7 

* Optimized step size = 1.97 
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 TABLE 4 Algorithm GP2: First Iteration 

Path Current 

Solution 

Generalized 

Cost 

Diagonal Hessian 

Elements 

Direction New 

Solution
* 

1 466.9 12.93 0.0067 -50.7 416.2 

2 171.8 12.55 0.0083 4.5 176.3 

3 171.8 12.55 0.0083 4.5 176.3 

4 63.2 12.45 0.0176 8.0 71.2 

5 63.2 12.45 0.0176 8.0 71.2 

6 63.2 12.17 0.0162 25.6 88.8 

* Optimized Step Size = 0.991 
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FIGURE 2  Convergence of path-based algorithms - Grid network 
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FIGURE 3 Convergence of path-based algorithms – Sioux Falls network 
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FIGURE 4 Sensitivity of the Algorithm Performance to the Dispersion Parameter  
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FIGURE 5 Sensitivity of the Algorithm Performance to the Level of Demand  
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FIGURE 6 Influence of the Path Choice Set on the Equilibrium Solution 
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