KTH ROYAL INSTITUTE OF TECHNOLOGY

Real-Time Crowding Information: Results from a Stockholm Metro Pilot Study

Yizhou Zhang, Erik Jenelius and Karl Kottenhoff KTH Royal Institute of Technology, Sweden

Background: Crowding

Increasing crowding in public transport is common problem worldwide

Many negative effects:

- Discomfort
- Risk of denied boarding
- Longer dwell times, delays, lower punctuality/regularity
- Public transport less
 attractive

Background: Crowding

Still, passengers are unevenly distributed among cars Even in peak hours, with loads exceeding practical capacity, there are available seats (usually in middle cars)

2. Stockholm Metro Seat Utilization - Percent (%)					
	07.30-08.30	09.00-15.00	16.30-17.30	15.00-18.00	18.00-21.00
Green Line	70	35	55	55	35
Red Line	80	40	80	65	40
Blue Line	75	45	75	70	50
Sum	75	40	70	60	40
					01 0040

SL 2013

Potential to reduce crowding through better information

Pilot study: Tekniska högskolan towards T-Centralen

Two entrances, one towards KTH main entrance

During afternoon peak:

Many board at Tekniska högskolan and preceding station Universitetet Few alight

Skewed distribution on platform

Before-period: May 2014

Passenger load data from air suspension measurements (Assumption: Average person 76 kg + 2 kg luggage)

Before-period: May 2014

Difference in passenger load Tekniska högskolan – Universitetet shows skewed boarding distribution

Technical installation

Projector and screen mounted in ceiling Speaker providing vocal information

Crowding prediction method

Before train departs Universitetet (> 2.5 min): Historical average from air suspension weight measurements

After train departs Universitetet (< 2.5 min): Observer at Universitet reports crowding to operator

Visual crowding information

Three crowding levels:

green < 150 pax orange \in (150,250) red > 250

Hur fullt är nästa tåg / Real Time Crowding Information

Evaluation

Real-time crowding information tested during afternoon peak six days in May 2015

Sometimes screen+speaker, sometimes screen only

Evaluation based on

- Interviews with 118 waiting passengers
- Video analysis
- Passenger load data from weight measurements

Interview results

Projection system

No significant difference between age groups

Interview results

No significant difference between age groups

Video analysis results

Behavior of 3000 passengers analyzed Evidence of noticing screen (looking up, pointing)

Without speaker: 28% noticed screen With speaker: 33% noticed screen

Penetration rate

Estimated around 25% consulted real-time crowding information

25 Passengers

Passenger load analysis

Shift towards more uniform boarding distribution

Conclusion

Pilot study shows real-time information has potential to even out passenger loads and reduce crowding

Ongoing work

• Technical solution for real-time crowding measurement

Further work needed

- Scale up to multiple stations
- Improve crowding prediction