Real Time Control for Transit Systems with Transfers

Prof. Tomer Toledo
Hend Manasra

Technion- Israel Institute of Technology

Outline

- Introduction
- State of the art
- Model description
- Demonstration case studies
- Conclusions and future improvements

Introduction

- Objective
- Improve service quality and reduce passengers delays
- Increase reliability
- Schedule adherence
- Regularity
- Develop control strategies
- Planning
- Operation (Real time)

Real time control

- Classification (Eberlein et al. 1999 and Zolfaghari et al. 2004)
- At Stop
- Holding
- Stop skipping
- Inter stop
- Change speed
- Signal priority
- Line
- Deadheading
- Short turning
- Short cut
- Expressing
- Adding reserve vehicle

Control of single line

-Most common
Often uses holding strategy
-Rule-based (Fu and Yang 2002, Daganzo 2009, Xuan et al. 2011, Cats et al. 2010, 2011)

$$
\text { e.g. } \quad h_{\text {actual }}^{\min } \geq(0.6 \div 0.8) \cdot H_{\text {planned }}
$$

Optimization-based (Eberlein et al. 1999, Fu et al. 2003, Zolfaghari et al. 2004)

```
min }\sum\mathrm{ passengers costs
```

${ }^{\circ}$ Passengers costs: waiting time, in vehicle time, skip time, variance of headway/ schedule

Control of multiple lines

Integrated PT systems with transfers

- Rule-based

- Guevara et al. 2014: skip stop, offline and online holding, high demand transfer stops
-Optimization-based
- Dessouky et al. 1999, 2003: holding at the transfer stop, include delays at the transfer stops and downstream
- Yu et al. 2012: holding strategy to synchronize vehicles at transfer stops. Consider waiting time at the transfer stop and downstream
- Hadas and Ceder 2008, 2010, Ceder et al. 2013: optimizing the total travel time. Strategies: holding, skip stop and slowingdown.
- Khoat et al. 2007: stop skip strategy, minimize waiting time of passengers

This research

-Develop prediction-based system for operations control
-Minimize total passenger time

- waiting at stop, travel between stops, dwell time, waiting at the transfer, waiting for skip passengers
-Strategies
-Holding, change speed, skip stop
- Incorporates
- Limited capacity, transfer stops

Optimization framework

Rolling horizon implementation

Optimization problem

Minimum passengers time

- Decision variables
- Travel time $T T_{k}^{s, l} \quad Z=\min \sum_{s=1}^{M} \sum_{l=r}^{r+t} \sum_{k=i}^{i+j}\left[\begin{array}{l}\theta_{1} \cdot P D T_{k}^{s, l}+\theta_{2} \cdot P T T_{k}^{s, l}+\theta_{3} \cdot P W T_{k}^{s, l}+ \\ \theta_{4} \cdot T P T_{k}^{s, l}+\theta_{5} \cdot S P T_{k}^{s, l}\end{array}\right]+\sum_{s=1}^{M} \sum_{l=r}^{r+t} \theta_{6} \cdot D T C^{s, l}$
${ }^{\circ}$ Hold bus $H_{k}^{s, l}$

$$
\text { S.t: } \quad T T_{k, \min }^{s, l} \leq T T_{k}^{s, l} \leq T T_{k, \max }^{s, l}
$$

${ }^{\circ}$ Skip stop $S_{k}^{s, l}$

$$
\begin{gathered}
0 \leq H_{k}^{s, l} \leq H_{k}^{\max s, l} \\
\left(1-S_{k}^{s, l}\right) \cdot H_{k}^{s, l}=0 \\
S_{k}^{s, l-1}+S_{k}^{s, l} \geq 1
\end{gathered}
$$

Components of times

k-stop, l-bus, s-line

- Passenger dwell times at stops (PDT)
$P D T_{k}^{s, l}=S_{k}^{s, l} \cdot\left(n p_{k}^{s, l}-\left(n a_{k}^{s, l}+n t d_{k}^{s, l}+n t a_{k}^{s, l}+\sum_{j=k+1} n a_{j}^{s, l} \cdot \prod_{j}\left(1-S_{j}^{s, l}\right)\right)\right) \cdot\left(s t_{k}^{s, l}+H_{k}^{s, l}\right)$
$n p \quad$ Number of passengers on the bus
na Number of alight passengers
ntd Number of transfer alighting passengers
nta Number of alighting passengers to the transfer
S Bus stops at stop
st Service time at stop
H Holding time at stop

Components of times

- Passenger travel time (PTT)

$$
P T T_{k}^{s, l}=T T_{k}^{s, l} \cdot n p_{k+1}^{s, l}
$$

TT Travel time between stops

- Passenger wait time (PWT)
$P W T_{k}^{s, l}=\left(n b_{k}^{s, l}+n t o_{k}^{s, l}\right) \cdot\left(\frac{d t_{k}^{s, l}-d t_{k}^{s, l-1}}{2}\right)$
nb Number of passengers that want to board
nto Transfer boarding passengers at the origin
$d t \quad$ Departure time from stop

Components of times

-Transfer passengers' time (TPT)

$$
T P T_{k}^{s, l}=n t b_{k}^{s, l} \cdot\left(d t_{k}^{s, l}-a t_{k}^{m, n}\right) \cdot S_{k}^{s, l}
$$

at Arrival time at stop
-Skipped passengers' time (SPT)

$$
\begin{aligned}
& S P T_{k}^{s, l}=\left(n b_{k}^{s, l-1}+n t o_{k}^{s, l-1}+n t b_{k}^{s, l-1}+n s b_{k}^{s, l}+n s a_{k}^{s, l}\right) \cdot\left(d t_{k}^{s, l}-d t_{k}^{s, l-1}\right) \cdot\left(1-S_{k}^{s, l-1}\right) \cdot S_{k}^{s, l}+ \\
& n d b_{k}^{s, l-1} \cdot\left(d t_{k}^{s, l}-d t_{k}^{s,-1}\right) \cdot S_{k}^{s, l} \\
& n s b \quad \text { Total passengers that were skipped } \\
& n s a \quad \text { Passengers on bus that have to alight because of } \\
& \\
& \text { skipping downstream stops } \\
& n d b \quad \text { Passengers that cannot board the bus because } \\
& \\
& \\
& \text { of limited capacity }
\end{aligned}
$$

Components of times

- Delay for next trip on chain (DTC)
$D T C^{s, l}=\frac{\sum_{i}\left(n b_{i}^{s, l}+n t b_{i}^{m, n}+n t o_{i}^{s, l}\right)}{\text { number of stations }} \cdot\left(a t_{\text {last station }}^{s, l}-\right.$ planning $\left._{\text {at }}^{\text {last station }}, \beta\right)$
β Recovery time

Case study

2 lines, 6 stops each
One transfer stop
Optimize 4 buses on line 1

Assumptions

-Weight of waiting times double the weight of travel time (FTA, 2005)

$$
\theta_{1}, \theta_{3}, \theta_{4}, \theta_{5}=1 ; \quad \theta_{2}=0.5
$$

- Weight of delay to the next trip is 0.1
-Boarding/alighting time for passenger is 2.59 seconds
${ }^{-}$Maximum speed gain $\Delta \mathrm{V}_{\text {max }}=2 \frac{\mathrm{~km}}{\mathrm{~h}}$
- Maximum speed loss $\Delta \mathrm{V}_{\text {min }}=5 \frac{\mathrm{~km}}{\mathrm{~h}}$
- Headway of buses 5 minutes
- Recovery time $\beta=3$ minutes
- Base horizon 3 stops and 3 buses

Scenarios

- Scenario 1- Base scenario
- Scenario 2- Bunching on line 1
- Scenario 3- High demand and bunching on line 1
- Scenario 4- High demand and bunching on both lines
- Scenario 5- Extreme demand and bunching on line 1
-Scenario 6- Extreme demand and bunching on both lines

Scenario	1	2	3	4	5	6
Demand	Normal	Normal	High	High	Very high	Very high
transfer	Normal	Normal	High	High	Very high	Very high
Bunching line 1	No	Yes	Yes	Yes	Yes	Yes
Bunching line 2	No	No	No	Yes	No	Yes

Demands

Line profile: line 2

Scenario 1-Base scenario

- Operation with even headway
- Base demand level
- Optimal control
- Buses run at the maximum allowed speed, without holding
- Total passenger time reduction: 127 minutes (3\%)

Bus	Stop	$\begin{gathered} \Delta V \\ (\mathrm{~km} / \mathrm{h}) \end{gathered}$	H (minutes)
1	1	2.0	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0
2	1	2.0	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0

Bus	Stop	$\begin{gathered} \Delta V \\ (\mathrm{~km} / \mathrm{h}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (minutes) } \end{gathered}$
3	1	2.0	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0
4	1	2.0	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0

Scenario 2- Bunching on line 1

- Base demand
- Optimal control
- Hold bus 2 at stop 1 the maximum allowed time (3.5 minutes), and bus 3 at stop 1 and bus 4 at stop 1 for 2.9 minutes
- Buses run at the maximum allowed speed except bus 4 from stop 1 to 3
- Total hold time: 8 minutes
- Total passenger time reduction: 481 minutes (9\%)

Bus	Stop	$\begin{gathered} \Delta V \\ (\mathrm{~km} / \mathrm{h}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { (minutes) } \end{gathered}$
1	1	2.0	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0
2	1	2.0	3.5
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0

Bus	Stop	ΔV $(\mathrm{~km} / \mathrm{h})$	H (minutes)
	1	2.0	0.9
$\mathbf{3}$	2	1.8	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0
	1	-5.0	2.9
$\mathbf{4}$	2	-2.1	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0

Scenario 3-High demand and bunching on line 1

- Optimal control:
- Hold bus 2 at stop 1 for 3.5 minutes, Hold bus 4 at stop 1 for 2.6 minute and at stop 2 for 0.5 minutes
- Total hold time: 6.6 minutes
- Bus 2 slows from stop 3 to 4 , bus 4 slows from stop 2 to 3
- Total passengers time reduction: 601 minutes (9\%)

Bus	Stop	$\begin{gathered} \Delta V \\ (\mathrm{~km} / \mathrm{h}) \end{gathered}$	H (minutes)
3	1	1.9	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	1.7	0.0
4	1	2.0	2.6
	2	-2.7	0.5
	3	2.0	0.0
	4	1.9	0.0
	5	2.0	0.0

Scenario 3-High demand and bunching on line 1

Departure and arrival time to transfer
stop for transfer from line 1

	Without control	With control		
Bus	Departure time of line 2	Arrival time of line 1	Departure time of line 2	Arrival time of line 1
1	$08: 06$	$08: 12$	$08: 06$	$08: 12$
2	$08: 13$	$08: 14$	$08: 13$	$08: 16$
3	$08: 19$	$08: 23$	$08: 19$	$08: 22$
4	$08: 23$	$08: 25$	$08: 23$	$08: 25$
5	$08: 29$	$08: 33$	$08: 28$	$08: 33$
6	$08: 32$	$08: 37$	$08: 32$	$08: 37$
7	$08: 39$	$08: 42$	$08: 39$	$08: 42$
8	$08: 43$	$08: 47$	$08: 43$	$08: 47$
9	$08: 48$	$08: 52$	$08: 48$	$08: 52$
10	$08: 53$	$08: 57$	$08: 53$	$08: 57$
11	$08: 57$	$09: 02$	$08: 57$	$09: 02$
12	$09: 04$	$09: 07$	$09: 04$	$09: 07$

Departure and arrival time to transfer stop for transfer to line 1

	Without control		With control	
Bus	Departure time of line 1	Arrival time of line 2	Departure time of line 1	Arrival time of line 2
1	$08: 14$	$08: 05$	$08: 14$	$08: 05$
2	$08: 15$	$08: 12$	$08: 17$	$08: 12$
3	$08: 25$	$08: 17$	$08: 24$	$08: 17$
4	$08: 26$	$08: 22$	$08: 26$	$08: 22$
5	$08: 36$	$08: 26$	$08: 35$	$08: 26$
6	$08: 38$	$08: 32$	$08: 38$	$08: 32$
7	$08: 44$	$08: 37$	$08: 44$	$08: 37$
8	$08: 48$	$08: 42$	$08: 48$	$08: 42$
9	$08: 53$	$08: 47$	$08: 53$	$08: 47$
10	$08: 58$	$08: 51$	$08: 58$	$08: 51$
11	$09: 03$	$08: 56$	$09: 03$	$08: 56$
12	$09: 08$	$09: 03$	$09: 08$	$09: 03$

Scenario 4- High demand and bunching on both lines

- Optimal control:
- Hold bus 2 at stop 1 for 3.5 minutes and at stop 2 for 1.2 minutes. Hold bus 3 at stop 1, and bus 4 from stop 1 to 3 for 2.2 minutes.
- Total hold time: 8.1 minutes

Bus\Arrival time	Line 1	Line 2
1	$8: 05$	$8: 00$
2	$8: 06$	$8: 01$
3	$8: 15$	$8: 10$
4	$8: 16$	$8: 11$
5	$8: 25$	$8: 20$
6	$8: 30$	$8: 25$
7	$8: 35$	$8: 30$
8	$8: 40$	$8: 35$
9	$8: 45$	$8: 40$
10	$8: 50$	$8: 45$
11	$8: 55$	$8: 50$
12	$9: 00$	$8: 55$

- Bus 4 slows from stop 1 to stop 3
- Total passengers time reduction: 562 minutes (8\%)

Scenario 5-Extreme demand and bunching on line 1

- Optimal control:
- Hold bus 2 at stop 1 ,3 and 5
- Total hold time: 3.3 minutes
- Bus 2 slows from stop 1 to 2 and from stop 3 to 4, bus 4 slows from stop 1 to stop 4.
- Total delay time reduction: 544 minutes (7\%)

Bus	Arrival time
1	$8: 05$
2	$8: 06$
3	$8: 15$
4	$8: 16$
5	$8: 25$
6	$8: 30$
7	$8: 35$
8	$8: 40$
9	$8: 45$
10	$8: 50$
11	$8: 55$
12	$9: 00$

Scenario 6-Extreme demand and bunching on both lines

- Optimal control:
- Hold bus 2 at stops 1 and 4. Hold bus 4 at stops 2 to 4
- Total hold time: 6.5 minutes
- Bus 2 slows at stops 1 , and bus 4 slows from stops 1 to 3
- Total passengers time reduction: 446 minutes (5\%)

Bus	Stop	$\begin{gathered} \Delta V \\ (\mathrm{~km} / \mathrm{h}) \end{gathered}$	H (minutes)
1	1	2.0	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0
2	1	-5.0	2.4
	2	1.4	1.7
	3	2.0	0.0
	4	1.6	0.0
	5	2.0	0.0

Bus	Stop	$\begin{gathered} \Delta V \\ (\mathrm{~km} / \mathrm{h}) \end{gathered}$	H (minutes)
3	1	2.0	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	1.8	0.0
4	1	-5.0	0.0
	2	-3.4	1.9
	3	2.0	0.4
	4	1.2	0.1
	5	2.0	0.0

Effect of the horizon

Results

- The operation control found to reduce the total time by up to 9%
- Larger reduction with high demand and bunching
- Smaller reduction in extreme load

Ongoing research

- Real world testing
- Model to predict times and demands
- Dealing with shared road segments
- Computational aspects
- Weights for different steps of the horizon

Thank you

