Real Time Control for Transit Systems with Transfers

Prof. Tomer Toledo Hend Manasra

Technion- Israel Institute of Technology

Outline

- Introduction
- State of the art
- Model description
- Demonstration case studies
- Conclusions and future improvements

Introduction

Objective

- Improve service quality and reduce passengers delays
 - Increase reliability
 - Schedule adherence
 - Regularity
- Develop control strategies
 - Planning
 - Operation (Real time)

Real time control

- Classification (Eberlein et al. 1999 and Zolfaghari et al. 2004)
- At Stop
 - Holding
 - Stop skipping
- Inter stop
 - Change speed
 - Signal priority
- Line
 - Deadheading
 - Short turning
 - Short cut
 - Expressing
 - Adding reserve vehicle

Control of single line

•Most common

•Often uses holding strategy

Rule-based (Fu and Yang 2002, Daganzo 2009, Xuan et al. 2011, Cats et al. 2010, 2011)

e.g. $h_{actual}^{\min} \ge (0.6 \div 0.8) \cdot H_{planned}$

• Optimization-based (Eberlein et al. 1999, Fu et al. 2003, Zolfaghari et al. 2004) $\min \sum passengers costs$

 Passengers costs: waiting time, in vehicle time, skip time, variance of headway/ schedule

Control of multiple lines

 $_{\odot}$ Integrated PT systems with transfers

Rule-based

o Guevara et al. 2014: skip stop, offline and online holding, high demand transfer stops

Optimization-based

- Dessouky et al. 1999, 2003: holding at the transfer stop, include delays at the transfer stops and downstream
- Yu et al. 2012: holding strategy to synchronize vehicles at transfer stops. Consider waiting time at the transfer stop and downstream
- Hadas and Ceder 2008, 2010, Ceder et al. 2013: optimizing the total travel time. Strategies: holding, skip stop and slowingdown.
- $_{\odot}$ Khoat et al. 2007: stop skip strategy, minimize waiting time of passengers

This research

- Develop prediction-based system for operations control
- Minimize total passenger time
 - waiting at stop, travel between stops, dwell time, waiting at the transfer, waiting for skip passengers
- Strategies
 - Holding, change speed, skip stop

Incorporates

Limited capacity, transfer stops

Optimization framework

Rolling horizon implementation

Optimization problem

Minimum passengers time

Decision variables

• Travel time $TT_{k}^{s,l}$ $Z = \min \sum_{s=1}^{M} \sum_{l=r}^{r+t} \sum_{k=l}^{i+j} \begin{bmatrix} \theta_{1} \cdot PDT_{k}^{s,l} + \theta_{2} \cdot PTT_{k}^{s,l} + \theta_{3} \cdot PWT_{k}^{s,l} + \end{bmatrix} + \sum_{s=1}^{M} \sum_{l=r}^{r+t} \theta_{6} \cdot DTC^{s,l}$ • Hold bus $H_{k}^{s,l}$ S.t: $TT_{k,\min}^{s,l} \leq TT_{k}^{s,l} \leq TT_{k,\max}^{s,l}$ • Skip stop $S_{k}^{s,l}$ $0 \leq H_{k}^{s,l} \leq H_{k}^{\max s,l}$ $(1 - S_{k}^{s,l}) \cdot H_{k}^{s,l} = 0$ $S_{k}^{s,l-1} + S_{k}^{s,l} \geq 1$

PDT- Passenger dwell time, PTT- Passenger travel time, PWT- Passenger wait time TPT- Transfer passengers' time, SPT- Skipped passengers' time

- *k*-stop, *l*-bus, *s*-line
- Passenger dwell times at stops (PDT)

 $PDT_{k}^{s,l} = S_{k}^{s,l} \cdot (np_{k}^{s,l} - (na_{k}^{s,l} + ntd_{k}^{s,l} + nta_{k}^{s,l} + \sum_{i=k+1}^{s,l} na_{j}^{s,l} \cdot \prod_{i}^{s,l} (1 - S_{j}^{s,l}))) \cdot (st_{k}^{s,l} + H_{k}^{s,l})$

- *np* Number of passengers on the bus
- *na* Number of alight passengers
- *ntd* Number of transfer alighting passengers
- *nta* Number of alighting passengers to the transfer
 - *S* Bus stops at stop
- st Service time at stop
- *H* Holding time at stop

Passenger travel time (PTT)

 $PTT_k^{s,l} = TT_k^{s,l} \cdot np_{k+1}^{s,l}$

TT Travel time between stops

 $\circ \underline{\mathsf{Passenger wait time (PWT)}}_{(4^{s,l} - 4^{s,l-1})}$

$$PWT_{k}^{s,l} = (nb_{k}^{s,l} + nto_{k}^{s,l}) \cdot \left(\frac{dt_{k}^{s,l} - dt_{k}^{s,l-1}}{2}\right)$$

- *nb* Number of passengers that want to board
- nto Transfer boarding passengers at the origin
- *dt* Departure time from stop

<u>Transfer passengers' time (TPT)</u>

 $TPT_{k}^{s,l} = ntb_{k}^{s,l} \cdot \left(dt_{k}^{s,l} - at_{k}^{m,n}\right) \cdot S_{k}^{s,l}$

at Arrival time at stop

Skipped passengers' time (SPT)

 $SPT_{k}^{s,l} = (nb_{k}^{s,l-1} + nto_{k}^{s,l-1} + ntb_{k}^{s,l-1} + nsb_{k}^{s,l} + nsa_{k}^{s,l}) \cdot (dt_{k}^{s,l} - dt_{k}^{s,l-1}) \cdot (1 - S_{k}^{s,l-1}) \cdot S_{k}^{s,l} + ndb_{k}^{s,l-1} \cdot (dt_{k}^{s,l} - dt_{k}^{s,l-1}) \cdot S_{k}^{s,l}$

- nsb Total passengers that were skipped
- *nsa* Passengers on bus that have to alight because of skipping downstream stops
- *ndb* Passengers that cannot board the bus because of limited capacity

 $ODELAY for next trip on chain (DTC) \\ DTC^{s,l} = \frac{\sum_{i} (nb_{i}^{s,l} + ntb_{i}^{m,n} + nto_{i}^{s,l})}{number of \ stations} \cdot (at_{last \ station}^{s,l} - planning \ at_{last \ station}^{s,l} - \beta)$

 β Recovery time

Assumptions

• Weight of waiting times double the weight of travel time (FTA, 2005)

 $\theta_1, \theta_3, \theta_4, \theta_5 = 1; \ \theta_2 = 0.5$

Weight of delay to the next trip is 0.1

Boarding/alighting time for passenger is 2.59 seconds

Headway of buses 5 minutes

 \circ Recovery time $\beta = 3$ minutes

Base horizon 3 stops and 3 buses

Scenarios

- Scenario 1- Base scenario
- Scenario 2- Bunching on line 1
- Scenario 3- High demand and bunching on line 1
- Scenario 4- High demand and bunching on both lines
- Scenario 5- Extreme demand and bunching on line 1
- Scenario 6- Extreme demand and bunching on both lines

Scenario	1	2	3	4	5	6
Demand	Normal	Normal	High	High	Very high	Very high
transfer	Normal	Normal	High	High	Very high	Very high
Bunching line 1	No	Yes	Yes	Yes	Yes	Yes
Bunching line 2	No	No	No	Yes	No	Yes

Demands

18

Scenario 1- Base scenario

- Operation with even headway
- Base demand level
- Optimal control
 - Buses run at the maximum allowed speed, without holding
 - Total passenger time reduction: 127 minutes (3%)

Bus	Stop	ΔV	H (minutos)		Bus	Stop	ΔV	H (minutos)	
		(KM/N)	(minutes)			(KM/N)	(minutes)		
	1	2.0	0.0			1	2.0	0.0	
	2	2.0	0.0			2	2.0	0.0	
1	3 2.0 0.0 3	3	3	2.0	0.0				
	4	2.0	0.0			4	2.0	0.0	
	5	2.0	0.0			5	2.0	0.0	
	1	2.0	0.0			1	2.0	0.0	
	2	2.0	0.0			2	2.0	0.0	
2	3	2.0	0.0		4	3	2.0	0.0	
	4	2.0	0.0			4	2.0	0.0	
	5	2.0	0.0				5	2.0	0.0

Scenario 2- Bunching on line 1

- Base demand
- Optimal control
 - Hold bus 2 at stop 1 the maximum allowed time (3.5 minutes), and bus 3 at stop 1 and bus 4 at stop 1 for 2.9 minutes
 - Buses run at the maximum allowed speed except bus 4 from stop 1 to 3
 - Total hold time: 8 minutes
- Total passenger time reduction: 481 minutes (9%)

Bus	Stop	∆۷ (km/h)	H (minutes)	Bus	Stop	∆V (km/h)	H (minutes)
	1	2.0	0.0		1	2.0	0.9
	2	2.0	0.0		2	1.8	0.0
1	3	2.0	0.0	3	3	2.0	0.0
	4	2.0	0.0		4	2.0	0.0
	5	2.0	0.0		5	2.0	0.0
	1	2.0	3.5		1	-5.0	2.9
	2	2.0	0.0		2	-2.1	0.0
2	3	2.0	0.0	4	3	2.0	0.0
	4	2.0	0.0		4	2.0	0.0
	5	2.0	0.0		5	2.0	0.0

Bus	Arrival
	time
1	8:05
2	8:06
3	8:15
4	8:16
5	8:25
6	8:30
7	8:35
8	8:40
9	8:45
10	8:50
11	8:55
12	9:00

Scenario 3- High demand and bunching on line 1

Optimal control:

- Hold bus 2 at stop 1 for 3.5 minutes, Hold bus 4 at stop 1 for 2.6 minute and at stop 2 for 0.5 minutes
- Total hold time: 6.6 minutes
- Bus 2 slows from stop 3 to 4, bus 4 slows from stop 2 to 3
- Total passengers time reduction: 601 minutes (9%)

Rus	Stop	ΔV	Н	Rus	Stop	ΔV	н
Dus	Stop	(km/h)	(minutes)	Dus	Stop	(km/h)	(minutes)
	1	2.0	0.0		1	1.9	0.0
	2	1.7	0.0		2	2.0	0.0
1	3	2.0	0.0	3	3	2.0	0.0
	4	2.0	0.0		4	2.0	0.0
	5	2.0	0.0		5	1.7	0.0
	1	2.0	3.5		1	2.0	2.6
	2	2.0	0.0		2	-2.7	0.5
2	3	-4.2	0.0	4	3	2.0	0.0
	4	2.0	0.0		4	1.9	0.0
	5	2.0	0.0		5	2.0	0.0

Bus	Arrival
	time
1	8:05
2	8:06
3	8:15
4	8:16
5	8:25
6	8:30
7	8:35
8	8:40
9	8:45
10	8:50
11	8:55
12	9:00

Scenario 3- High demand and bunching on line 1

Departure and arrival time to transfer stop for transfer from line 1

	Without	control	With co	ontrol	
	Departure	Arrival	Departure	Arrival	
Bus	time of	time of	time of	time of	
	line 2	line 1	line 2	line 1	
1	08:06	08:12	08:06	08:12	
2	08:13	08:14	08:13	08:16	
3	08:19	08:23	08:19	08:22	
4	08:23	08:25	08:23	08:25	
5	08:29	08:33	08:28	08:33	
6	08:32	08:37	08:32	08:37	
7	08:39	08:42	08:39	08:42	
8	08:43	08:47	08:43	08:47	
9	08:48	08:52	08:48	08:52	
10	08:53	08:57	08:53	08:57	
11	08:57	09:02	08:57	09:02	
12	09:04	09:07	09:04	09:07	

Departure and arrival time to transfer stop for transfer to line 1

	Without control		With co	ntrol
	Departure	Arrival	Departure	Arrival
Bus	time of	time of	time of	time of
	line 1	line 2	line 1	line 2
1	08:14	08:05	08:14	08:05
2	08:15	08:12	08:17	08:12
3	08:25	08:17	08:24	08:17
4	08:26	08:22	08:26	08:22
5	08:36	08:26	08:35	08:26
6	08:38	08:32	08:38	08:32
7	08:44	08:37	08:44	08:37
8	08:48	08:42	08:48	08:42
9	08:53	08:47	08:53	08:47
10	08:58	08:51	08:58	08:51
11	09:03	08:56	09:03	08:56
12	09:08	09:03	09:08	09:03

Scenario 4- High demand and bunching on both lines

- Optimal control:
 - Hold bus 2 at stop 1 for 3.5 minutes and at stop 2 for 1.2 minutes.
 Hold bus 3 at stop 1, and bus 4 from stop 1 to 3 for 2.2 minutes.
 - Total hold time: 8.1 minutes
 - Bus 4 slows from stop 1 to stop 3
- Total passengers time reduction: 562 minutes (8%)

Ruc	Stop	ΔV	Н		Ruc	Stop	ΔV	Н
Dus		(km/h)	(minutes)	Dus	stop	(km/h)	(minutes)	
	1	2.0	0.0			1	2.0	1.0
	2	2.0	0.0		3	2	1.7	0.0
1	3	2.0	0.0			3	2.0	0.0
	4	1.5	0.0			4	2.0	0.0
	5	1.5	0.0			5	2.0	0.0
	1	2.0	3.5			1	-5.0	0.0
	2	1.5	1.2			2	-0.2	1.8
2	3	1.5	0.0		4	3	1.7	0.1
	4	2.0	0.0			4	0.9	0.3
	5	2.0	0.0			5	2.0	0.0

Bus\Arrival time	Line 1	Line 2
1	8:05	8:00
2	8:06	8:01
3	8:15	8:10
4	8:16	8:11
5	8:25	8:20
6	8:30	8:25
7	8:35	8:30
8	8:40	8:35
9	8:45	8:40
10	8:50	8:45
11	8:55	8:50
12	9:00	8:55

Scenario 5- Extreme demand and bunching on line 1

- Optimal control:
 - Hold bus 2 at stop 1 ,3 and 5
 - Total hold time: 3.3 minutes
 - Bus 2 slows from stop 1 to 2 and from stop 3 to 4, bus 4 slows from stop 1 to stop 4.
 - Total delay time reduction: 544 minutes (7%)

l						ΛV	Н		
	Bus	Stop	(km/h)	(minutes)		Bus	Stop	(km/h)	(minutes)
		1	2.0	0.0			1	2.0	0.0
		2	2.0	0.0			2	2.0	0.0
	1	3	2.0	0.0		3	3	2.0	0.0
		4	2.0	0.0			4	2.0	0.0
		5	2.0	0.0			5	2.0	0.0
		1	-5.0	2.3			1	-5.0	0.0
		2	2.0	0.0			2	-5.0	0.0
	2	3	-5.0	0.2		4	3	-5.0	0.0
		4	2.0	0.0			4	2.0	0.0
		5	2.0	0.7			5	2.0	0.0

Bus

Arrival

8:05 8:06 8:15

8:16 8:25

8:30 8:35

8:40

8:45

Scenario 6- Extreme demand and bunching on both lines

- Optimal control:
 - Hold bus 2 at stops 1 and 4. Hold bus 4 at stops 2 to 4
 - Total hold time: 6.5 minutes
 - Bus 2 slows at stops 1, and bus 4 slows from stops 1 to 3
- Total passengers time reduction: 446 minutes (5%)

Pue	Stop	ΔV	Н
DUS	stop	(km/h)	(minutes)
	1	2.0	0.0
	2	2.0	0.0
1	3	2.0	0.0
	4	2.0	0.0
	5	2.0	0.0
	1	-5.0	2.4
	2	1.4	1.7
2	3	2.0	0.0
	4	1.6	0.0
	5	2.0	0.0

Bus	Stop	ΔV	H
		(km/h)	(minutes)
3	1	2.0	0.0
	2	2.0	0.0
	3	2.0	0.0
	4	2.0	0.0
	5	1.8	0.0
4	1	-5.0	0.0
	2	-3.4	1.9
	3	2.0	0.4
	4	1.2	0.1
	5	2.0	0.0

Effect of the horizon

26

Results

- The operation control found to reduce the total time by up to 9%
 - Larger reduction with high demand and bunching
 - Smaller reduction in extreme load

Ongoing research

- Real world testing
- Model to predict times and demands
- Dealing with shared road segments
- Computational aspects
- Weights for different steps of the horizon

Thank you

