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General Extreme Value (GEV) type models like Nested Logit (NL) and Cross Nested Logit 

(CNL) have gained popularity for their closed-form formulation of the choice probabilities. 

A key assumption in GEV estimation process is that any correlation between the error 

terms is necessarily non-negative. No fundamental reason indicates that negative 

correlations should not occur from a behavioral perspective in the real world. In this paper, 

we investigate models’ outcomes when alternatives exhibit negative correlation. In 

experiments using synthetic databases, we estimate and validate Multinomial Probit (MNP) 

models that correctly handle negative correlations and we compare coefficients’ estimates 

and correlations to those obtained with GEV models. A real case study in which choices 

reveal the presence of negative correlations is also used to assess the performances of the 

proposed models. Results are obtained with NL, CNL and Mixed Logit models and 

compared to MNP. The implications for further practices are discussed.     

Keywords: GEV Type model; Multinomial Probit Model; Discrete Choice Model; 

Simulation; Time Use 

1. Introduction 

Random utility models (RUM) have been developed considerably in the past three decades 

(Train 2009) and are extensively applied to many travel related behavioral choices. The wide 

RUM family consists of two main categories: the General Extreme Value (GEV) models based 



on the assumption that the errors are type I EV distributed and the Probit model for which the 

errors are assumed to be multivariate normal. The GEV (McFadden 1978) models include the 

Multinomial Logit (MNL) and more flexible specifications that allow correlation across choice 

alternatives while maintaining a closed mathematical form for the choice probabilities. Model 

formulations that belong to the GEV family include: Nested Logit (Williams 1977); Paired 

Combinatorial Logit (Chu 1989), Cross-Nested Logit (Vovsha 1997) and General Nested Logit 

(Wen and Koppelman 2001). The GEV models have been widely applied to model travel mode 

choice (Hess et al. 2013), spatial location choice (Sener, Pendyala, and Bhat 2011), departure 

time and route choice (Bekhor, Toledo, and Prashker 2008), and transport networks (Shahhoseini 

Haghani and Sarvi 2015).  

Probit model allows very general error structures ( Ben Akiva and Bolduc 1996; Karac-

Mandic and Train 2003; Bhat 2011 ; Daziano and Achtnicht 2013; Daganzo 2014), but the 

associated choice probabilities requires the computation of multivariate normal distribution 

functions. In particular, the dimension of the integral depends on the number of correlation terms 

to be estimated and therefore increases rapidly with number of alternatives. Thus, despite the 

improvements of estimation techniques (Bhat 2003; Bhat 2001; Daziano and Bolduc 2013; 

Connors, Hess, and Daly 2014), MNL and other GEV models – mainly Nested and Cross Nested 

Logit are still those most frequently applied in practical applications involving planning, 

forecasting and feasibility assessments. However, GEV models are based on a set of specific 

mathematical properties, one of which is the non-negativity in unobserved correlations. Williams 

and Ortúzar (1982) presented this condition as rigorous and unambiguous. In reality, there is no 

fundamental reason why non-positive correlations should not occur also from a behavioral 

perspective. A negative correlation can appear when an explanatory variable or latent factor is 



omitted from the model specification for some reason (if it is not explicitly measured in the 

data). If this variable has opposite effects on the utilities of two alternatives, their error terms will 

have a negative correlation. For example, in mode choice, suppose that attitude towards the 

environment is part of the "true" model, with a positive sign in the utilities of transit, and a 

negative sign in the car alternatives. But, if this variable is omitted in the specified model, it will 

generate negative correlations between the transit and car alternatives. Many such examples can 

be imagined.       

In this paper, our motivation is to investigate the bias in the estimation of coefficients and 

correlation terms deriving from GEV models when errors are negatively correlated. To this scope 

we design several experiments, we estimate a MNP and we compare the results to those obtained 

by using NL and CN Logit models. The performance of the three models is assessed with respect 

to the coefficients’ estimates, the ability to recover the correlation among alternatives and the 

market shares of out-of-sample datasets. The analysis is conducted both on simulated and real 

data. 

The rest of this paper is organized as follows. Section 2 reviews the properties of Nested 

Logit and Cross Nested Logit under the hypothesis of negative correlation in the error structure.  

Section 3 presents two experiments designed to assess the degree of the bias in model estimation 

and prediction, when the assumption of non-negativity is relaxed – the first relates to Nested 

Logit and the second to Cross-Nested Logit specification. Section 4 presents model estimation 

results and model validation. All results are compared to those obtained with MNP that has been 

used to generate the data and that correctly accounts for negative correlation. Section 5 presents a 

similar comparative analysis for a real case study on leisure activity choices where the 

performance of Mixed Logit (ML) is also compared to MNP and GEV; the model is also applied 



to test the sensitivity to marginal changes in the levels of key attributes. Section 6 presents the 

conclusions and the implications of our findings on choice based demand models. 

2. Previous Studies 

2.1 The GEV theorem and deficiencies in MNL 

In GEV theory (McFadden 1978), the probability that a given choice maker (n) chooses 

alternative (i) within the choice set (C) is: 
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whereby:  Gi = ∂G/∂yi, J is the number of available alternatives, iV

i
y e= , Vi is the systematic part 

of the utility function associated with alternative i, and G is a non-negative differentiable 

function which verifies some specific properties.  

Any model that can be derived in this way is regarded as a GEV model. This formulation, 

therefore, defines the family of GEV models. GEV derived models must respect several distinct 

properties. These properties have no real behavioral intuition but are a mathematical 

requirement. The properties that the function G must exhibit are the following: 

(1) G ≥ 0 for all positive values of yj ∀ j. 

(2) G is homogeneous of degree one i.e. if each yj is raised by some proportion ρ, G rises by 

proportion ρ. (Ben-Akiva and Francois 1983) showed that this condition can be relaxed to 

allow any degree of homogeneity.  

(3) G → ∞ as yj → ∞ for any j. 



(4) The mixed partial derivatives of G exist and are continuous with non-positive even partial 

derivate. That is, Gi≥ 0 for all i , Gij = ∂Gi/∂yj ≤ 0 for all j ≠ i and non-negative odd mixed 

partial derivate  Gijk = ∂Gij/∂y  ≥ 0 for any distinct i, j, and k, and so on for higher order 

mixed partials.  

These conditions are sufficient so that 
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multivariate extreme value distribution function. However, as noted by (Dagsvik 1995), these 

constraints also imply that the correlations reproduced by a GEV model are necessarily positive.  

This general theorem consists of a large family of specifications that includes the MNL 

itself.  MNL’s main advantage is in its analytical tractability. However, the hypothesis of errors 

identically distributed (i.i.d.) causes the property of independence from irrelevant alternatives 

(IIA), which results in failure to account for similarities between alternatives (Ben Akiva and 

Lerman 1985). Furthermore, the variance–covariance matrix of the MNL model is 

homoscedastic.  

2.2 Nested Logit and the presence of negative correlations 

Initially proposed by Williams (1977) and Daly and Zachary (1978), the Nested Logit (NL) 

model  is an extension of the MNL model designed to capture correlations among alternatives by 

partitioning choice sets into different nests. The NL model is designed for choice problems 

where the alternatives within each nest have correlated error terms; however, error terms 

between nests remain uncorrelated.  Both MNL and NL models are instances of the GEV family. 

For the MNL model (eq .2): 
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For the NL model (eq. 3): 

 ( )
( )

( )
1

1

1

( ,.., ) , ( | )

m i m i m

m
m

m
m i m

V V
M

i m

i j jj m
Mm

V Vi

i m i m
m

e e
G y y y P i C

e e

µ
µ µ µ µ

µ
µ

µ

µ
µ µ

∈

∈
=

∈ ∈
=

= =

⋅

∑
∑ ∑

∑ ∑ ∑

 (3) 

where µ  is the scale factor, and 
m

µ  is the parameter associated with nest m. The ratio of 
m

µ

µ
 is 

the degree of independence or dissimilarity among the alternatives belonging to nest m. This 

ratio must be within a particular range for the model to be consistent with utility- maximizing 

behavior. Following (McFadden 1978), it is possible to assert that the NL model is consistent 

with utility maximization when 0 1
m

µ

µ
< ≤ . Furthermore, Daganzo and Kusnic (1993) presented 

that the correlation between any two alternatives belonging to nest m is equal to:  
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Börsch-Supan (1990), Kling and Herriges (1995), and Herriges and Kling (1996) 

provided tests of consistency of NL with utility maximization when the degree of dissimilarity is 

greater than 1 i.e. 1
m

µ

µ
> . Train, McFadden, and Ben- Akiva (1987) showed that in this case, 

consistency with utility- maximizing is appropriate for some specified range of the explanatory 

variables. Carrasco and Ortuzar (2002) discuss in great details the consistency conditions of 



Börsch-Supan and the successive corrections by Kling and Herriges (1995) and Herriges and 

Kling (1996). They highlights that from a behavioral standpoint a greater degree of substitution 

between nests than within them makes it impossible to test the hierarchical relationship between 

the different nesting levels. On the other hand, as noted by Train (2009), a negative value of the 

degree of dissimilarity i.e.
m

µ

µ
< 0, is inconsistent with utility maximization and implies that 

improving the attributes of an alternative (such as lowering its price) can decrease the probability 

of the alternative being chosen. Finally, when the degree of dissimilarity approaches zero i.e. 

0
m

µ

µ
→ , NL approaches the “elimination by aspects” model suggested by  Tversky (1972). It is 

interesting to note that the range of  0 2
m

µ

µ
< ≤ is the only proper range that is acceptable in 

terms of the demands for a correctly specified statistical correlation with corresponding values 

that lie on the range [-1,1]. Furthermore, when 1 2
m

µ

µ
< ≤ , then there exists a negative 

correlation between any two alternatives within nest m. This fact certainly cannot be consistent 

with the GEV theory's assumptions which regard only the possibility of a positive correlation for 

mathematical reasons.  

2.3 Cross Nested Logit and the presence of negative correlations 

The Cross-Nested Logit (CNL) model was also originally proposed by Williams (1977) 

discussed in terms of its properties using simulated data by Williams and Ortúzar (1982) and 

further developed by Vovsha (1997). CNL is an extension of the NL model. However, in 

addition to the choice set being partitioned into nests each alternative may belong to more than 

one nest. General Nested Logit (GNL) developed by Wen and Koppelman (2001) is a broader 



specification than the CNL model. NL is a special case of the GNL model in which the 

coefficients are binary, either zero or one. Thus an alternative can only belong to one nest. 

Various formulations for the CNL model have been proposed in the literature (Bierlaire 2006).  

An adaptation of GNL to model route choice was proposed by Vovsha and Bekhor (1998) 

The Paired Combinatorial Logit (PCL) specification is a particular example of the CNL 

model. PCL is another GEV- type model, proposed by Chu (1989) and later expanded by 

Koppelman and Wen (2000). It was applied extensively to model route choice by conveniently 

defining the similarity index (Prashker and Bekhor 1998; Gliebe, Koppelman, and 

Ziliaskopoulos 1999). In the Nested Logit model all alternatives in a common grouping are 

similar. In contrast, in the PCL model, each pair of alternatives can have a similarity relationship 

that is completely independent of the similarity relationship of other pairs of alternatives. This 

feature is highly desirable for route choice models, since each pair of routes may have different 

similarities.  

Similar to the NL model, CNL also has a GEV generating function and derived 

probability (eq. 5): 
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where: 0,
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jα ≥ ∀ ; 
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However, unlike NL, the correlation between alternatives in overlapping nests is not a 

simple formula. Papola (2004) proposed a conjecture regarding the approximate structure of this 

correlation (eq. 6): 
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Abbe, Bierlaire, and Toledo (2007) presented a proof that this correlation has quite a 

messy structure which is derived from the joint cumulative distribution function (CDF) of the 

CNL utilities: 
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This integral has no closed form and must be estimated using numeric procedures. In 

addition, this correlation (eq. 7) is always positive. Just like in the case of NL, there is no reason 

to suggest that in reality this assumption should always hold. 

3. Experiments with synthetic Data 

3.1 Rationale 

The inherited assumption of non-negative correlations is brought about by mathematical 

necessities. However, within elaborate nested structures there is no apparent reason why this 

assumption must hold. Therefore, we decided to put this to the test by creating artificial 



correlation structures using synthetic data generation and estimating MNP, and GEV models – 

NL (Experiment I) and CNL (Experiment II) to measure the obtained bias in the results.  MNP 

unlike GEV can theoretically approximate any correlation structure without bias and should be 

used whenever the analyst believes that negative correlation could exists. In practice, some 

restrictions are set on the correlation structure for identification purposes and models’ outcomes 

have some difficulties in their interpretation. For a further discussion of the properties of MNP 

see (Greene 2008). 

3.2 Experiment I  

A sample of 10 files (runs) each with 3,000 synthetic choice observations was created. The 

sample was created separately for two choice problems: a choice between three alternatives 

(Experiment Ia) and a choice between four alternatives (Experiment Ib). Each file contained the 

deterministic utility for each alternative (V�) and the error components (ε�).   
The synthetic utilities – both the deterministic and stochastic parts were computed using a 

standard normal distribution. The alternative specific constant of 1st alternative was set to 0 for 

reasons of normalization. 21 artificial 'true' correlation values (ρ) were assumed to vary from -

0.95 to 0.95 with 0.095 interval. 

For each covariance (ρk), a variance-covariance matrix was computed. For the three-

alternative case the covariance matrix is showed as below: 
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where: Covk represents the kth  covariance matrix and ρk is true value. In the case of four 

alternative choice set, the variance-covariance matrix was defined separately for positive and 

negative correlations: 
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The vectors of errors of all the alternatives except ε1 were multiplied by the Cholesky 

factorization of each correlation combination in order to transform the matrix into a product of a 

lower triangular matrix which is important to maintain the stability in the variance-covariance 

matrix estimation. The chosen alternative was the one with the maximum utility. Thus, for each 

of the 21 'true' correlations a corresponding vector of choices was matched. 

A NL model was estimated with BIOGEME (Bierlaire 2003) for each of the 21 choice 

vectors in each of the 10 data sets (in total - 210 models).  The NL model had a common nest 

which included all alternatives apart for 1st alternative.  Figure 1 presents the structure for the 

three-alternative model and Figure 2 for the four-alternative model: 

The NL model was specified according to the following principles: 

(1) The utility functions were specified as: 
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where:  



0

iβ  is the alternative specific constant of alternative i and '
i i

Vβ is the observed utility 

components to alternative i.   

(2) The coefficient of the Nest (µm) was left to be estimated.  

(3) The logit scale (µ) was normalized to 1. 

3.3 Experiment II 

A sample of 10 files (runs) each with 3,000 synthetic choice observations was created using R.  

The choice was between three alternatives in a similar manner that the data was created in 

Experiment I.  

The artificial correlations were derived from the combinations of the values (0.75,
0.25, −0.25, −0.75) in groups of three. In total k=20 combinations were created. For example, 

the combination (0.75, 0.75, 0.75) is the first, (0.75, 0.75, 0.25) the second, etc.  The covariance 

matrix was defined as:  
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whereby: ij

k
ρ  is the covariance between alternatives i,j and k is the combination’s number.   

Not all the combinations are viable. In five out of the 20 combinations the Cholesky factorization 

is invalid. This fact reduced the number of combinations from 20 to 15.   

Similar to Experiment I, the vectors of errors of all the alternatives except ε1 were 

multiplied by the Cholesky factorization of each correlation combination. The chosen alternative 



was the one with the maximum utility. Thus, for each of the 15 'true' correlations a 

corresponding vector of choices was matched.  

A CNL model was estimated with BIOGEME (Bierlaire 2003) for each of the 15 choice 

vectors in each of the 10 data sets. The CNL model had a PCL specification of three alternatives, 

except the first alternative. Each alternative has a shared nest with each of the other two 

alternatives. Figure 3 depicts the model structure: 

The CNL model was specified according to the following principles: 

(1) The utility functions are specified as: 
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whereby: 0

iβ  is the alternative specific constant of alternative i and '
i

β
i

V  is the overall utility 

component specified  to alternative i.  

(2) The coefficients of the three nests (µm) are left to be estimated.  

(3) The logit scale (µ) is normalized to 1. 

(4)  The similarity coefficients (αim), were estimated and the sums for each pair are 

constrained to equal 1.  

The estimated correlations of the CNL model are computed using Papola's approximation 

(eq.6). As Papola's approximation is a conservative estimate of the real correlation, we believe 

this provides a reasonable estimate of the possible bias compared to the true values.   



3.4 Normalization of the Covariance Matrix for MNP 

In GEV models, the normalization for scale and level occurs automatically with the distributional 

assumptions that are placed on the error terms. As a result, normalization does not need to be 

considered for these models. However, with Probit models, normalization for scale and level 

does not occur automatically. The model should be normalized directly. 

The Probit model has n alternatives, and utility function is expressed as �� = �� + ��, � =
1, … , �. The vector of errors �� is normally distributed with zero mean. The procedure proposed 

by Train (2009) has been applied to normalize the Probit model and assure that all the parameters 

are identified. The differences with respect to first alternatives are taken, and the error 

differences is defined as ��̃� = �� − ��. 

The covariance matrix for the vector of error differences take the form 

 Ω� = ���� ⋯ ���⋮ ⋱ ⋮��� ⋯ ���
! 

where: � is related to the original ", when the differences are taken against alternative 1. It is 

showed as follows: 

 �#$ = "#$ + "�� − "�# − "�$ (13) 

The matrix is obtained using the (� − 1) × � transformation matrix &� as 

 �
1 1Ω Ω '

n n
M M− −=   (14) 

where: &�'� = (−1 1−1 0 01 00⋮ ⋮ ⋱ ⋮−1 0 ⋯ 1) 



4. Results 

4.1 Experiment I  

4.1.1  MNP and NL with three alternatives 

Figure 4 presents the results of the estimated correlations ρ+,of the MNP and NL models with 

three alternatives and the true values. There appears no real difference between the results of the 

NL model and the true values for positive correlations. However, for negative correlations there 

is a growing gap between the true value and the estimation as the biased correlation estimates of 

NL still stay negative. We note that the estimated correlations for the MNP model were basically 

identical to the true values, as expected.  

 Table 1 presents the result of the estimated coefficients for the MNP and NL models 

(averaged over the 10 runs).  As the correlation value increases, a smaller scale factor is revealed 

in the results of NL. When ρ+, = 0, the scale factor is approximately 1.37, which is consistent 

with the results in Train (2009). Table 2 shows that MNP does produce consistent results when 

synthetic data is created with error terms following normal distribution.  

4.1.2 MNP and NL with four alternatives 

Figure 5 and Figure 6 present the results of the estimation of the correlations of the NL model 

with four alternatives and the comparison to the true values. Table 2 presents the comparison of 

the estimated coefficients of the MNP and NL models. The results are averaged over 10 runs.  

The correlations shown in Figure 5 and Figure 6, are presented in the form of ρ+,. 

Consistent with the results obtained in Experiment Ia, NL model presents bias estimates when 

negative correlation value exists in the correlation matrix. First, for positive correlation there 

appears no real difference between the results of the NL model and the true values. While with 



negative correlation, there is a growing gap between the true values and the estimation when 

correlation is decreasing as it can be seen in both figures. The MNP and true values were 

basically identical. 

Table 2 presents the estimated coefficients obtained with the MNP and NL models.  

Apart for the differences which are attributed to the scale difference between the models, there is 

no significant difference in the coefficients obtained with NL and MNP. This result is quite 

remarkable as the correlations clearly show that there is a significant bias in the negative side. 

However, it seems that the coefficients in the NL model are not influenced by this fact.  

4.2 Experiment II  

4.2.1  MNP and CNL with three alternatives 

Figure 7, Figure 8 and Figure 9 present the comparison between the true covariance and 

correlation parameters and the PCL model estimates. As noted five out of 20 correlation 

combinations were not positive semi-definite (i.e. the Cholesky factorization does not exist). 

These combinations were excluded. Table 3 lists the 15 resulting correlation combinations that 

were used in the experiment. The estimated correlations in the PCL model were computed 

according to (Papola, 2004) approximation.  

The results show that PCL specification with multiple nests is hard to estimate. Only 

about 10 out of 100 runs of the model obtained convergence; the log-likelihood function deriving 

from a PCL specification is highly nonlinear and non-convex, which causes the convergence 

failures reported. We note that MNP estimates were basically identical to the true values. Figure 

7 and Figure 8 show the comparison between converged estimates of CNL model, MNP, and the 

true values. The results show that the estimated correlation have less bias when all three 



correlations are positive (k=1, 2, 3, 8). However, when negative correlation value appears, bias 

can result in the correlation matrix even for correlations with positive values.     

Table 4 presents the results for the CNL that converged. Apart for the alternative specific 

constant, a constant scalar difference can be obtained for most of the results. The results obtained 

with MNP model are similar to the true value, but are not presented in the paper (can be 

obtained from the authors by request). 

4.3 Model Validation 

In order to calculate the prediction power of the models under analysis, we calculate the market 

share on out-of-sample datasets. The estimated coefficients based on 2400 observations are 

applied to the reminder 600 observations. Table 5, Table 6, and Table 7 report the measure of the 

errors between observed and predicted market shares. In comparing the errors, we conclude that 

MNP and NL models provide a better fit when compared to CNL. The results indicate that there 

is not much difference between the predictions of the MNP and NL models for the three-

alternative specification. In fact, the NL model has less apparent difference between the true and 

estimated shares. The results show that both MNP and NL provide reasonable market shares. The 

difference between true and estimated shares is smaller in NL compared to MNP. In contrast to 

the results with NL, the validation of CNL shows large differences between the true and 

estimated market shares. As mentioned in previous section, CNL cannot converge in most of the 

runs, which leads to the instability in the predictions.  

5. Evidence from a real case study 

So far our investigation has been based on synthetic data designed specifically for “known” 

correlation structures. We turn now our attention to a real case study where the primary data 



source is extracted from the 2013 American Time Use Survey (ATUS). The ATUS survey has 

been designed and collected by the Bureau of Labor Statistics on a yearly basis starting from 

2003. ATUS questionnaire asks respondents to report their time use together with other 

information on daily activity episodes including the start and end time of participation, type and 

location of recorded activity. Socio-demographic information can also be obtained from the 

survey. 

In this study, we consider observations for weekdays from ATUS 2013; 5595 

observations are included in the final dataset used for model estimation. Household and 

individual characteristics, land-use variables and time use information are the main variables 

extracted from the original dataset. The dependent variable of our discrete choice model is the 

involvement in leisure activities. Six activity episodes have been selected and categorized 

according to their locations and types (including computer use for leisure): 

(1) No leisure activities (NO); 

(2) Pure in-home computer use activities (LPC): only choose computer use for leisure 

activity; 

(3) Pure in-home other leisure activities (LH): only choose in-home leisure activities other 

than computer use; 

(4) Pure out-of-home leisure activities (LOH): only choose out-of-home leisure activities; 

(5) Multiple in-home leisure and computer use activities (LH&LPC): choose in-home 

computer use and other in-home leisure activities; 

(6) Multiple in-home and out-home leisure activities (LH&LOH): choose in-home leisure 

activities without computer use and out-of-home leisure activities.  



In addition to the models tested in the synthetic data experiments: MNP, NL, and CNL, 

there is added value to evaluate the performance of the Mixed Logit Model (ML) (Cardell and 

Dunbar, 1980; Train, 2009). The ML model is a highly flexible model that can approximate any 

random utility model (McFadden & Train, 2000) and has been widely applied in research and 

practice. In this case, the ML model is applied to investigate the negativity of correlations among 

choices. In the ML model the utility is specified as 

 ' '
mj mj m mj mj

U x zβ κ ε= + +   (15) 

where 
mj

x and 
mj

z are vectors of observed variables relating to alternative j, β  is a vector of fixed 

coefficients, κ is a vector of random terms with zero mean, and 
mj

ε is iid extreme value. The 

terms in 
mj

z define the stochastic portion of utility. The unobserved portion of utility is

'
mj m mj mj

zη κ ε= + , which can be correlated over alternatives depending on the specification of

mj
z . The covariance between any two alternatives in nest k is specified as   

 ( , ) ( ' )( ' )
mi mj k mi mi k mj mj k

Cov U U E z zκ ε κ ε σ= + + =   (16) 

A MNP with variance-covariance matrix is also estimated, using in house software coded 

in R language; as noted several times in this paper MNP is able to correctly recover all types of 

correlation, including negative correlation if any. 

In the NL model, LPC, LH, and LPC&LH are specified in nest B, which contain all home 

related leisure activities, while LOH and LH&LOH are in nest C, where all the alternatives have 

an out-of-home leisure episode.  It is also conceivable that such correlations also exist between 

the LH and LH&LOH alternatives, given that they have the common aspect of involving in-

home leisure activity. To test for the presence of such correlation, CNL and ML model were 



fitted to the data, allowing LH to be shared by two nests. Figure 10 and Figure 11 present the 

model structures described.  

ML, NL, and CNL models were estimated using BIOGEME. The ML correlation matrix 

attests that there exist negative correlations between alternatives in Nest B and C. The same 

applies to correlation terms estimated with NL and CNL (shown in Table 8). Unfortunately, 

these correlation matrices cannot be compared directly with the one obtained by using Probit 

where notably the correlations are across differences in error terms with respect to the first 

alternative; for comparison purpose, the covariance matrices are normalized using (eq.14). 

Table 9 shows the estimation results obtained by applying the models, along with degree 

of independence for Nest B and Nest C (-., -/) of both models, factors 01.,  01/ of LH for 

CNL, and covariance 
B

σ , 
C

σ  for ML. Estimation results are stable and variables maintain their 

sign and their significance across the three model specifications, with just few exceptions. 

Surprisingly, the Probit and ML model present worse fit, while NL and CNL produce almost the 

same value of the final log-likelihood. The nested coefficients -., -/ are both significant, while 

the two additional parameters of CNL are not significant. 

Consistently with what was conducted for the simulated datasets, we tested the ability of 

the models in Table 10 to reproduce market share in out-of-samples. We re-estimated the model 

on about 80% of the observations and we applied the model to the remaining observations. The 

results show that although ML, MNP, and NL models have a good performance, NL produces 

better results when compared to MNP. CNL has the most biased results, mainly caused by the 

failure in reproducing the market share for the alternative LPC&LH.  



We finally analyze model elasticity and particularly calculate the effects on LH share 

caused when increasing of one unit the number of child in the household. Table 11 reports the 

changes in the aggregate share of LH activity (
LH

P ) over the initial value ( 0

LH
P ): 

 
0

0

LH LH
LH

LH

P P
P

P

−
∆ =  (17) 

where 
LH

P  and 0

LH
P  are, respectively, the aggregate probabilities of choosing activity LH before 

and after the variable number of children in the household has been modified. All probabilities 

are calculated by using sample enumeration (Munizaga et al., 2000). 

It appears that ML and MNP models produce similar results, while NL model has 

different results than the other three. The interpretation is quite straightforward. The NL and 

CNL models could produce biased modal shifts, when failing to account for correlation across 

observations and eventually different policy analysis results.  

6. Conclusions 

In this paper we put forward the idea of a possible bias when trying to estimate GEV type choice 

models in the presence of negative correlations. GEV choice models like Nested Logit and Cross 

Nested Logit Model have been widely used in the past years. However, modelers hardly ever 

know in advance the correlation structure of their choice alternatives, and tend to forget the fact 

that negative error correlation might bias their results. In these cases, MNP or ML, that can 

overcome the non-negative correlation limitation, should be adopted; however, the simulation 

assisted estimation is often lengthy and difficult.  

To understand the performance of GEV models when negative correlations appear 

between choices, three experiments are carried out for two of the most common GEV models- 



Nested Logit and Cross Nested Logit (Paired Combinatorial). The first two experiments use 

synthetic data that recreate artificial sets of different correlations in the choice vectors. Based on 

these datasets we estimate the MNP and GEV models, and we compare their estimates to the true 

values. An experiment based on the 2013 American Time Use Survey data was considered as a 

real case study where true values are unknown. However, estimated results obtained using ML 

model indicate the negative correlations exist between activity choices. The three models were 

also validated by calculating market shares on out-of-sample observations. 

The results with synthetic data (Experiment I and II) reveal that the GEV correlation 

estimates are biased in the presence of negative correlation, while the MNP estimates of the 

correlations are practically identical to the true values. In the case of NL, biased estimates of 

negative correlation have the same patterns for both simple three-alternative case and complex 

four-alternative case. The results are consistent with the key assumption of GEV model. In the 

case of CNL, the results from both correlation estimation and validation reveal that the PCL 

specification fails to estimate the true correlation even under the non-negative conditions. 

Evidently, more research is required to investigate the CNL model with PCL specification and its 

failure to achieve convergence.  

The results obtained from the real case study attest that MNP, and GEV models produce 

similar estimates. Negative correlations have been estimated with NL and CNL models; direct 

comparison with MNP correlations is impossible given that the normalization of probit imposes 

to work with differences in error terms. While the model fit of NL and CNL is much better than 

the one obtained with MNP and ML, NL and ML models produce better aggregate choice 

probabilities when applied to an out-of-sample dataset for validation and when compared with 

MNP and CNL. Nevertheless, MNP and ML do better than NL in sensitivity analysis when 



marginal changes are considered for policy analysis as they properly account for the (negative) 

correlation across alternatives.  

Recently, researchers are working to make it easier to use flexible modeling 

specifications like MNP by providing more efficient estimation techniques that reduces the 

computational burden of simulations. This research shows that GEV models, which are notably 

homoscedastic, could only deal with limited correlation pattern and are not suited for negative 

correlations. Mixed Logit, which is not limited by the assumptions imposed by GEV is less 

restrictive. It is suggested that when lacking information on the data structure, more flexible 

model specifications should be used. However, these models still suffer from a high level of 

sophistication and expert knowledge is required to verify model identification and correct 

estimation. Probit and Mixed Logit models have no closed form, estimation is based on 

simulation and random drawing procedures, and computation time is significantly larger 

compared to straightforward GEV models. However, improvements made in both hardware and 

software are reducing this limitation and make flexible models more attractive to practitioners. 

The counterintuitive evidence we provided in this paper suggests that more research is 

needed in understanding the statistical and mathematical properties of discrete choice models. 

The important lesson for modelers and practitioners is to test many various model specifications 

with the same dataset including both estimation, and not less important, validation of the model 

coefficients as well as sensitivity analysis to key parameters.   
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Table 1: Estimation results - Experiment Ia 

 Alt1 Alt2 Alt3 

ρ  Asc1 ββββ11 ββββ12 Asc2 ββββ21 ββββ22 Asc3 ββββ31 ββββ32 

TRUE 0.000 0.300 1.200 0.800 0.500 1.500 1.500 0.500 1.800 

MNP:          

-0.950 0.000 0.295 1.199 0.795 0.481 1.515 1.518 0.506 1.830 

-0.855 0.000 0.267 1.222 0.817 0.514 1.470 1.505 0.472 1.809 

-0.760 0.000 0.310 1.227 0.796 0.516 1.541 1.526 0.500 1.862 

-0.665 0.000 0.287 1.215 0.834 0.504 1.487 1.537 0.480 1.781 

-0.570 0.000 0.282 1.222 0.824 0.492 1.532 1.506 0.525 1.828 

-0.475 0.000 0.286 1.197 0.785 0.497 1.490 1.486 0.474 1.800 

-0.380 0.000 0.321 1.220 0.866 0.486 1.529 1.558 0.485 1.821 

-0.285 0.000 0.315 1.175 0.800 0.510 1.525 1.498 0.512 1.786 

-0.190 0.000 0.300 1.242 0.818 0.521 1.547 1.542 0.516 1.856 

-0.095 0.000 0.315 1.246 0.815 0.492 1.520 1.533 0.526 1.897 

0.000 0.000 0.304 1.246 0.838 0.474 1.552 1.553 0.533 1.881 

0.095 0.000 0.319 1.213 0.807 0.483 1.539 1.492 0.517 1.832 

0.190 0.000 0.305 1.220 0.788 0.481 1.523 1.513 0.534 1.884 

0.285 0.000 0.294 1.250 0.811 0.508 1.546 1.536 0.514 1.874 

0.380 0.000 0.332 1.224 0.801 0.513 1.554 1.529 0.526 1.869 

0.475 0.000 0.292 1.224 0.823 0.500 1.560 1.515 0.536 1.901 

0.570 0.000 0.319 1.199 0.814 0.513 1.517 1.518 0.500 1.816 

0.665 0.000 0.323 1.213 0.774 0.514 1.536 1.503 0.528 1.861 

0.760 0.000 0.294 1.235 0.777 0.497 1.551 1.512 0.515 1.855 

0.855 0.000 0.278 1.223 0.816 0.514 1.547 1.529 0.516 1.867 

0.950 0.000 0.295 1.248 0.810 0.531 1.577 1.547 0.528 1.901 

NL: 

-0.950 0.000 0.436 1.764 1.121 0.705 2.219 2.170 0.732 2.638 

-0.855 0.000 0.385 1.774 1.151 0.740 2.109 2.131 0.673 2.572 

-0.760 0.000 0.453 1.766 1.108 0.733 2.196 2.141 0.704 2.620 

-0.665 0.000 0.416 1.757 1.178 0.721 2.122 2.170 0.681 2.526 

-0.570 0.000 0.403 1.716 1.124 0.691 2.141 2.071 0.724 2.517 

-0.475 0.000 0.398 1.666 1.062 0.693 2.061 2.027 0.651 2.458 

-0.380 0.000 0.435 1.679 1.166 0.665 2.080 2.104 0.653 2.456 

-0.285 0.000 0.432 1.607 1.082 0.697 2.071 2.024 0.690 2.409 

-0.190 0.000 0.401 1.682 1.086 0.701 2.080 2.052 0.685 2.472 

-0.095 0.000 0.422 1.664 1.067 0.647 2.023 2.019 0.687 2.487 

0.000 0.000 0.405 1.648 1.085 0.620 2.042 2.027 0.694 2.444 

0.095 0.000 0.421 1.606 1.060 0.636 2.024 1.953 0.672 2.400 

0.190 0.000 0.396 1.590 1.008 0.620 1.966 1.951 0.680 2.408 

0.285 0.000 0.374 1.620 1.043 0.653 1.989 1.974 0.652 2.391 

0.380 0.000 0.427 1.564 1.002 0.651 1.977 1.932 0.656 2.346 



0.475 0.000 0.373 1.564 1.028 0.638 1.978 1.912 0.674 2.390 

0.570 0.000 0.406 1.541 1.038 0.653 1.932 1.933 0.635 2.316 

0.665 0.000 0.413 1.558 0.989 0.653 1.953 1.908 0.675 2.366 

0.760 0.000 0.374 1.566 0.982 0.623 1.951 1.904 0.648 2.330 

0.855 0.000 0.347 1.520 1.003 0.632 1.900 1.887 0.634 2.279 

0.950 0.000 0.364 1.547 0.996 0.655 1.938 1.912 0.645 2.326 

 

  



Table 2: Estimation results - Experiment Ib 

 Alt1 Alt2 Alt3 Alt4 

ρ  Asc1 ββββ11 ββββ12 Asc2 ββββ21 ββββ22 Asc3 ββββ31 ββββ32 Asc4 ββββ41 ββββ42 

True 0.000 0.300 1.200 0.800 0.500 1.500 1.500 0.500 1.800 0.600 0.600 1.200 

MNP:             

-0.950 0.000 0.332 1.197 0.844 0.524 1.527 1.563 0.527 1.844 0.610 0.627 1.199 

-0.855 0.000 0.260 1.259 0.841 0.535 1.605 1.585 0.554 1.955 0.615 0.633 1.328 

-0.760 0.000 0.308 1.269 0.865 0.531 1.549 1.563 0.508 1.887 0.611 0.626 1.248 

-0.665 0.000 0.293 1.233 0.817 0.497 1.505 1.530 0.497 1.825 0.616 0.616 1.167 

-0.570 0.000 0.292 1.233 0.831 0.499 1.536 1.527 0.529 1.889 0.543 0.636 1.273 

-0.475 0.000 0.299 1.236 0.835 0.509 1.551 1.563 0.485 1.855 0.628 0.618 1.242 

-0.380 0.000 0.288 1.202 0.833 0.473 1.443 1.507 0.492 1.769 0.640 0.601 1.152 

-0.285 0.000 0.312 1.243 0.851 0.488 1.491 1.552 0.526 1.842 0.618 0.603 1.259 

-0.190 0.000 0.320 1.167 0.729 0.520 1.531 1.470 0.525 1.849 0.568 0.594 1.194 

-0.095 0.000 0.262 1.224 0.814 0.497 1.533 1.514 0.497 1.828 0.644 0.576 1.200 

0.000 0.000 0.320 1.184 0.757 0.524 1.527 1.446 0.505 1.893 0.555 0.608 1.216 

0.095 0.000 0.310 1.200 0.759 0.514 1.518 1.472 0.499 1.852 0.543 0.619 1.212 

0.190 0.000 0.312 1.210 0.752 0.521 1.566 1.492 0.514 1.845 0.518 0.646 1.262 

0.285 0.000 0.315 1.184 0.775 0.516 1.524 1.461 0.498 1.819 0.603 0.581 1.214 

0.380 0.000 0.281 1.269 0.878 0.508 1.540 1.579 0.549 1.925 0.621 0.656 1.288 

0.475 0.000 0.306 1.235 0.814 0.533 1.564 1.549 0.535 1.869 0.583 0.631 1.270 

0.570 0.000 0.306 1.222 0.790 0.515 1.522 1.522 0.504 1.838 0.599 0.629 1.210 

0.665 0.000 0.347 1.257 0.831 0.504 1.592 1.556 0.543 1.910 0.585 0.648 1.267 

0.760 0.000 0.331 1.273 0.818 0.526 1.591 1.530 0.542 1.915 0.560 0.644 1.304 

0.855 0.000 0.308 1.258 0.821 0.540 1.637 1.574 0.521 1.944 0.643 0.628 1.268 

0.950 0.000 0.277 1.241 0.778 0.549 1.640 1.534 0.546 1.958 0.563 0.649 1.306 

NL: 

-0.950 0.000 0.490 1.760 0.977 0.810 2.344 2.194 0.803 2.741 1.453 0.745 1.431 

-0.855 0.000 0.366 1.774 0.931 0.787 2.375 2.130 0.786 2.770 1.383 0.724 1.522 

-0.760 0.000 0.437 1.816 1.017 0.780 2.304 2.125 0.741 2.745 1.322 0.755 1.490 

-0.665 0.000 0.431 1.789 0.989 0.739 2.262 2.124 0.725 2.641 1.284 0.761 1.445 

-0.570 0.000 0.423 1.731 0.988 0.720 2.221 2.059 0.727 2.638 1.122 0.780 1.544 

-0.475 0.000 0.417 1.733 1.034 0.713 2.195 2.100 0.671 2.580 1.178 0.764 1.532 

-0.380 0.000 0.416 1.720 1.093 0.681 2.054 2.077 0.691 2.473 1.133 0.776 1.484 

-0.285 0.000 0.441 1.743 1.086 0.690 2.101 2.098 0.737 2.547 1.052 0.770 1.616 

-0.190 0.000 0.452 1.690 1.014 0.741 2.167 2.074 0.732 2.589 0.922 0.815 1.638 

-0.095 0.000 0.378 1.762 1.121 0.704 2.165 2.125 0.690 2.534 0.976 0.792 1.654 

0.000 0.000 0.460 1.693 1.068 0.726 2.130 2.030 0.691 2.601 0.783 0.853 1.714 

0.095 0.000 0.437 1.700 1.044 0.717 2.115 2.038 0.691 2.553 0.771 0.856 1.687 

0.190 0.000 0.433 1.661 1.029 0.702 2.111 2.018 0.691 2.477 0.748 0.860 1.694 

0.285 0.000 0.439 1.657 1.089 0.698 2.067 2.016 0.670 2.441 0.815 0.804 1.685 

0.380 0.000 0.362 1.630 1.085 0.654 1.978 2.004 0.689 2.410 0.823 0.824 1.612 



0.475 0.000 0.393 1.589 1.031 0.680 1.984 1.962 0.674 2.351 0.774 0.786 1.594 

0.570 0.000 0.404 1.602 1.032 0.662 1.963 1.972 0.647 2.366 0.784 0.815 1.566 

0.665 0.000 0.434 1.582 1.037 0.622 1.971 1.945 0.661 2.327 0.763 0.794 1.553 

0.760 0.000 0.420 1.585 1.001 0.648 1.952 1.894 0.657 2.323 0.711 0.785 1.590 

0.855 0.000 0.387 1.560 0.983 0.649 1.960 1.926 0.613 2.283 0.764 0.758 1.524 

0.950 0.000 0.352 1.562 0.986 0.667 1.989 1.919 0.657 2.359 0.726 0.786 1.584 

  



Table 3: Correlation combinations 

k 34��
 34�1

 34�1
 

1 0.75 0.75 0.75 

2 0.75 0.75 0.25 

3 0.75 0.25 0.25 

4 0.75 0.25 -0.25 

5 0.75 -0.25 -0.25 

6 0.75 -0.25 -0.75 

7 0.75 -0.75 -0.75 

8 0.25 0.25 0.25 

9 0.25 0.25 -0.25 

10 0.25 0.25 -0.75 

11 0.25 -0.25 -0.25 

12 0.25 -0.25 -0.75 

13 0.25 -0.75 -0.75 

14 -0.25 -0.25 -0.25 

15 -0.25 -0.25 -0.75 

  



Table 4: Estimation results of Cross Nested Logit model 

Alt1 Alt2 Alt3 Alt4 

k Asc1 ββββ11 ββββ21 Asc2 ββββ21 ββββ22 Asc3 ββββ31 ββββ31 Asc4 ββββ41 ββββ41 

True 0.000 0.300 1.200 0.800 0.500 1.500 1.500 0.500 1.800 0.600 0.600 1.200 

1 0.000 0.417 1.725 0.663 0.874 2.558 1.963 0.779 2.921 0.421 0.996 1.954 

2 0.000 0.395 1.576 0.804 0.735 2.231 1.862 0.720 2.556 0.565 0.854 1.731 

3 0.000 0.432 1.639 0.979 0.694 2.103 1.981 0.695 2.484 0.728 0.816 1.676 

4 0.000 0.390 1.624 1.093 0.652 1.938 2.034 0.615 2.321 0.955 0.806 1.580 

5 0.000 0.337 1.641 1.212 0.608 1.815 2.072 0.605 2.201 1.000 0.739 1.481 

6 0.000 0.370 1.662 1.309 0.616 1.845 2.306 0.629 2.224 1.387 0.749 1.428 

7 0.000 0.467 1.679 1.346 0.629 1.832 2.500 0.632 2.238 1.559 0.728 1.430 

8 0.000 0.372 1.661 1.125 0.650 1.991 2.097 0.644 2.397 0.823 0.800 1.586 

9 0.000 0.457 1.617 1.187 0.649 1.878 2.077 0.631 2.220 0.956 0.766 1.480 

10 0.000 0.441 1.745 1.226 0.669 2.006 2.148 0.681 2.372 0.955 0.877 1.649 

11 0.000 0.449 1.616 1.216 0.594 1.838 2.094 0.588 2.224 0.973 0.740 1.475 

12 0.000 0.406 1.747 1.198 0.669 2.026 2.143 0.632 2.387 0.958 0.812 1.649 

13 0.000 0.495 1.828 1.250 0.722 2.129 2.271 0.699 2.491 0.992 0.904 1.731 

14 0.000 0.420 1.740 1.362 0.639 1.901 2.225 0.616 2.200 1.070 0.763 1.570 

15 0.000 0.428 1.690 1.334 0.676 1.940 2.239 0.631 2.257 1.041 0.813 1.564 

  



Table 5: Difference in market share predictions - Experiment Ia 

 

  

 
MNP NL 

ρ  Alt1 Alt2 Alt3 Alt1 Alt2 Alt3 

-0.95 2.9% -1.4% -1.4% -0.6% 0.4% 0.2% 

-0.855 3.4% -1.6% -1.8% 0.2% 0.0% -0.2% 

-0.76 2.8% -1.5% -1.3% -0.4% 0.1% 0.3% 

-0.665 3.3% -2.0% -1.3% 0.4% -0.7% 0.4% 

-0.57 3.2% -1.4% -1.8% 0.6% -0.2% -0.3% 

-0.475 2.6% -1.0% -1.7% 0.2% -0.1% -0.1% 

-0.38 2.6% -0.9% -1.7% 0.4% -0.2% -0.2% 

-0.285 1.9% 0.1% -2.1% -0.3% 0.8% -0.5% 

-0.19 2.1% -0.6% -1.5% 0.3% -0.2% -0.1% 

-0.095 1.3% -0.2% -1.1% -0.3% 0.0% 0.3% 

0 1.8% 0.0% -1.8% 0.4% 0.0% -0.4% 

0.095 1.6% 0.3% -1.9% 0.3% 0.1% -0.4% 

0.19 1.2% -0.4% -0.8% 0.2% -0.9% 0.7% 

0.285 0.8% 0.8% -1.7% 0.0% 0.3% -0.2% 

0.38 0.4% 0.9% -1.4% -0.1% 0.2% -0.1% 

0.475 0.3% 1.2% -1.5% -0.1% 0.4% -0.3% 

0.57 0.0% 1.6% -1.5% -0.3% 0.3% 0.0% 

0.665 0.1% 1.0% -1.1% 0.1% -0.4% 0.4% 

0.76 -0.4% 2.1% -1.7% -0.2% 0.7% -0.6% 

0.855 -1.0% 2.5% -1.5% -0.3% 0.3% 0.0% 

0.95 -0.7% 1.6% -0.9% 0.0% -0.4% 0.4% 



Table 6: Difference in market share predictions - Experiment Ib 

MNP NL 

ρ  Alt1 Alt2 Alt3 Alt4 Alt1 Alt2 Alt3 Alt4 

-0.950 2.2% 2.8% -0.1% -4.8% -0.1% 0.2% 0.3% -0.5% 

-0.855 2.0% 1.7% -0.4% -3.4% -0.1% -0.4% -0.1% 0.7% 

-0.760 2.3% 1.7% -1.0% -2.9% 0.3% -0.4% -0.4% 0.4% 

-0.665 1.8% 1.8% -1.4% -2.2% -0.2% 0.1% -0.6% 0.7% 

-0.570 1.7% 1.6% -1.5% -1.8% -0.1% 0.1% -0.6% 0.6% 

-0.475 1.2% 1.2% -0.2% -2.2% -0.5% 0.1% 0.6% -0.2% 

-0.380 1.3% 1.5% -2.0% -0.9% -0.3% 0.4% -0.6% 0.5% 

-0.285 1.6% 1.2% -1.1% -1.7% 0.1% 0.3% 0.0% -0.5% 

-0.190 1.4% 0.2% -1.2% -0.4% -0.5% 0.1% 0.3% 0.0% 

-0.095 2.1% -0.4% -1.7% 0.0% 0.5% -0.5% -0.1% 0.1% 

0.000 2.2% -0.4% -2.6% 0.8% 0.3% -0.1% -0.8% 0.5% 

0.095 1.2% 0.0% -1.3% 0.2% -0.3% 0.0% 0.6% -0.2% 

0.190 1.2% 0.4% -1.8% 0.3% 0.1% 0.3% -0.1% -0.3% 

0.285 0.8% 0.8% -2.6% 1.0% 0.0% 0.7% -0.3% -0.4% 

0.380 -0.1% 1.4% -2.5% 1.2% -0.1% 0.6% -0.5% 0.0% 

0.475 -0.4% 0.7% -1.7% 1.3% -0.2% 0.0% 0.4% -0.2% 

0.570 -0.3% 1.0% -2.7% 1.9% 0.1% 0.1% -0.2% 0.1% 

0.665 -1.3% 0.4% -2.3% 3.3% -0.5% -0.4% 0.1% 0.9% 

0.760 -0.8% 0.6% -2.4% 2.6% 0.4% -0.3% -0.3% 0.3% 

0.855 -1.8% 0.9% -2.4% 3.3% -0.1% -0.2% 0.1% 0.2% 

0.950 -1.5% 1.2% -2.9% 3.2% 0.2% 0.0% -0.3% 0.1% 

  



Table 7: Difference in market share predictions - Experiment II 

MNP CNL 

k Alt1 Alt2 Alt3 Alt4 Alt1 Alt2 Alt3 Alt4 

1 0.5% 0.3% -3.0% 2.2% -8.8% 7.5% -10.5% 11.7% 

2 -1.5% 1.9% -3.1% 2.7% -7.7% 5.2% -4.7% 7.3% 

3 -0.1% 3.0% -1.4% -1.6% -5.8% 6.5% -9.7% 9.1% 

4 0.8% 1.9% -1.8% -0.9% -9.8% 17.5% -26.0% 18.3% 

5 0.6% 2.4% -0.3% -2.7% -4.9% 6.7% -1.8% 0.1% 

6 2.7% 2.8% -2.7% -2.8% -6.0% 12.9% -8.6% 1.7% 

7 2.0% 1.6% -2.0% -1.6% -4.1% 9.1% -0.1% -4.9% 

8 1.6% -0.7% -1.1% 0.2% -8.1% 10.0% -6.4% 4.5% 

9 1.7% 2.6% -3.4% -0.9% -6.5% 6.1% -9.6% 9.9% 

10 1.9% 1.2% -2.3% -0.8% -4.7% 11.7% -7.8% 0.9% 

11 0.5% 1.8% -1.7% -0.6% -4.9% 5.0% -6.0% 5.9% 

12 0.9% 2.4% -1.1% -2.2% -3.6% 9.9% -5.3% -1.0% 

13 2.3% 0.1% -0.9% -1.6% -2.9% 10.6% 3.9% -11.6% 

14 2.7% -0.9% -0.4% -1.3% -6.1% 8.9% -6.1% 3.3% 

15 2.4% 2.3% -2.8% -1.9% -6.2% 16.4% -11.7% 1.5% 

 

  



Table 8: Covariance of difference Matrix in real case 

�

2.00 0.84 1.14 1.16 1.02

0.84 2.78 1.26 1.89 1.86

1.14 1.26 3.95 2.76 2.83

1.16 1.89 2.76 5.21 4.36

1.02 1.86 2.83 4.36 6.12

ΩMNP

 
 
 
 =
 
 
 
 

 �

3.29 1.72 1.64 1.72 1.64

1.72 3.29 1.64 1.72 1.64

1.64 1.64 3.29 1.64 0.76

1.72 1.72 1.64 3.29 1.64

1.64 1.64 0.76 1.6

Ω

4 3.29

NL

− − 
 

− − 
 =
 

− − 
 
 

 

�

3.29 2.15 1.64 8.40 1.64

2.15 3.29 1.39 2.15 1.39

1.64 1.39 3.29 1.64 1.37

8.40 2.15 1.64 3.29 1.64

1.64 1.39 1.37 1.64 3.29

ΩCNL

− − 
 

− − 
 =
 

− − 
 
 

    �

3.01 1.36 1.64 1.36 1.64

1.36 3.23 1.87 1.36 1.87

1.64 1.87 3.51 1.64 1.87

1.36 1.36 1.64 3.01 1.64

1.64 1.87 1.87 1.64 3.51

ΩMXL

 
 
 
 =
 
 
 
 

 

Correlation matrix of NL, CNL, ML 

1 0 0 0 0 0

0 1 2.05 0 2.05 0

0 2.05 1 0 2.05 0

0 0 0 1 0.54

0 2.05 2.05 1 0

0 0 0 0.54 0

0

1

0

NL
Cor

 
 
 
 
 
 
 
  


− −

− −

−

− −

− 

=  

1 0 0 0 0 0

0 1 2.31 0 6.11 0

0 2.31 1 0.15 2.31 0.15

0 0 0.15 1 0 0.16

0 6.11 2.31 0 1 0

0 0 0.15 0.16 0 1

CNL
Cor

 
 
 
 
 
 


− −

− − − −
=

− −




− −

−
−




 



1 0 0 0 0 0

0 1 0.19 0 0.21 0

0 0.19 1 0.13 0.19

0 0 0.13 1

0 0.21 0.19 1 0

0 0 0.1

0.13

0 0.12

0

0.123 0 1

MXL
Cor

 
 
 
 
 
 
 
  
 

− −

− −
=

− −

 

  



Table 9: Estimation results in real case (standard errors in parentheses) 

  Coefficient  

Name MNP NL CNL ML 

LPC 
Constant 

-1.091* 
(0.189) 

-4.810* 
(2.22) 

-7.030 
(4.51) 

-1.800* 
(0.24) 

Higher than BA Degree (Dummy) 
 0.714 

(0.3) 
   1.010 

(0.65) 
1.300 
(0.94) 

0.538* 
(0.29) 

Full-time working status (Dummy) 
-0.109 
(0.245) 

-0.254 
(0.49) 

0.252 
(1.03) 

-0.424* 
(0.25) 

LH 
Constant 

2.520* 
(0.092) 

2.980* 
(0.12) 

2.960* 
(0.14) 

3.040* 
(0.31) 

No. of children 
-0.030* 
(0.037) 

-0.142* 
(0.05) 

-0.140* 
(0.05) 

-0.147* 
(0.04) 

Full-time working status (Dummy) 
-0.758* 
(0.073) 

-0.674* 
(0.09) 

-0.702* 
(0.11) 

-0.744* 
(0.11) 

Age. Senior (Dummy) 
-0.362* 
(0.089) 

-0.673* 
(0.13) 

-0.708* 
(0.17) 

-0.476* 
(0.09) 

Age. Adult (Dummy) 
-0.372* 
(0.118) 

-0.863* 
(0.16) 

-0.888* 
(0.19) 

-0.817* 
(0.13) 

Age. Young (Dummy) 
-0.646* 
(0.153) 

-1.090* 
(0.22) 

-1.170* 
(0.28) 

-0.847* 
(0.16) 

Age. Teen (Dummy) 
-0.579* 
(0.162) 

-1.040* 
(0.24) 

-1.130* 
(0.30) 

-0.904* 
(0.17) 

Higher than BA Degree (Dummy) 
-0.156* 
(0.118) 

-0.434* 
(0.15) 

-0.422* 
(0.15) 

-0.335* 
(0.12) 

LOH 
Constant 

-1.084* 
(0.153) 

-1.320* 
(0.61) 

-1.210* 
(0.56) 

-0.955* 
(0.19) 

No. of children 
-0.209* 
(0.162) 

-0.320* 
(0.12) 

-0.313* 
(0.11) 

-0.278* 
(0.09) 

Single (Dummy) 
  0.197 
(0.186) 

0.273 
(0.25) 

0.295 
(0.23) 

0.317* 
(0.19) 

Age. Teen (Dummy) 
0.338* 
(0.309) 

1.210* 
(0.43) 

  1.150* 
(0.39) 

0.957* 
(0.31) 

Age. Young (Dummy) 
0.632* 
(0.268) 

0.768* 
(0.38) 

0.737* 
(0.34) 

0.870* 
(0.26) 

LPC&LH 
Constant 

0.420* 
(0.1) 

-0.641 
(1.03) 

-0.857 
(1.5) 

0.837* 
(0.19) 

No. of children 
-0.098* 
(0.056) 

-0.287* 
(0.10) 

-0.310* 
(0.11) 

-0.247* 
(0.06) 

Race. Black (Dummy) 
-0.775* 
(0.161) 

-1.250* 
(0.49) 

-1.480* 
(0.60) 

-0.667* 
(0.16) 

Full-time working status (Dummy) 
-1.341* 
(0.115) 

-1.510* 
(0.25) 

-1.660* 
(0.34) 

-1.29* 
(0.14) 

Higher than BA Degree (Dummy) 
-0.004 
(0.167)  

0.605* 
(0.35) 

0.615* 
(0.37) 

0.307* 
(0.17) 

BA Degree (Dummy) 
0.557* 
(0.114) 

0.820* 
(0.28) 

0.894* 
(0.30) 

0.548* 
(0.12) 

Age. Adult (Dummy) -0.190* -0.545* -0.518* -0.370* 



(0.139) (0.25) (0.27) (0.14) 

LOH&LH 
Constant 

0.378* 
(0.103) 

0.603* 
(0.14) 

0.531* 
(0.29) 

0.704* 
(0.17) 

No. of children 
-0.106* 
(0.054) 

-0.161* 
(0.07) 

-0.168* 
(0.07) 

-0.169* 
(0.05) 

Gender. Female (Dummy) 
-0.475* 
(0.086) 

-0.371* 
(0.10) 

-0.390* 
(0.13) 

-0.278* 
(0.09) 

Single 
0.359* 
(0.105) 

0.357* 
(0.13) 

0.370* 
(0.13) 

0.313* 
(0.11) 

Higher than BA Degree (Dummy) 
-0.581* 
(0.176) 

-0.857* 
(0.24) 

-0.808* 
(0.22) 

-0.819* 
(0.18) 

BA Degree (Dummy) 
0.025* 
(0.111) 

-0.242* 
(0.14) 

-0.217 
(0.14) 

-0.275* 
(0.11) 

Age. Adult (Dummy) 
-0.603* 
(0.125) 

-0.427* 
(0.16) 

-0.414* 
(0.15) 

-0.495* 
(0.13) -. 0.573* 0.375*  -/ 0.807* 0.927  01. 0.143*  01/ 0.857*  

 B
σ     -0.281 

 C
σ     0.233 

 Final Log-likelihood -6420.89 -4975.36 -4975.02 -6213.43 

          *significant, p-value < 0.1 

  
 

 

  



 

Table 10: Validation results in real case study (predicted market shares) 

Alternative Observed Predicted value Difference 

MNP NL CNL ML MNP NL CNL ML 

NO 9.20% 10.81% 10.86% 12.49% 9.48% 1.61% 1.66% 3.28% 0.27% 

LPC 0.89% 3.90% 0.00% 0.00% 1.35% 3.00% -0.89% -0.89% 0.45% 

LH 64.70% 63.47% 62.78% 70.51% 65.32% -1.23% -1.92% 5.81% 0.62% 

LOH 3.84% 3.46% 2.78% 5.51% 3.42% -0.38% -1.06% 1.67% -0.42% 

LPC&LH 9.38% 8.07% 12.10% 0.41% 9.12% -1.31% 2.72% -8.98% -0.26% 

LOH&LH 11.97% 10.29% 11.48% 11.09% 11.31% -1.68% -0.50% -0.89% -0.67% 

  



Table 11 Policy analysis 

Alternative MNP NL CNL ML 

NO 3.49% 18.41% 11.22% 7.67% 

LPC 3.70% 37.86% 22.59% 8.80% 

LH 0.72% 4.67% -0.04% 0.01% 

LOH -10.84% -12.47% -17.50% -6.74% 

LPC&LH -2.17% -38.04% -8.67% -5.03% 

LOH&LH -2.37% 0.89% -4.61% -1.10% 

  



Figure 1: NL model with three alternatives 

Figure 2: NL model with four alternatives 

Figure 3: Cross Nested Logit model with four alternatives 

Figure 4: Comparison of correlation  567 between NL and MNP model 

Figure 5: Comparison of 5689: between NL and MNP model 

Figure 6: Comparison of 5689; between NL and MNP model 

Figure 7: Comparison of 5689: between CNL and MNP model 

Figure 8: Comparison of 5689; between CNL and MNP model 

Figure 9: Comparison of 568:; between CNL and MNP model 

Figure 10: NL model structure in real case study 

Figure 11: CNL and ML model structure in real case study 

 

 

 

 

 


