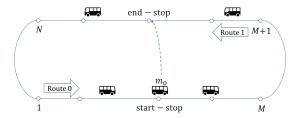




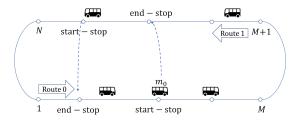
# Real-time Short-turning in High Frequency Bus Services Based on Passenger Cost

David Leffler


Stockholm, Sweden

Workshop on Advances in Public Transport Control and Operations Conclusions and Lessons from ADAPT-IT

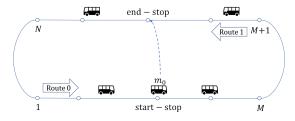
2017-06-16


### Definition of short-turning





### Definition of short-turning






• Tactical planning strategy

# Definition of short-turning





#### • Real-time control strategy

# Why is short-turning used?



- Passenger perspective
  - waiting time
  - in-vehicle time
  - transfers

- Operator perspective
  - schedule adherence
  - headway regularity
  - disruption recovery

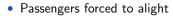
#### **Research objectives**



- Contribute to library of data-driven, real-time control tactics
- Extend methodology for short-turning to consider passenger costs
- Improve on tools used to evaluate short-turning as a real-time strategy

# 3 impacted passenger groups




- Passengers forced to alight
- Passengers waiting to board at, and downstream of start-stop
- Passengers waiting to board at, and downstream of end-stop

We want to balance the costs of these passenger groups!



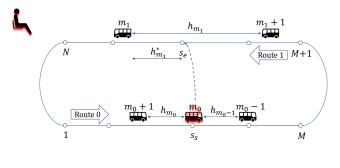


# 3 impacted passenger groups



- Passengers waiting to board at, and downstream of start-stop
- Passengers waiting to board at, and downstream of end-stop

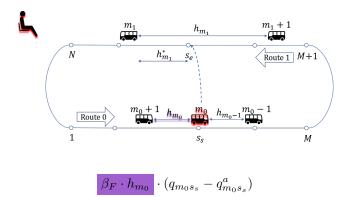
We want to balance the costs of these passenger groups!





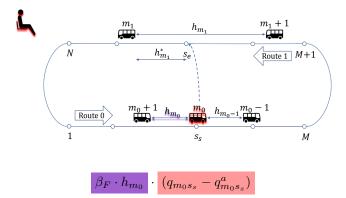



#### **Forced alighters**



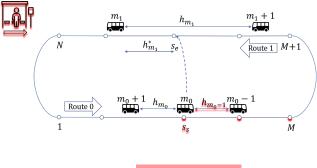



$$\beta_F \cdot h_{m_0} \cdot \left( q_{m_0 s_s} - q_{m_0 s_s}^a \right)$$


#### **Forced alighters**



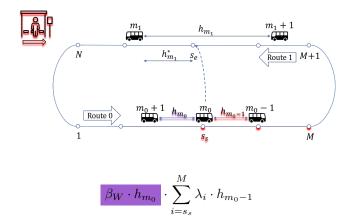



#### **Forced alighters**



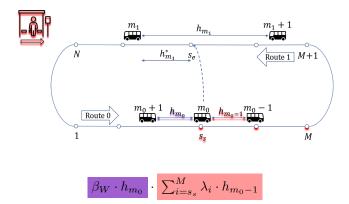


#### **Downstream boarders**



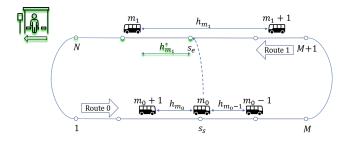



$$\beta_W \cdot h_{m_0} \cdot \sum_{i=s_s}^M \lambda_i \cdot h_{m_0-1}$$


#### **Downstream boarders**



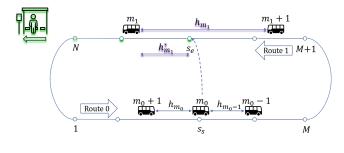



#### **Downstream boarders**





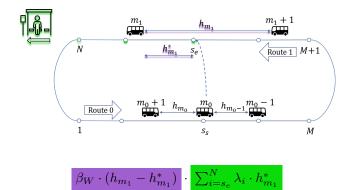
#### **Reverse downstream boarders**






$$\beta_W \cdot (h_{m_1} - h_{m_1}^*) \cdot \sum_{i=s_e}^N \lambda_i \cdot h_{m_1}^*$$

#### **Reverse downstream boarders**






$$\beta_W \cdot (h_{m_1} - h_{m_1}^*) \cdot \sum_{i=s_e}^N \lambda_i \cdot h_{m_1}^*$$

#### **Reverse downstream boarders**





Methodology | Decision rule

#### **Decision rule**

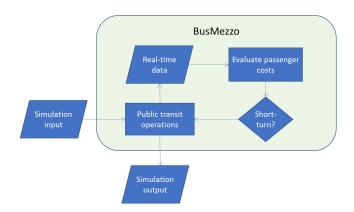


$$\begin{aligned} z &:= \beta_W \cdot (h_{m_1} - h_{m_1}^*) \cdot \sum_{i=s_e}^N \lambda_i \cdot h_{m_1}^* \text{ reverse ds boarders} \\ &- \beta_W \cdot h_{m_0} \cdot \sum_{i=s_s}^M \lambda_i \cdot h_{m_0-1} \text{ ds boarders} \\ &- \beta_F \cdot h_{m_0} \cdot (q_{m_0s_s} - q_{m_0s_s}^a) \text{ forced alighters} \end{aligned}$$

• If z > 0 short-turn, otherwise do nothing

Methodology | Decision rule

#### **Decision rule**




$$z := \beta_W \cdot (h_{m_1} - h_{m_1}^*) \cdot \sum_{i=s_e}^N \lambda_i \cdot h_{m_1}^* \text{ reverse ds boarders}$$
$$-\beta_W \cdot h_{m_0} \cdot \sum_{i=s_s}^M \lambda_i \cdot h_{m_0-1} \text{ ds boarders}$$
$$-\beta_F \cdot h_{m_0} \cdot (q_{m_0s_s} - q_{m_0s_s}^a) \text{ forced alighters}$$

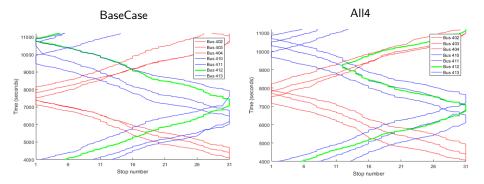
• If z > 0 short-turn, otherwise do nothing

### **Experimental set-up**






# Line 4 Gullmarsplan $\leftrightarrow$ Radiohuset




- Planned fleet size of 23 buses
- Scheduled headway of 5 minutes
- 4 candidate short-turning stops
- Short-turn GR onto RG
- PM peak hour
- 3 different scenarios:
  - 1. BaseCase
  - 2. All4
  - 3. Hornstull



#### Results







| Scenarios | Average HW | Average HW<br>(RG) | Average HW<br>(GR) | Stdev HW | Stdev HW<br>(RG) | Stdev HW<br>(GR) | $ST_{Trips}$ | $ST_{Calls}$ |
|-----------|------------|--------------------|--------------------|----------|------------------|------------------|--------------|--------------|
| BaseCase  | 302        | 299                | 304                | 275      | 253              | 296              | -            | -            |
| All4      | 302        | 283                | 325                | 257      | 223              | 290              | 26%          | 14%          |
| Hornstull | 301        | 298                | 304                | 259      | 235              | 282              | 4%           | 10%          |

Table 1: Measures of arrival headways in seconds



| Scenarios | Average HW | Average HW<br>(RG) | Average HW<br>(GR) | Stdev HW | Stdev HW<br>(RG) | Stdev HW<br>(GR) | $ST_{Trips}$ | $ST_{Calls}$ |
|-----------|------------|--------------------|--------------------|----------|------------------|------------------|--------------|--------------|
| BaseCase  | 302        | 299                | 304                | 275      | 253              | 296              | -            | -            |
| All4      | 302        | 283                | 325                | 257      | 223              | 290              | 26%          | 14%          |
| Hornstull | 301        | 298                | 304                | 259      | 235              | 282              | 4%           | 10%          |

Table 1: Measures of arrival headways in seconds



| Scena | arios | Average HW | Average HW<br>(RG) | Average HW<br>(GR) | Stdev HW | Stdev HW<br>(RG) | Stdev HW<br>(GR) | $ST_{Trips}$ | $ST_{Calls}$ |
|-------|-------|------------|--------------------|--------------------|----------|------------------|------------------|--------------|--------------|
| Base  | Case  | 302        | 299                | 304                | 275      | 253              | 296              | -            | -            |
| All   | 14    | 302        | 283                | 325                | 257      | 223              | 290              | 26%          | 14%          |
| Horns | stull | 301        | 298                | 304                | 259      | 235              | 282              | 4%           | 10%          |

Table 1: Measures of arrival headways in seconds



| Scenarios | Average HW | Average HW<br>(RG) | Average HW<br>(GR) | Stdev HW | Stdev HW<br>(RG) | Stdev HW<br>(GR) | $ST_{Trips}$ | $ST_{Calls}$ |
|-----------|------------|--------------------|--------------------|----------|------------------|------------------|--------------|--------------|
| BaseCase  | 302        | 299                | 304                | 275      | 253              | 296              | -            | -            |
| All4      | 302        | 283                | 325                | 257      | 223              | 290              | 26%          | 14%          |
| Hornstull | 301        | 298                | 304                | 259      | 235              | 282              | 4%           | 10%          |

Table 1: Measures of arrival headways in seconds



| Scenar | ios Average HW | Average HW<br>(RG) | Average HW<br>(GR) | Stdev HW | Stdev HW<br>(RG) | Stdev HW<br>(GR) | $ST_{Trips}$ | $ST_{Calls}$ |
|--------|----------------|--------------------|--------------------|----------|------------------|------------------|--------------|--------------|
| BaseC  | ase 302        | 299                | 304                | 275      | 253              | 296              | -            | -            |
| All4   | 302            | 283                | 325                | 257      | 223              | 290              | 26%          | 14%          |
| Hornst | ull 301        | 298                | 304                | 259      | 235              | 282              | 4%           | 10%          |

Table 1: Measures of arrival headways in seconds



| Scenarios | Average HW | Average HW<br>(RG) | Average HW<br>(GR) | Stdev HW | Stdev HW<br>(RG) | Stdev HW<br>(GR) | $ST_{Trips}$ | $ST_{Calls}$ |
|-----------|------------|--------------------|--------------------|----------|------------------|------------------|--------------|--------------|
| BaseCase  | 302        | 299                | 304                | 275      | 253              | 296              | -            | -            |
| All4      | 302        | 283                | 325                | 257      | 223              | 290              | 26%          | 14%          |
| Hornstull | 301        | 298                | 304                | 259      | 235              | 282              | 4%           | 10%          |

Table 1: Measures of arrival headways in seconds

ADAPT-IT KTH, Royal Institute of Technology



| Scenarios | Average<br>Waiting Time | Average<br>In-vehicle Time | Stdev<br>Waiting Time | Stdev<br>In-vehicle Time |  |
|-----------|-------------------------|----------------------------|-----------------------|--------------------------|--|
| BaseCase  | 260                     | 801                        | 220                   | 640                      |  |
| All4      | 264                     | 805                        | 265                   | 648                      |  |
| Hornstull | 247                     | 798                        | 203                   | 640                      |  |

Table 2: Measures of passenger costs in seconds



| Scenarios | Average<br>Waiting Time | Average<br>In-vehicle Time | Stdev<br>Waiting Time | Stdev<br>In-vehicle Time |
|-----------|-------------------------|----------------------------|-----------------------|--------------------------|
| BaseCase  | 260                     | 801                        | 220                   | 640                      |
| All4      | 264                     | 805                        | 265                   | 648                      |
| Hornstull | 247                     | 798                        | 203                   | 640                      |

Table 2: Measures of passenger costs in seconds



| Scenarios | Average<br>Waiting Time |     |     | Stdev<br>In-vehicle Time |  |
|-----------|-------------------------|-----|-----|--------------------------|--|
| BaseCase  | 260                     | 801 | 220 | 640                      |  |
| All4      | 264                     | 805 | 265 | 648                      |  |
| Hornstull | 247                     | 798 | 203 | 640                      |  |

Table 2: Measures of passenger costs in seconds

# **Conclusions and Future Work**



# **Conclusions:**

- Formulated a method that produces short-turns that qualitatively appear reasonable
- Aggressive use of this method can improve headway reliability at the expense of passenger waiting times
- Conservative use of this method has potential to benefit passengers while still improving headway regularity

### Future work:

- Further balancing of costs in decision rule (e.g. discount distant passengers, consider load of neighboring bus)
- Simulate other scenarios (e.g. demand profile, other start/end-stop pairs...)
- Combine with other control strategies

# **Conclusions and Future Work**



# **Conclusions:**

- Formulated a method that produces short-turns that qualitatively appear reasonable
- Aggressive use of this method can improve headway reliability at the expense of passenger waiting times
- Conservative use of this method has potential to benefit passengers while still improving headway regularity

#### Future work:

- Further balancing of costs in decision rule (e.g. discount distant passengers, consider load of neighboring bus)
- Simulate other scenarios (e.g. demand profile, other start/end-stop pairs...)
- Combine with other control strategies

### The End



Thank you for listening!

David Leffler dleffler@kth.se

#### Appendix

#### Notation and Decision rule



$$z := \beta_W \cdot (h_{m_1} - h_{m_1}^*) \cdot \sum_{i=s_e}^N \lambda_i \cdot h_{m_1}^*$$
$$- \beta_W \cdot h_{m_0} \cdot \sum_{i=s_s}^M \lambda_i \cdot h_{m_0-1}$$
$$- \beta_F \cdot h_{m_0} \cdot (q_{m_0s_s} - q_{m_0s_s}^*)$$

#### Sets

- $\mathcal{R}$  set of routes;  $r \in \mathcal{R} := \{0, 1\}$
- $\mathcal S \qquad \text{set of all ordered stops; } s \in \mathcal S := \{1,\ldots,M,M+1,\ldots,N\}$
- $S_r$  set of stops on route r;

$$s \in S_r := \begin{cases} \{1, \dots, M\}, & \text{if } r = 0 \\ \{M+1, \dots, N\}, & \text{if } r = 1 \end{cases}$$

- $\begin{array}{l} \mathcal{T}^0 & \text{set of candidate short-turns with start-stop } s_s \text{ on } \\ \text{route } 0 \text{ to end-stop } s_e \text{ on route } 1; \ (s_s,s_e) \in \mathcal{T}^0 \subseteq \\ \mathcal{S}_0 \times \mathcal{S}_1 \end{array}$
- M set of all buses;  $m \in M := \{1, ..., K\}$
- $\mathcal{M}_r$  set of buses currently running trips on route r;  $m_r \in \mathcal{M}_r \subseteq \mathcal{M}$

#### Inputs q<sub>ms</sub>

 $q_{ms}^a$ 

 $a_{ms}$ 

 $h_m$ 

- number of passengers on-board bus  $\boldsymbol{m}$  upon arrival to stop  $\boldsymbol{s}$
- number of passengers on-board bus m upon arrival to stop s that wish to alight at stop sarrival time of bus m to stop s
- backwards headway of bus m (i.e., time distance between bus m and following bus m+1). For this study these are defined based on arrivals, i.e.,  $h_m = a_{m+1,s} - a_{ms}$ , where s is the last stop visited by m and  $a_{m+1,s}$  is the predicted arrival of m+1 to stop s based on scheduled travel times.
- $\begin{array}{ll} \tau_{s_s}^{s_e} & \text{short-turn travel time from stop } s_s \text{ to stop } s_e \\ DT_{ms_*} & \text{dwell time of bus } m \text{ at stop } s_s \end{array}$
- $\begin{array}{ll} STT_{s_1s_2} & \text{scheduled travel time between stop } s_1 \text{ and} \\ & \text{stop } s_2 \text{ on the same route, i.e., } s_1, s_2 \in \mathcal{S}_r \\ & \text{for } r \in \mathcal{R} \end{array}$

#### Parameters

- $\lambda_s$  passenger arrival rate at stop s
- $\beta_W \quad \mbox{unit cost of waiting time relative to in-vehicle time }$
- $\beta_F \qquad \mbox{unit cost of waiting time for} \\ \mbox{forced alighters relative to invehicle time} \\$



| ivieasures of arrival headways in seconds |           |                |                |            |               |               |              |              |  |  |
|-------------------------------------------|-----------|----------------|----------------|------------|---------------|---------------|--------------|--------------|--|--|
| Scenarios                                 | $\bar{x}$ | $\bar{x}_{RG}$ | $\bar{x}_{GR}$ | $\sigma_x$ | $\sigma_{RG}$ | $\sigma_{GR}$ | $ST_{Trips}$ | $ST_{Calls}$ |  |  |
| BaseCase                                  | 302       | 299            | 304            | 275        | 253           | 296           | -            | -            |  |  |
| All4                                      | 302       | 283            | 325            | 257        | 223           | 290           | 26%          | 14%          |  |  |
| Hornstull                                 | 301       | 298            | 304            | 259        | 235           | 282           | 4%           | 10%          |  |  |

. . .

.

 $\% ST_{trips}$  are out of 120 trips (12 for peak hour over 10 replications)  $\% ST_{Calls}$  are out of a total of 218 for All4 and 48 for Hornstull

N /



#### Measures of passenger costs in seconds.

| Scenarios | $\bar{x}_{WT}$ | $\bar{x}_{IVT}$ | $\sigma_{WT}$ | $\sigma_{IVT}$ |
|-----------|----------------|-----------------|---------------|----------------|
| BaseCase  | 260            | 801             | 220           | 640            |
| All4      | 264            | 805             | 265           | 648            |
| Hornstull | 247            | 798             | 203           | 640            |