REAL-TIME CONTROL FOR TRANSIT SYSTEMS WITH TRANSFERS

Hend Manasra

OUTLINE

- Introduction
- Model description
- Case study
- Conclusions & future work

BACKGROUND

- Real-time operations control
 - Improve service quality and passengers delay
 - Increase reliability and regularity
 - Respond to deviations from plan
 - Enabled by advances in IT
 - Automatic vehicle location (AVL)
 - Automatic passenger counters (APC)
- Commonly single line
 - schedule or headway control
 - Using holding and speed change

CONTROL OF MULTIPLE LINES

- Integrated public transportation systems
- Conflicting goals for passengers
 - At stops
 - Even headways
 - On board
 - Avoid holding
 - Transferring
 - Coordination
 - Unable to board

Short following headway

CONTROL OF MULTIPLE LINES (2)

- Mostly optimization-based
 - Dessouky et al. (1999, 2003); Khoat et al. (2007); Hadas and Ceder (2008, 2010); Yu et al. (2012); Ceder et al. (2013), Nesheli et al (2015), Ibarra and Munoz (2016)
 - Minimize passenger delay
 - Maximize encounters
- Holding at single point transfer stops
- In some cases change speed, stop-skipping and short turning

THIS RESEARCH

- Prediction-based operations control
- Multiple lines with transfers jointly
- Optimization formulation
 - Minimize passengers' time
 - Bus capacity constraints
- Use holding, change speed

OVERALL FRAMEWORK

ROLLING HORIZON IMPLEMENTATION

OPTIMIZATION PROBLEM

s.t.

- Total passengers time in the system
 - Dwell, in-vehicle, wait, transfer, skipped
 - Speed and holding time constraints

 $Z = \min_{H,TT} \sum_{s=1}^{M} \sum_{l=1}^{N} \sum_{k=i}^{i+j} \theta_1 \cdot DT_k^{s,l} + \theta_2 \cdot IVT_k^{s,l} + \theta_3 \cdot WT_k^{s,l} + \theta_4 \cdot TWT_k^{s,l} + \theta_5 \cdot DBT_k^{s,l}$

 $TT_{k,min}^{s,l} \le TT_k^{s,l} \le TT_{k,max}^{s,l}$

k - stop, *l* - bus, *s* - line

 $0 \le H_k^{(s,l)} \le \beta \cdot headway^{s,l}$

PASSENGER TIME COMPONENTS

• Dwell
$$DT_{k}^{s,l} = \left(np_{k}^{s,l} - \left(na_{k}^{s,l} + ntd_{k}^{s,l} + nta_{k}^{s,l}\right)\right)\left(st_{k}^{s,l} + H_{k}^{s,l}\right)$$

• In-vehicle
$$IVT_k^{s,l} = np_{k+1}^{s,l}TT_k^{s,l}$$

• Wait
$$WT_k^{s,l} = (nb_k^{s,l} + nto_k^{s,l}) \cdot \left(\frac{dt_k^{s,l} - dt_k^{s,l-1}}{2}\right)$$

• Transfer
$$TWT_k^{s,l} = ntb_k^{s,l} \left(dt_k^{s,l} - at_k^{m,n} \right)$$

• Skipped
$$ST_k^{s,l} = ndb_k^{s,l-1}(dt_k^{s,l} - dt_k^{s,l-1})$$

at – arrival time, dt – departure time, st - service time nb - boarding, na - alighting, np - on the bus,
 nto – boarding at origin, ntb – boarding at transfer ntd – alighting at destination, nta – alighting at transfer,

ndb-unable to board

CHNION

Israel Institute of Technology

SIMULATION-BASED TESTING FRAMEWORK

- BusMezzo (Toledo et al. 2007, Cats 2011)
- Mescoscopic traffic simulation
- Used as "real world"

CASE STUDY- METRONIT

- 192 stops and 19 shared stops.
- Daily ridership: 92,000 (May 2015)

METRONIT SYSTEM

Experiences bunching

ECHNION

Israel Institute of Technology

CALIBRATION

- Origin Destination Demand
 Including transfers
- Data from AVL and APC
- Dwell time (Weidmann (1994))

$$PST_{s,l}^{k,f} = \beta_0 + [\beta_a^f \cdot A_{s,l}^k + \beta_b^f \cdot B_{s,l}^k] \cdot \left[1 + \frac{3}{4} \left(\max\left\{ \frac{L_{s,l}^k - seats^f}{cap^f - seats^f} \right\} \right) \right] \\ \beta_0 = 9.4, \quad \beta_b^f = 0.65, \quad \beta_a^f = 0.57$$

Travel time distributions

TRAVEL TIME DISTRIBUTION

BASE SCENARIO

Base Scenario:

- ~43,420 passengers in 4 hours
- 12% of passengers make transfer

Stop Average headway	290.7 sec
Stop sd headway	156.2 sec
Stop Average dwell time	17 sec
Stop sd dwell time	7.7 sec

EXPERIMENTAL DESIGN

- Demand level
 - Base and increased
 - Transfer rates
- Disruptions
 - Bunching
 - Incidents
- Control parameters
 - Horizons
 - Prediction errors
 - Source of information
- Compared to no and independent controls

PRELIMINARY RESULTS

- Predictions:
 - GPS and historical data regarding demand , dwell time and travel time
- Horizon: 3 stops, 3 buses
- Weights: waiting and holding times double of riding time

Component	No control (hrs)	With control (hrs)	% Reduction
Total passengers riding time	11,075	10,616	-4%
Total passengers dwell time	2,275	2,322	2%
Total passengers waiting time	1,839	1,713	-7%
Total passenger holding time	-	116	
Total objective function	17,028	16,480	-3%

SUMMARY

- Develop system for real time control
 - Prediction based
 - Account for transfers and vehicle capacities
 - Use holding and speed change
- Ongoing evaluation
 - Against no and independent controls
- Next steps
 - Predictions
 - Robustness

