Optimization of Traffic Signal Plans with Transit Priority

Tomer Toledo
Technion – Israel Institute of Technology

KTH – Royal Institute of Technology, Stockholm June 16, 2017

Outline

- Background
- MESCOP
- Case study
- Summary

Background

- Increasingly complex signal plans
 - Detector presence and queue states
- Transit priority functions
 - Early start
 - Extension
 - Insertion
 - Compensation

Design parameters

- Large number
- Effect may be unintuitive

Group	Parameters included
Cycle Length & Split	Cycle lengthMinimum & maximum greenPhase start & end time
Waiting time	Maximum pedestrians RedMaximum Vehicle Red
Transit priority & compensation	 Early green Maximum extension Minimum accumulated green Number of cycles
Queue detection	Detector locationQueue period of time
Phase extension	Gap TimeMinimum GapGap Reduction

Performance measures

Delays Number of stops **Queue Lengths** Bandwidth **Fuel Consumption**

Modeling needs

- Tools to evaluate designs
 - Analytical solutions intractable
- Parameter setting and optimization
- Few studies on actuated plans
 - Park and Yun (2006), Branke et al. (2007), Stevanovic et al. (2008, 2011), Park & Lee (2009), Yun & park (2012)
 - Use micro-simulation traffic models
 - Computationally expensive
 - Limits number of parameters
 - Sequential optimization

MESCOP

- Mescoscopic Evaluation of Signal COntrol Plans
 - Evaluate impact of signal plan parameters on intersection performance
 - Mesoscopic traffic simulation model
 - Computationally feasible
 - Supports evaluation of plan details
 - Support simultaneous optimization
 - Allows variety of performance measures

Overall structure

Simulation model

- Individual road users
 - Transit & non-transit vehicles
 - Pedestrians
- Time-based
 - To fit with control step
- Limited details of vehicle movements
 - Arrival at detector locations and stop lines

Vehicle movements

- Stochastic arrivals
 - At upstream detectors
- Travel time
 - Between detectors/stop line
 - Arrival distribution at downstream intersection
- Lane assignment
 - Turning movements and critical lane flows
 - No lane changing
- Queues
 - FIFO, vertical
 - Detector activation
 - Saturation rate discharge

Pedestrians

- Arrival process
 - Activate push buttons on arrival
- Cross at constant speed
- Multiple crosswalks

Case study

Case study (2)

Control logic

- BRT Priority
 - Extend phase A
 - Early terminate phases B and C
 - Compensation minimum green over numner of cycles
 - Override if queue in detector Q1
 - Pedestrian maximum waiting time
 - Fixed cycle length

Design parameters

- 14 parameters optimized
 - Cycle length
 - Minimum & maximum green times
 - Early green to BRT
 - Maximum pedestrian red time
 - Compensation
 - Minimum green & number of cycles
 - Queue detection
 - Length & period of continuous detection
 - Gap time

Computational performance

Optimization objective

Minimize person delay

$$d = \frac{1}{R} \sum_{r} \frac{\sum_{i} \sum_{n} d_{nr} N_{i} \delta_{ni}}{\sum_{i} \sum_{n} N_{i} \delta_{ni}}$$

d - average person delay

 d_{nr} - delay for vehicle or pedestrian n in simulation run r

 N_i - number of travelers in vehicle i (1 for pedestrians)

 δ_{ni} - indicator variable that take 1 if vehicle n is of type i

R - number of replication

Results

Road users	Average person delays (seconds)		Change (%)
	Initial	Optimal	
	parameters	parameters	
BRT	1.54	1.53	0
Non-transit vehicles	18.48	14.17	-23
Pedestrians	24.31	15.95	-34
All	14.41	10.40	-28

Results (2)

Design Parameter	Original Value	Optimal Value
Cycle Length [sec]	110	72
Minimum Green Phase A [sec]	11	19
Maximum Green Phase A [sec]	50	37
Minimum Green Phase B [sec]	10	5
Maximum Green Phase B [sec]	10	13
Minimum Green Phase C [sec]	10	5
Maximum Green Phase C [sec]	10	12
Maximum Pedestrians Red [sec]	138	110
Early Green [sec]	0	5
Accumulated Minimum Green [sec]	18	12
Compensation Period of Time [cycles]	2	4
Queue Length [vehicles]	30	27
Queue Time [sec]	5	15
Gap Time [sec]	3	3

Results (3)

Genetic algorithm

Computational effort

Model components	Running time [%]
Traffic dynamics	8.6
Control logic	81.1
Other (Input/Output)	10.3

Continuous pedestrian crossing

Summary

MESCOP

- Mesoscopic simulation model for evaluation of traffic signal plans
- Optimization of parameters
 - Significant improvements in performance measure
 - Computational feasibility
 - Sensitivity analysis to reduce parameters dimensionality

