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Abstract

We address two fundamental issues associated with the use of

cross-nested logit models. On the one hand, we justify the adequate

normalization of the model proposed by Wen and Koppelman (2001).

On the other hand, we provide an analysis of the correlation structure

of the CNL, based on random utility theory. We evaluate the validity

of the approximation proposed by Papola (2004), both using theoret-

ical arguments and numerical examples based on the exact formula of

the correlation.

1 Introduction

The importance of demand analysis in transportation studies is increas-

ingly critical. Discrete choice models provide a useful framework to cap-

ture the behavior of the actors within transportation systems and, conse-

quently, to forecast travel demands. Recently, the cross-nested logit (CNL)
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model has received signi�cant attention in the literature. Its structure

is appealing since it can capture a wide range of correlation structures,

while maintaining a closed form probability formula. The CNL model is

therefore increasingly used in travel behavior applications such as mode

choice (Vovsha, 1997 and Bierlaire et al., 2001), departure time choice

(Small, 1987) and route choice (Vovsha and Bekhor, 1998).

The CNL model is complicated, primarily for the following reasons.

First, several formulations (and names) have been proposed in the litera-

ture, with associated normalization conditions. It is not always clear which

one to adopt. Second, the variance-covariance matrix of the CNL is not

simple to compute. Third, it is di�cult to estimate its parameters in prac-

tice due to the presence of local maxima in the log-likelihood function.

As shown by Bierlaire (2006), various instances of the cross-nested logit

model have been proposed in the literature. These formulations are gen-

erally equivalent, with some being more speci�c as they constrain some

parameters to �xed values. The formulations by Ben-Akiva and Bierlaire

(1999), Wen and Koppelman (2001) and Papola (2004) are the most gen-

eral. In this paper, we prefer a formulation which combines the GEV form

of Ben-Akiva and Bierlaire (1999), and the simple normalization condition

of Wen and Koppelman (2001).

Thanks to its closed form, the CNL may appear to be easy to estimate.

Indeed, classical nonlinear programming methods based on derivatives, like

Sequential Quadratic Programming (see e.g. Spellucci, 1998), are appropri-

ate. The package BIOGEME (Bierlaire, 2003, Bierlaire, 2005) implements

this method. Unfortunately, nonlinear programming methods converge to-

wards local maxima of the log-likelihood function. They o�er no guarantee

to identify the global maximum. In practice, we observe a signi�cant in-

uence of the initial values provided to the algorithm on the estimated

parameters.

In various applications, such as route choice analysis for instance, it

is desirable to derive a CNL model which reproduces a given variance-

covariance structure. Vovsha and Bekhor (1998) proposed the link-nested

logit model, where the physical overlap of paths is used to de�ne a CNL

model. Papola (2004) generalizes this idea, and proposes a method to spec-
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ify a CNL model reproducing any given homoscedastic covariance matrix.

The procedure solves a system of equations, based on a conjecture about the

covariance matrix of the CNL model. He also shows that a direct expres-

sion can be found without solving the system of equations, assuming that

the covariance matrix is proportional to the utility function. Although this

is only an approximation, this is the �rst paper in the literature providing

operational formulas for the correlation of CNL.

In this paper we address two fundamental issues associated with the use

of CNL models: the proper normalization of this model and its correlation

structure (the issue of local maxima is left for future research). The rest

of this paper is organized as follows. We present the CNL formulations in

Section 2. In Section 3, we formally justify the validity of the normalization

proposed by Wen and Koppelman (2001). The correlation structure of

the CNL is analyzed in Section 4, where it is derived from the theory

on Generalized Extreme Value (GEV) models. We �nally describe how

the formulation can be used to derive CNL models from given variance-

covariance matrices. Finally, we apply it on some illustrative examples,

and compare the results with Papola's approach. Some technicalities about

solving the system of equations de�ning the correlation, and about the

route choice examples are detailed in the appendix.

2 GEV models

The generalized extreme value (GEV) model was derived from the random

utility model by McFadden (1978). This general model consists of a large

family of models that includes the multinomial logit (MNL), the nested

logit (NL), the cross-nested logit (CNL) and the generalized nested logit

(GNL) models. In GEV models, the probability that a given choice maker

chooses alternative i within the choice set C is:

P(i|C) =
yiGi(y1, . . . , yJ)

µG(y1, . . . , yJ)
=

eVi+lnGi(...)∑
j∈C eVj+lnGj(...)

, (1)

where Gi = ∂G/∂yi, J is the number of available alternatives, yi = eVi, Vi is

the systematic part of the utility function associated with alternative i, and
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G is a non-negative di�erentiable function de�ned on RJ
+ which veri�es some

speci�c properties (see McFadden, 1978, Ben-Akiva and Fran�cois, 1983 and

Ben-Akiva and Bierlaire, 2003 for details).

In his original paper, McFadden (1978) de�nes the joint distribution of

the random utility functions within a GEV model. The utility functions

are modeled by a random vector of variables U de�ned by

U = V + ε (2)

where V ∈ RJ and ε is a random vector of J variables with a Cumulative

Distribution Function (CDF) given by

Fε1,...,εJ
(y1, . . . , yJ) = exp (−G(e−y1, . . . , e−yJ)) . (3)

It is well known that the multinomial logit and the nested logit models

are instances of this model family, with

G(y1, . . . , yJ) =
∑
j∈C

y
µ
j (4)

for the multinomial logit and

G(y1, . . . , yJ) =

M∑
m=1

(
Jm∑
j=1

y
µm

j

) µ
µm

(5)

for the nested logit model with M nests containing Jm alternatives each.

Various formulations for the cross-nested logit model have been pro-

posed in the literature. In this paper, we call a cross-nested logit model a

GEV model based on the following generating function

G(y1, . . . , yJ) =

M∑
m=1

(∑
j∈C

(αjm
1/µyj)

µm

) µ
µm

, (6)

where

αjm ≥ 0,∀j,m,

M∑
m=1

αjm > 0,∀j, µ > 0, µm > 0,∀m,µ ≤ µm,∀m. (7)
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This formulation leads to the following probability model, using yi =

eVi:

P(i|C) =

M∑
m=1

(∑
j∈C α

µm/µ
jm eµmVj

) µ
µm

∑M
n=1

(∑
j∈C α

µn/µ
jn eµnVj

) µ
µn

α
µm/µ
im eµmVi∑

j∈C α
µm/µ
jm eµmVj

. (8)

For each j and m, the parameter αjm is interpreted as the level of mem-

bership of alternative j to nest m. The nested logit model is a special case,

where αjm = 1 if alternative j belongs to nest m, and 0 otherwise.

The name cross-nested seems to be due to Vovsha (1997), who applies

this model to mode choice in Tel Aviv. Vovsha's model is similar to the

Ordered GEV model proposed by Small (1987). Ben-Akiva and Bierlaire

(1999) and Wen and Koppelman (2001) propose more general formulations,

the latter being called the \Generalized nested logit" model.

The exible correlation structure of the CNL model is useful in a wide

range of applications. For example, it has been shown to be appropriate

for route choice applications (Vovsha and Bekhor, 1998), where topologi-

cal correlations cannot be captured correctly by the multinomial and the

nested logit models. Prashker and Bekhor (1999) discuss the use of route

choice models based on a simpli�ed CNL model within the stochastic user

equilibrium tra�c assignment context. In another application, Swait (2001)

suggests a CNL structure to model the choice set generation process. As

part of the GEV model family, the cross-nested logit model inherits the ho-

moscedastic property. However, heteroscedastic versions of the model can

also be derived (see, for instance, Bhat, 1995, Zeng, 2000 and Koppelman

and Sethi, 2005).

The CNL model is appealing for its ability to capture a wide variety of

correlation structures. Bierlaire (2006) compares various formulations, and

identi�es the su�cient conditions for the CNL to be a GEV model. Papola

(2004) has conjectured that a speci�c CNL model can be obtained for any

given homoscedastic variance-covariance matrix.
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3 Normalization

The CNL model requires a normalization of the underlying structural pa-

rameters. In this section we formally derive this normalization.

Consider a cross-nested logit based on the utility functions (2) where ε

is a random vector with a Cumulative Distribution Function (CDF) given

by (3) where G is de�ned by (6). The marginal distribution of εj, j ∈ C is

given by

Fεj
(yj) = exp

− exp

−µ

yj −
ln
(∑M

m=1 αjm

)
µ


 . (9)

Therefore, the marginal distribution of (3) for the cross-nested model

has an extreme value (EV) distribution with location parameter

ln
(∑M

m=1 αjm

)
µ

and scale parameter µ. Therefore,

E[εj] =
ln
(∑M

m=1 αjm

)
+ γ

µ
, (10)

where γ ≈ 0.5772 is the Euler constant. It is important to emphasize that

the expected value of εj depends on the αjm parameters and, consequently,

may vary from one alternative to the next.

It is critical to de�ne a normalization constraint on the α parameters

in order to have unbiased models satisfying, for all j ∈ C,

E[Uj] = Vj + E[εj] = Vj + K,

where K is a constant independent from alternative j. Note, that in the

special case of the multinomial logit and the nested logit models, we have

E[εj] =
γ

µ
, (11)

which is always constant across alternatives.
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If the E[εj] are not constant across alternatives the model would still be

unbiased provided that a full set of Alternative Speci�c Constants (ASC)

were included in the model (that is, J − 1 ASCs). But the interpretation

of these constants would not be compatible with other models calibrated

on the same data. Also, standard corrections of the constants, accounting

for selection bias in the sample (see e.g. Bierlaire et al., 2006), would

not apply as such. Furthermore, some models do not contain a full set of

constants. This is typically the case when the number of alternatives is

large (like in residential location choice, or route choice analysis), or when

data comes from unlabeled stated preferences experiments. In this case,

the model would be arti�cially biased, leading to incorrect prediction of

market shares. Thus, a proper normalization of the model parameters is

important. Namely, if

M∑
m=1

αjm = c, ∀j ∈ C, (12)

where c is a constant which does not depend on j, then

E[Uj] = Vj + E[εj] = Vj +
ln c + γ

µ
, ∀j ∈ C.

Clearly, a value of c = 1 seems natural, as it yields to an expected value of

γ/µ, similar to the MNL and NL models.

We note that, if the formulation proposed by Ben-Akiva and Bierlaire

(1999) is preferred, that is the model based on

G(y1, . . . , yJ) =

M∑
m=1

(∑
j∈C

αjmy
µm

j

) µ
µm

, (13)

the proper normalization is

M∑
m=1

α
µ

µm

jm = c, j ∈ C, (14)

which must be preferred to the normalization originally proposed in their

paper. This normalization is inconvenient, involving nonlinear constraints,

even if µ is constrained to 1.
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We �nally we note that the formulation proposed by Wen and Kop-

pelman (2001) is equivalent to (6) with the additional assumption that µ

has been normalized to 1. This assumption does not lead to any loss of

generality.

4 Variance-covariance structure

The variance-covariance structures of MNL and NL are well-known. Be-

cause of the IIA property, the MNL has a diagonal variance-covariance

matrix. For the nested logit models, only alternatives belonging to the

same nest are correlated, and the correlation is de�ned by

Corr(Ui, Uj) =

(
1 −

(
µ

µm

)2
)

δm(i, j) (15)

where

δm(i, j) =

{
1 if i and j are both in nest m

0 otherwise

The CNL model, which allows alternatives to belong to multiple nests,

exhibits a more general correlation structure. We start by presenting an

interpretation of the CNL structure in terms of underlying nested logit

models, which provides some insight about the error structure of the CNL

model.

Theorem 1 Considering a cross-nested logit with a Cumulative Dis-

tribution Function (CDF) given by (3) and G de�ned by (6). It is

equivalent to the model de�ned by

Uj = max
m=1,...,M

Ûjm (16)

where

Ûjm = Vj +
lnαjm

µ
+ εjm (17)

and for any m, the joint distribution of (ε1m, . . . , εJm) is given by (18),

whereas εim and εjn are independent (for any i and j), as long as

m 6= n:

8



Fε1m,...,εJm
(y1, . . . , yJ) = exp

−

(∑
j∈C

e−µmyj

) µ
µm

 . (18)

Proof. Let ε̂jm =
lnαjm

µ
+ εjm and ε∗j = maxm ε̂jm. We show that ε∗ is

distributed as the ε of the CNL model, that is

Fε∗1,...,ε∗J
(y1, . . . , yJ) = Fε1,...,εJ

(y1, . . . , yJ). (19)

The CDF of ε∗ is

Fε∗1,...,ε∗J
(y1, . . . , yJ) = Pr

(
ε∗1 ≤ y1, . . . , ε

∗
J ≤ yJ

)
= Pr

(
max

m
ε̂1m ≤ y1, . . . ,max

m
ε̂Jm ≤ yJ

)
= Pr (ε̂11 ≤ y1, . . . , ε̂1M ≤ y1, . . . , ε̂J1 ≤ yJ, . . . , ε̂Jm ≤ yJ)

=

M∏
m=1

Pr

(
ε1m ≤ y1 −

lnα1m

µ
, . . . , εJm ≤ yJ −

lnαJm

µ

)

=

M∏
m=1

Fε1m,...,εJm
(y1 −

lnα1m

µ
, . . . , yJ −

lnαJm

µ
)

Therefore,

ln Fε∗1,...,ε∗J
(y1, . . . , yJ) =

∑M
m=1 ln Fε1m,...,εJm

(y1 − lnα1m

µ
, . . . , yJ −

lnαJm

µ
)

= −
∑M

m=1

(∑
j∈C e−µm(yj−

lnαjm
µ

)

) µ
µm

= −
∑M

m=1

(∑
j∈C(α

1
µ

jme−yj)µm

) µ
µm

= −G(e−y1, . . . , eyJ),

which proves (19). �

Distribution (18) corresponds to a GEV model with

G(y1, . . . , yJ) =

(∑
j∈C

yµm

) µ
µm

which is the mth term of the G function of the nested logit model (5). As

a direct consequence of theorem 1, we can state the following result.
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Corollary 2 Under the same hypothesis as Theorem 1, we have

Corr(Ui, Uj) = Corr
(
max

m
ε̂im,max

m
ε̂jm

)
where

Corr(ε̂im, ε̂jn) =

(
1 − (

µ

µm

)
2
)

δm,n.

Equivalently,

Corr(Ui, Uj) = Corr

(
max

m

(
lnαim

µ
+ εim

)
,max

m

(
lnαjm

µ
+ εjm

))
where

Corr(εim, εjn) =

(
1 − (

µ

µm

)
2
)

δm,n.

So, the relation between the overall CNL correlation and the underly-

ing NL correlations is made via a maximum operator. This is actually

consistent with the GEV framework.

The CNL correlation itself is obtained from the joint CDF of the utili-

ties, that is

Corr(Ui, Uj) =
6µ2

π2

∫ ∫
R2

xixj∂
2
xixj

Fεi,εj
(xi, xj)dxidxj −

6γ2

π2
, (20)

where

Fεi,εj
(xi, xj) = exp

(
−

M∑
m=1

(
(α

1/µ
im e−xi)

µm

+ (α
1/µ
jm e−xj)

µm
) µ

µm

)
. (21)

The CNL model includes a large number of structural parameters. In

many cases, it may be useful to calculate values of these parameters prior

to estimating the other model parameters in order to reduce the dimension-

ality of the estimation problem. For example, in a route choice application

Vovsha and Bekhor (1998) used the network topology to calculate αim and

µm. The exact correlation structure of CNL derived above can be used in

such calculations. For a given correlation structure, we can derive the as-

sociated CNL model by computing the structural parameters reproducing

10



the given correlation. It is done by solving a system of equations de�ned

by (20) and (12).

For a set of J alternatives, the system includes J(J−1)/2 equations for the

correlations, and J equations for the normalization conditions, that is J(J−

1)/2+ J equations, and so this is the maximum number of parameters that

can be identi�ed. If the CNL model contains M nests, and each alternative

belongs to all nests, there are JM α-parameters and M µ-parameters to

be estimated. Consequently, all parameters will be uniquely speci�ed from

the correlation structure only when J is even and M = J/2.

When all the parameters cannot be identi�ed, additional equations must

be added to overcome the underdetermination of the system. The simplest

of such equations would consist in assigning arbitrary values to unidenti�ed

parameters. However, it is crucial to verify that the extended system of

equations has a solution which is consistent with the theory (that is, verify

conditions (7)). In the general case, it can only be done empirically after

the solution has been obtained. Also, we emphasize that the scale of the

model may vary depending on the arbitrary choice made. Indeed, the sys-

tems of equations impose values for the correlation, not for the covariance.

However, this issue is important only when several models are compared

together.

The variance-covariance structure of the CNL was also analyzed by Pa-

pola (2004), who proposes the following approximation for a CNL model

derived from (6):

Ĉorr(Ui, Uj) =

M∑
m=1

αim
1/2αjm

1/2

(
1 − (

µ

µm

)
2
)

. (22)

Papola (2004) validates this formula using limit cases, when the CNL model

collapses to a NL model.

Actually, this conjecture simpli�es the approach by replacing the max-

imum operator in Corollary 2 by a linear interpolation of the underlying

NL correlation (22) with regard to the nests m. The weights are chosen to

get for i = j
M∑

m=1

αim
1/2αim

1/2 =

M∑
m=1

αim = 1,
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from (12), which should represent the variance of Ui. The approximation

errors due to this simpli�cation may sometimes be important. This is

analyzed in Section 5.

5 Illustrative examples

In this section we illustrate the behavior of the CNL model in terms of the

correlations among alternatives and the choice probabilities using three

simple examples. In all cases we compare the results to those obtained

using Papola's approximation.

5.1 First example

We �rst consider the simple CNL structure shown in Figure 1.

A B

321

Figure 1: Simple cross-nested structure

We are interested in the correlation between alternatives 1 and 2, both

belonging to nest A. We assume in this example, and later examples, that

the scale parameters are equal, µA = µB = µm. The root node has scale

parameter µ. Note that application of the normalization conditions (12) for

this structure results in αA1 = αB3 = 1 and αB2 = 1 − αA2. Figure 2 shows

values of the correlation and the one computed using Papola's approxima-

tion as a function of αA2 for selected values of µ/µm. The correlations were

computed from (20) via numerical integration and (22), respectively.
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Figure 2: Comparison of correlation with Papola's approximation
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This example illustrates that Papola's approximation overestimates the cor-

relation between the two alternatives. The overestimation, which can be

signi�cant, increases when the value of µ/µm decreases (i.e. the nesting

structure is more and more signi�cant in explaining the choice between the

alternatives). For a given value of µ/µm, the error in Papola's approxi-

mation is rather small for low values of αA2 and increases with the value

of αA2. It attains its maximum value for αA2 in the range of 0.3-0.4 (in

this example) and then decreases again as αA2 continues to increase. We

note that Papola and Marzano (2005) also report such an overestimation.

Papola's approximation was constructed such that it correctly captures the

correlations in the special cases of multinomial logit and nested logit, and

so in this example it is exact when αA2 = 0 or αA2 = 1.

5.2 Second example

In the next example, we consider the CNL structure shown in Figure 3.

Compared to the previous example, this structure has an additional link

from nest B to alternative 1, and so alternatives 1 and 2, now share two

common nests. For this structure, αB3 = 1, αB1 = 1−αA1 and αB2 = 1−αA2.

Figure 4 shows correlation values and Papola's approximation as a function

of αA1 and αA2 for selected values of µ/µm. In all cases the graph on top

represents Papola's expression. Thus, as with the previous example, Pap-

ola's expression overestimates the correlation between the two alternatives.

Furthermore, depending on the values of the α's, the di�erence may be

larger than in the case that the two alternatives share only one nest.

This example allows us to also examine the impact of the allocation of

the two alternatives to nests on the correlation. Figure 5 shows the correla-

tion between alternatives 1 and 2, and Papola's approximation as a function

of αA2 for given values of µ/µm and αA1. The �gure illustrates that the

correlation between the alternatives is highest when the two have identical

allocations to each nest, and generally reduces when the allocations increas-

ingly di�er. While Papola's approximation captures this general trend it

increasingly overestimates the correlation, when the allocations di�er.

Note also that Papola's approximation is exact when αA1 = αA2. Actu-
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321

Figure 3: Second cross-nested structure
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Figure 5: Layers from Figure 4

ally, this happens in the speci�c case where all the nest parameters are the

same and, for each nest m, all αim parameters are also the same, that is

µm = µ0, for all nests m, and αim = αm, for each alternative i, where µ0 is

independent of m and αm is independent of i. In this case, the joint CDF

of the utilities of the two alternatives given by (21) can be simpli�ed:

Fεi,εj
(yi, yj) = exp

(
−

∑
m

(
α

µ0
µ

m e−xiµ0 + α
µ0
µ

m e−xjµ0

) µ
µ0

)

= exp

(
−

∑
m

(
α

µ0
µ

m (e−xiµ0 + e−xjµ0)

) µ
µ0

)
= exp

(
−

∑
m αm (e−xiµ0 + e−xjµ0)

µ
µ0

)
= exp

(
− (e−xiµ0 + e−xjµ0)

µ
µ0

)
.

This expression is identical to the joint CDF of the utilities of two alter-

natives in the same nest in a NL structure. Thus, the correlation between
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the two is given by:

Corr(Ui, Uj) = 1 −

(
µ

µ0

)2

Papola's approximation for this case is given by

Ĉorr(Ui, Uj) =
∑

m α
1
2
imα

1
2
jm

(
1 −

(
µ

µm

)2
)

=
∑

m αm

(
1 −

(
µ
µ0

)2
)

= 1 −
(

µ
µ0

)2

,

and is exact.

5.3 A route choice example

The previous two examples illustrate the behavior of the correlation as a

function of the values of the nesting structure parameters. They also show

that the overestimation of correlations is inherent to Papola's approxima-

tion. However, in most practical applications we are interested in the choice

probabilities of the various alternatives and not in the correlations among

these alternatives per-se. The next example demonstrates the calculation

of nesting parameters, for a given correlation structure, based on the cor-

relation expression and shows the di�erence in the prediction of choice

probabilities using the exact expression and Papola's approximation. We

consider a route choice problem for the network shown in Figure 6. The

mean travel times on each link are indicated in the �gure. There are three

routes from the origin node to the destination node (denoted as O and D,

respectively, in the �gure) in this network: fA, Dg, fA, C, Eg and fB,

Eg. We denote these as routes 1, 2 and 3 respectively. The mean travel

times on each route are equal to 1 unit. We assume that route choices are

based solely on these travel times, and that the standard deviation of travel

times is proportional to the mean in each link (i.e. var(tti) = σ2 ∗ �tti). We

further assume that travel times on the various links are independent of

each other (i.e. cov(tti, ttj) = 0). Under these assumptions, the correlation

17



matrix of the travel times on the three routes is given by: 1

a 1

0 b 1



A

B
1-b

O D

E

D

C

a

1-a-b

b

1-a

Figure 6: Simple network for route choice example

We use a link-route CNL structure (Vovsha and Bekhor, 1998) to model

route choice in this network. The structure shown in �gure 7 has the

links (A through E) at the upper level and the three routes at the lower

level. Each route is connected to all the links it consists of. Thus, the

model structure has seven α's that need to be estimated in addition to

the ratio µ/µm. We would like to use the assumed correlation structure

and the normalization conditions to estimate these parameters. However,

these only provide �ve equations in this case, and so we arbitrarily set

αA2 = αC2 = αE2 = 1/3 and µ/µm = 0.4. We now calculate the remaining

four parameters using the four correlation and normalization equations (the

normalization for alternative 2 has been used; see appendix for details).

Reproduction of a correlation structure is not su�cient to specify the

model fully because the error variance and parameters of the systematic

utilities have not yet been set. In a practical application the structural

parameters values (α's and µ's) that were obtained by the solution of the

18



above system of equations will now be �xed and used in estimating the val-

ues of the remaining parameters. Here we skip this step and use these pa-

rameter values to calculate choice probabilities (Recall that the systematic

utilities are equal for all three alternatives). Figure 8 shows the predicted

choice probabilities for the three routes in this example for di�erent values

of a and b. With the values set above, no parameters values could produce

correlations higher than 0.4. The results show that the probability values

predicted using Papola's approximation di�er by up to 2%. Furthermore,

the di�erence between the two predictions generally increases with the level

of correlation between the alternatives.

A B

321

EDC

Figure 7: Cross-nested structure of the route choice example

6 Conclusion and perspectives

In this paper, we have addressed two important issues related to the cross-

nested logit model: normalization and correlation structure. Exploiting the
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Figure 8: Comparison of choice probability between Papola's approxima-

tion and exact formulation
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GEV theory, we have emphasized that, contrarily to MNL and NL models,

the expected value of the error terms in a CNL are not necessarily equal,

and we have presented and proved a proper normalization, which appears

to be a slight generalization of Wen and Koppelman (2001). We have then

derived the formula for the correlation between two alternatives in a CNL

model.

On some illustrative examples, we have compared that formulation with

Papola's approximation. The latter ends up being a fairly good approxi-

mation for CNL models having only bipolar shared alternatives. For such

models, the use of the exact expression via the integral expression is possi-

ble too. When having two nests sharing the alternatives, the approximation

stays reasonably good. It is not clear though how good it can stay when

considering CNL models with several nests, as it is often the case in prac-

tical applications, such as in route choice problems. In general, it seems

that Papola's approximation overestimate the correlation, and may bias

the choice probability provided by the model. However, any such bias does

not seem to be large in the present examples.

Consequently, in order to derive a CNL model with a given correlation

structure, we recommend to use the exact formulation derived in this pa-

per. This requires �nding the solution of a system of equations involving

numerical integration. This can be achieved using mathematical tools such

as Matlab (Moled, 2004), or numerical procedures described in Press et al.

(2002).
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Appendix: Implementation notes

While the solution of the system of equations de�ned by (12) and (20) only

requires standard techniques, it is not necessarily trivial. We provide in this

appendix some practical comments that may be useful in implementing the

results discussed above.

� The evaluation of (20) must be done numerically. The most popular

numerical integration algorithm is based on the adaptive Simpson

quadrature algorithm. Its implementation is described in details by

Press et al. (2002, section 4.2) and is used by the quad function of

Matlab 7. Note that a double integral is required, which can be

directly performed in Matlab 7 using the function dblquad.

� In theory, the bounds of integration in (20) are −∞ and +∞. In

practice, numerical procedures require �nite values. If the values are

too high (in magnitude), this may cause numerical problems, and will

anyway increase the computing time. If the values are too low, the

tail of the distribution will be missed, and the value will be biased.

For our tests, we have systematically used -10 and 10.

� The best procedure for solving the system of nonlinear equations

is probably Broyden's method, described in detail by Dennis and

Schnabel (1996) and Press et al. (2002, section 9.7). It does not

seem to be implemented in Matlab 7 as such. The procedure fsolve

in Matlab 7 is (by default) a trust-region algorithm using a �nite

di�erences approximation of the Jacobian. If the number of equations

is high, the algorithm proposed by Bierlaire and Crittin (2006) is

appropriate.

Appendix: Some details on the route choice

examples

In this appendix we provide the complete system of equations and the

additional assumptions made in order to obtain a determined system for
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the route choice example in section 5.3. The CNL structure for this problem

is shown in �gure 7. The structural parameters are αA1, αD1, αA2, αC2,

αE2, αB3, αE3, µ and µm. To set the scale of the model we set µ = 1 and

so only solve for the ratio µ/µm.

The correlation equations for this problem are:

Corr(U1, U2) = a (23)

Corr(U2, U3) = b (24)

with Corr(·) de�ned by (20). The normalization equations are given by:

αA1 + αD1 = 1 (25)

αA2 + αC2 + αE2 = 1 (26)

αB3 + αE3 = 1 (27)

In order to eliminate the under-determination we arbitrarily made the

following assumptions: αA2 = αC2 = αE2 = 1/3 (which satisfy Equation

(26)) and µ/µm = 0.4. Thus the �nal system to be solved consists of

Equations (23), (24), (25) and (27), with the unknowns αA1, αD1, αB3, αE3.
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