
A framework for the calibration of microscopic traffic simulation models
using aggregate data is presented. The framework takes into account the
interactions between the various inputs and parameters of the simulator
by estimating origin–destination (O-D) flows jointly with the behavioral
parameters. An optimization-based approach is used for the joint cali-
bration. Since the calibration of the parameters depends on the esti-
mated O-D flows and vice versa, the proposed framework is iterative.
O-D estimation is based on the well-known generalized least squares
estimator. A systematic search approach based on the complex algorithm
is adopted for calibration of the behavioral parameters. This algorithm is
particularly useful for the problem at hand since it does not require cal-
culations of derivatives of the objective function. The applicability of the
approach is demonstrated through its application to case studies using
MITSIMLab, a microscopic traffic simulation model.

Microscopic traffic simulation models have drawn significant atten-
tion in evaluating the impact of changes in network infrastructure
(e.g., adding a lane to an existing roadway or adding a road to a net-
work), traffic control devices (e.g., retiming of traffic signal settings
or installing a ramp metering scheme), and intelligent transportation
systems (ITS) applications. However, the reliability of such models
hinges on how field conditions are captured by the parameters in the
simulation model. Calibration of the simulation model is required in
order to achieve the best reproducibility of field conditions. Calibra-
tion is the process by which the parameters of various components
of the simulation model are set so that the model will accurately
replicate observed traffic conditions.

Two groups of parameters require calibration in traffic simulation
models: driving behavior parameters and travel behavior param-
eters. Driving behavior includes acceleration, lane-changing, and
intersections models. Travel behavior is represented by route choice
models. In addition, origin–destination (O-D) flows are an impor-
tant input to the simulation model. However, because of the spatial
extent of the applications, O-D matrices, especially accurate, dynamic

ones, are not readily available, and so input O-D flows need to be
estimated.

Calibration of traffic simulation tools, especially microscopic
ones, is not a trivial task. The source of the difficulty is that the data
usually available are aggregate measurements of traffic characteris-
tics (e.g., flows, speeds and occupancies at sensor locations, travel
times, and queue lengths), which are the emergent results of the inter-
actions between various behaviors of individual vehicles. Therefore,
this type of data does not support independent calibration of the
various models that comprise the traffic simulator.

A number of papers have been published on the subject of cali-
bration of microscopic simulation models. Overall, the treatment of
the problem is at a very early stage and rather incomplete and lim-
ited. Most published studies focus on one component of the simu-
lation model, while assuming the others are given. For example,
Daigle et al. (1), Abdulhai et al. (2), Lee et al. (3), Gardes et al. (4),
Kim and Rilett (5 ), and Park and Schneeberger (6 ) calibrate only
driving behavior parameters. These studies all apply the simulation
model to traffic corridors that do not involve route choice. They also
assume that O-D flows are either known or estimated independently
of the simulation model. Ma and Abdulhai (7 ) use genetic algorithms
to calibrate various parameters, including route choice parameters,
but still assume known O-D flows.

The calibration is in many cases an ad hoc, sequential procedure,
using algorithms that may not be appropriate for the problem. Some
parameters are calibrated, often through trial and error. Their values
are then fixed for the calibration of a second set and so on. Such pro-
cedures do not include feedback loops to capture interactions between
the parameters of interest. Hourdakis et al. (8) propose one such pro-
cedure. They first seek to match observed traffic flows by calibrating
global parameters, such as vehicle characteristics. Next they calibrate
local link-specific parameters, such as speed limits, to match observed
speeds. A quasi-Newton algorithm is used for the solution of the
various subproblems.

In contrast, a significant amount of research has dealt with the esti-
mation of O-D flows. Dynamic O-D estimation techniques were pro-
posed, among others, by Cremer and Keller (9), Nihan and Davis (10),
Cascetta et al. (11), and Ashok and Ben-Akiva (12). These esti-
mators rely on the availability of an assignment matrix, which cap-
tures the effects of route choice and traffic dynamics. Cascetta and
Postorino (13) suggest an O-D estimation approach that explicitly
includes a route choice model, but they assume that the parameters
of that model are given.

The literature on joint O-D estimation and parameter calibration
is very limited. Liu and Fricker (14) presented a two-step heuristic
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search method to sequentially estimate O-D flows and route choice
parameters on uncongested networks. In the first step, the route
choice parameters are fixed and O-D flows are estimated by mini-
mizing the difference between observed and modeled link flows. In
the second step, the link flows that were obtained from the first step
are used to calibrate the route choice parameters using a maximum
likelihood method. Yang et al. (15) proposed an optimization model
for simultaneous estimation of O-D flows and the coefficient of the
travel cost in a logit-based stochastic user equilibrium model. The
use of an analytic model allowed the problem to be formulated as a
differentiable, nonlinear optimization problem.

The objective of this paper is to present a systematic procedure
for joint estimation of O-D flows and calibration of behavior param-
eters using aggregate data. The paper is organized as follows: the first
section describes the overall framework for the calibration of traffic
simulation models and the role of aggregate calibration within this
framework. The aggregate calibration problem is then formulated.
Next a solution approach is proposed and its details are described. The
application of the proposed approach is demonstrated through case
studies in the following section. Finally, the findings are summarized
and directions for future research are proposed.

CALIBRATION METHODOLOGY

An overall framework for calibration and validation of traffic sim-
ulation models is shown in Figure 1 (16 ). The framework consists
of two steps. Initially, the individual models that comprise the simu-
lation (e.g., driving behavior and route choice models) are estimated
using disaggregate data, independent of the overall simulation model.
Disaggregate data include detailed driver behavior information such
as vehicle trajectories. The individual models may be tested indepen-
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dently (e.g., by using a holdout sample). In the second step, the sim-
ulation model as a whole is calibrated and validated using aggregate
data. The role of aggregate calibration is twofold:

1. To ensure that the interactions between the individual models
within the simulator are captured correctly and

2. To refine previously estimated parameter values for the specific
site being studied.

Although this two-step approach is desirable, data availability
often dictates what steps are feasible. Most often, only aggregate data
collected through loop detectors are available and therefore only
aggregate calibration and validation are possible.

AGGREGATE CALIBRATION FORMULATION

Aggregate calibration can be formulated as an optimization prob-
lem, which seeks to minimize a measure of the deviation between
observed and corresponding simulated measurements and between
the calibrated parameter values and O-D flows and the correspond-
ing a priori expected values. The problem will be formulated and
solution algorithms will be developed under the assumption of sta-
tionary steady-state conditions. The assumption is that the observa-
tion days are drawn during a period in which steady-state traffic
conditions prevail. That is, while O-D flows and experienced travel
times may vary for various observation days, these differences are
due to random effects and do not represent a change in the under-
lying distributions of these variables. Furthermore, driving behavior
and route choice parameters are assumed stable over the period of
observation. It is important to note that the steady-state assumption
concerns the variability between observation days. A steady state is
not assumed within each observation day.

Under the assumption of steady-state traffic conditions, the expe-
rienced travel times produced by the simulation model using the esti-
mated parameters and O-D flows should be consistent with the
habitual travel times used as inputs to the simulation model. The
resulting problem formulation is given by

where

β, OD = parameters to be calibrated: driving behavior
and route choice parameters and O-D flows,
respectively;

Mobs, Msim = vectors of the average (over days) observed traffic
measurements at various time–space points and the
corresponding (average over replications) simulated
measurements;

βo, ODo = a priori values of behavioral parameters and O-D
flows;

f1(�) = measure of discrepancy between observed and
simulated traffic measurements;

f2(�) = measure of discrepancy between the calibrated
and a priori O-D flows;
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f3(�) = measure of discrepancy between the calibrated and
a priori values of behavior parameters;

TT hab, TT exp = time-dependent expected habitual and experienced
link travel times, respectively; and

SM, STT = simulator as function that generates average sim-
ulated traffic measurements and experienced link
travel times, respectively.

The exact form of the objective function in the preceding for-
mulation depends on the assumptions regarding the distribution of
the modeling error. For example, under the assumption that these
errors are normally distributed, the generalized least squares (GLS)
formulation with the following objective function may be used:

where W1, W2, and W3 are variance–covariance matrices of the traffic
measurements, O-D flows, and behavior parameters, respectively.

SOLUTION APPROACH

The problem formulation in Equation 1 is difficult to solve. Eval-
uation of the objective function involves running the simulation
model and is therefore computationally expensive. Furthermore, the
dimensionality of the parameters to be calibrated, in particularly the
O-D flows, can be very high even for networks of modest size. In
order to overcome these difficulties, an iterative solution approach
is proposed, which is based on decomposition of the problem by
parameter group (i.e., O-D flows, behavior parameters). The proposed
approach is shown in Figure 2. This strategy creates two subproblems:
an O-D estimation problem, for which existing efficient solution
methods may be used, and a parameter calibration, which typically
has a much lower dimensionality.

An iteration of the solution algorithm consists of several steps. In
each step a set of parameters is calibrated, while the remaining param-
eters are fixed to their previous values. The O-D estimation step
requires the generation of an assignment matrix, which itself depends
on the route choice behavior and experienced travel times. Habit-
ual travel times are important explanatory variables in route choice
models. Hence, based on the existing O-D flows and simulation
parameters, habitual travel times are calculated. These travel times
along with the current route choice parameters are used to generate
an assignment matrix. With this assignment matrix, O-D estimation
can be performed (using GLS or other methods). The new O-D
flows are then used to recalibrate route choice and driving behavior
parameters and so on.

Various variations of the basic solution approach are possible.
For example, habitual travel times may be recalculated following
the updating of each set of parameters and inputs (i.e., O-D flows,
route choice parameters, and driving behavior parameters) or only
once a full iteration in which the estimates of all the parameters have
been modified is completed. Moreover, the order in which the three
sets of parameters are calibrated may be modified. Another varia-
tion, which may be useful considering the closer interdependency
between O-D flows and route choice parameters, is to perform several
iterations of these two steps before updating the driving behavior
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parameters. In this case, the calibration of route choice and driving
behavior parameters will be done in two separate steps. The various
components of the solution approach are described in further detail
in the following text.

Habitual Travel Times

Route choices depend on habitual path travel times as explanatory
variables. Calibration of the model parameters requires knowledge
of these travel times. However, direct field measurements of travel
times are most often unavailable. Planning studies can often provide
initial values. However, travel times from planning studies are static
and do not capture the dynamics of traffic flow. Furthermore,
habitual travel times that are input to the simulation model must be
consistent with the experienced travel times obtained as output from
the simulation. Obtaining consistent travel times essentially requires
the solution of a fixed-point problem, which is represented by the
first constraint in the problem formulation in Equation 1.

For a given candidate solution for the O-D matrix, route choice,
and driving behavior parameters, an iterative averaging method, in
which habitual travel times are calculated as the weighted average
of the experienced travel time and the expected travel time of the
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previous iteration (17 ), is used. In every iteration of this process,
habitual travel times are updated as follows:

where TT hab, j
it and TT exp, j

it are expected habitual and experienced
travel times on link i, time period t in iteration j, respectively, and λ j

is the weight parameter (0 < λ j < 1). This process is repeated over
several iterations until travel times converge to a steady-state equi-
librium in which habitual travel times and experienced travel times
are consistent.

Assignment Matrix

O-D estimation, which is described in the next section, requires an
assignment matrix as input. The assignment matrix depends on the
route choice and travel times. It is usually not readily available and
needs to be generated from the model. Assuming a path-based route
choice model, the assignment matrix may be calculated analytically as

where

arp
sh = fraction of vehicles that departed during time interval p with

O-D pair r, and passed through sensor location s during time
interval h;

Kr = set of paths connecting O-D pair r;
α kp

sh = fraction of vehicles that departed during time interval p
using path k (between O-D pair r), and passed through sensor
location s during time interval h (sensor-path fractions); and

fkp = fraction of demand for travel (between O-D pair r) that
departed during time interval p, which uses path k.

The route choice fractions, fkp, may be calculated using the route
choice model implemented in the simulation model. The sensor-
path fractions can be calculated using the experienced link travel
times and appropriate assumptions about their distributions among
drivers and about the distribution of the departures within time inter-
vals. For example, assuming deterministic travel times and a uniform
distribution of departures within time intervals, sensor-path fractions
are calculated as follows:

where D is the duration of a time interval and TT exp, kp
s is the experi-

enced travel time from the origin to sensor location s for vehicles
that depart during time interval p and use path k.

Alternatively, in cases in which the analytical calculation of the
assignment matrix is prohibitively expensive (e.g., when a link-based
route choice model is used or in the presence of traveler information),
the assignment matrix may be inferred directly from simulation real-
izations. Multiple runs of the simulation should be used in order to
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obtain the expected value of the assignment matrix, rather than the
one corresponding to a specific realization.

Regardless of the way in which the assignment matrix is calculated,
it may be beneficial to smooth it with previous estimates. In particu-
lar, smoothing may be useful if the assignment matrix is derived from
a small number of simulation realizations. In this case the stochastic
nature of the simulation model may cause the values of various entries
in the matrix, especially those corresponding to O-D pairs with very
low demand, to fluctuate erratically from iteration to iteration.
Typically, the smoothing function will take the form

where

Aj, Aj+1 = assignment matrix used in iterations j and j + 1,
respectively;

Âj+1 = assignment matrix estimated for iteration j + 1, either
analytically or from simulation realizations; and

πj = smoothing factor, for example using method of 
successive averages (MSA): πj = [j / (j +1)]. 

Although the smoothing preceding formulation only uses the
assignment matrix from the previous iteration, the effects of earlier
values are implicitly captured since they are encapsulated in this
matrix. It is also straightforward to extend the above formulation
to explicitly include additional previous estimates (at the cost of
having to maintain these estimates).

O-D Estimation

The O-D estimation problem requires three sets of inputs: traffic
measurements, a seed O-D matrix (which includes a priori estimates
of O-D flows), and an assignment matrix. O-D flows estimated in
previous studies may be used as the seed O-D flows. Seed O-D flows
may also be extracted from planning models. Although this matrix
may not be up to date, it still contains valuable information regard-
ing the structural relationships among O-D pairs (18) and therefore
can improve the quality of the solution. The assignment matrix, as
previously discussed, is usually estimated from the simulation model
itself. Assuming a known assignment matrix A, a seed O-D matrix,
and that the available measurements are traffic counts, the O-D
estimation subproblem is formulated as a constrained optimization
problem, which seeks to minimize the deviations between estimated
and observed traffic counts while also minimizing the deviation
between the estimated O-D flows and seed O-D flows. The con-
straint being imposed is that O-D flows are nonnegative. This paper
adopts the GLS formulation proposed by Cascetta and Nguyen (19),
although other methods may also be used. The GLS formulation is
given by

where Yobs is observed traffic counts at sensor locations and A is the
assignment matrix that maps O-D flows to counts at sensor locations.

As with the assignment matrix and for similar reasons, smoothing
of O-D matrices with those estimated in previous iterations may be
useful. For example, using the O-D matrix from the previous iteration
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If the new point repeats as the worst in the solution set in consec-
utive iterations, it is moved half the distance to the centroid of the
remaining points

If the generated point violates any of the constraints, it is moved
a small distance δ into the feasible area for constraints involving a
single variable or toward the centroid of the remaining points accord-
ing to Equation 11 for more complex constraints. The same proce-
dure is also used to generate the feasible initial set of points. These
steps are repeated until convergence is reached.

The initial points should be generated such that they are spread
over the entire feasible region, and therefore the algorithm tends
to find a global optimum solution. This is an important advantage of
the complex algorithm in the context of traffic simulation models,
given the highly nonlinear nature of these models.

Every objective function evaluation requires running several repli-
cations of the simulation model. Therefore, the computational time
increases significantly with the number of parameters to calibrate.
However, the number of parameters in a microscopic traffic simu-
lation model is typically very large. Thus it is crucial to identify the
set of parameters that have the largest impact on the simulation out-
puts through sensitivity analysis and focus the calibration effort on
these parameters.

CASE STUDIES

In this section the application of the proposed calibration method-
ology to calibrate the microscopic traffic simulation model 
MITSIMLab (21) is presented for two different applications. The
first is a small application with known O-D flows and no route
choice that allows testing the behavior of the complex algorithm for
parameter calibration. The second is a complex, medium-scale net-
work that demonstrates the complete calibration methodology.

Case Study 1: HCQS Network

The Highway Capacity and Quality of Service (HCQS) committee
of the Transportation Research Board developed a case study to test
various traffic simulation models (22). The network, shown schemat-
ically in Figure 3 includes a freeway and two intersecting arterials.
In addition to the detailed geometric layout, vehicles mix, and signal
settings, average link speeds and densities during the third 15-min
interval within the peak hour were available for calibration. This
case study assumes perfect knowledge of O-D flows. Moreover, no
route choice is present in the network. Therefore, driving behavior
is the only source of simulation error and the only component to be
calibrated.

A sensitivity analysis was performed to find the most important
parameters for calibration. The network is relatively uncongested,
and so simulation results were more sensitive to the parameters of
the acceleration behavior compared to lane-changing parameters.
The acceleration model implemented in MITSIMLab includes three
driving regimes: car-following acceleration, car-following decelera-
tion, and free-flow [see Ahmed (23) for details]. The scale parameters
of these three models were selected for calibration. The formulation
set forth in Equation 9 was used for the parameter calibration. Based
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j j

w
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where

ODj, OD j+1 = O-D matrix used in iteration j and j + 1, respectively;
ÔD j+1 = O-D matrix estimated for iteration j using Equa-

tion 7; and
ρj = smoothing factor, for example using MSA:

ρj = [j / (j +1)].

Parameter Calibration

Assuming the GLS formulation in Equation 2, and given O-D flows
and habitual travel times, the parameters of the driving behavior and
the route choice models are obtained as the solution to the following
optimization problem:

The preceding formulation assumes that driving behavior and
route choice parameters are calibrated jointly. However, for a specific
application, there may be reason to believe that either travel behavior
or driving behavior is the main source of the simulation error. In this
case, variations of the calibration procedure may be utilized. For
example, if it is assumed that travel behavior is an important source
of error, a procedure in which several iterations of O-D estimation
and route choice calibration are performed before a driving behavior
calibration step may yield better results. Toledo et al. (16) applied
this variation to a network in Stockholm, Sweden. The formula-
tions of the route choice and driving behavior parameter calibration
steps are similar to the one presented in Equation 9, but with only
the relevant subset of parameters in each case.

The selection of a solution algorithm for the parameter calibration
problem must recognize the simulation stochasticity. For the case
studies reported in this paper, Box’s complex algorithm (20) was used.
The complex algorithm is a sequential search technique designed for
nonlinear optimization problems with nonlinear constraints. The
advantage of this algorithm for this application is that it only requires
calculation of the objective function value and does not use any
derivative information, which is difficult to calculate accurately in
a stochastic model. Initially, a set of m feasible solution points in the
n-dimensional space of the decision variables (m ≥ n + 1, Box rec-
ommends m = 2n) are randomly generated. The objective function
is evaluated at each one of these starting points. The iterative search
then proceeds by replacing point w, the one with the worst (highest)
objective value in the current solution set, by a new point. The coor-
dinates of the new solution point are calculated to be α ≥ 1 times as
far from the centroid of the remaining points as the reflection of
point w in the centroid

where X j
w and Xj+1

w are the values of point w in iterations j and j + 1,
respectively; X j

cen is the centroid of the remaining points; and α is a
parameter. Box recommends the value 1.3.
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Since O-D flows were perfectly known, simulated counts exactly
matched the observed ones. Comparisons of the observed and simu-
lated speed measurements on the freeway and arterial segments are
shown in Figure 5. The results show a good fit between observed and
simulated data. The root-mean-square error (RMSE ) of the model is
1.6 mph and the root-mean-square percent error is 7.1%. The mean
absolute error (MAE) is 1.3 mph and the mean absolute percent error
(MAPE) is 4.6%.

Case Study 2: Irvine, California, Network

The study network, shown in Figure 6, is comprised of three major
freeways (I-5, I-405, and Route 133) and a dense network of urban
arterials around them. The simulation representation consists of
298 nodes and 618 links. There are 80 signalized intersections within
the study area. Data for calibration included time-dependent mea-
surements collected from 68 sensor stations (30 on freeways, 38 on
arterials) during 5 weekdays, and a static seed O-D matrix from a
planning study.

The availability of multiple days of data raises a question of
whether or not the assumption that stationary steady-state condi-
tions exist is realistic. The data show little day-to-day variability, as
indicated in Figure 7, which plots the time-dependent traffic counts
in the different days at two sensor locations. This result supports the
steady-state assumption and so all observations were used jointly in
the calibration process.

The simulation runs were performed for the a.m. peak period.
Measurements were aggregated in intervals of 15 min. The calibra-
tion included estimation of O-D flows and calibration of the travel
time coefficient of the route choice model, the acceleration scale
parameters described in the HCQS case study, and two constants,
one in each of the critical gap functions used to determine gap
acceptance of the lead and lag gap in lane changing. The objective
function in the parameter calibration step (Equation 9) was

f M M y yi i
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on the available data, the following form of the objective function
was used:

where vobs
i and vsim

i are the observed and simulated speeds on link i,
respectively; kobs

i and ksim
i are the corresponding density measure-

ments; and ω is a weight parameter for the density measurements
(the weights for speed measurements are normalized to 1).

A set of six candidate points was used with the complex algorithm.
The convergence of the algorithm in terms of the lowest and highest
objective values is shown in Figure 4. The difference between the
highest and the lowest objective values after 20 iterations was 4.4%.
Convergence is also achieved in the parameter value. For all the six
points in the solution set, the values of the three parameters are within
1.9%, 6.2%, and 0.2% of the point with the lowest objective value.
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FIGURE 6 Irvine network.
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FIGURE 7 Variability of traffic counts across days: (a) Location 1.
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into account the interactions between the various model parameters
and the O-D flows by estimating O-D flows jointly with the model
parameters. An optimization-based approach was used for the joint
calibration. Since the calibration of the parameters depends on the
estimated O-D flows and vice versa, the proposed framework is
iterative. O-D estimation is based on the well-known GLS estimator.
A systematic search approach based on the complex algorithm is
adopted for calibration of the behavioral parameters. This algorithm
is particularly useful for the problem at hand since it does not require
calculations of derivatives of the objective function, which would
have been prohibitively expensive in the context of a stochastic sim-
ulation model. Moreover, the algorithm uses a set of initial starting
points randomly spread over the search space and so tends to find
the global rather than local optimum points. Nevertheless, further
research is required to identify efficient algorithms to perform the
parameter calibration step.

The applicability of the approach was demonstrated through its
application to case studies using MITSIMLab, a microscopic traf-
fic simulation model. While the results are promising, the case
studies also demonstrate that further research is needed to im-
prove computational performance. Research directions that may
lead to improvements include development of more efficient opti-
mization algorithms for calibration and O-D estimation tech-
niques. Further research is also required to extend the problem
formulations to nonstationary cases, such as simulation of incident
scenarios.
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where yobs
i and ysim

i are the average observed and simulated traffic
counts at time–space point i, respectively.

Calibration results, comparing observed and simulated sensor
counts, are shown in Figure 8 for two of the time intervals. The
RMSE and MAE of the model are 15.9 and 9.2 vehicles per interval,
respectively.

CONCLUSION

A framework for the calibration of microscopic traffic simulation
models using aggregate data was presented. The framework takes
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FIGURE 7 (continued) Variability of traffic counts across days: (b) Location 2.
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FIGURE 8 (continued) Comparison of observed and simulated counts in the Irvine
network: (b) Time Interval 2.
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