
The development and the calibration of a microscopic traffic simulation
model, using MITSIMLab, for the entire metropolitan area of Des Moines,
Iowa, are presented. The primary contributions include the applica-
tion of a microscopic model on such a large-scale network and an
effort for joint calibration of the model parameters and estimation of
origin–destination flows. The application of microscopic traffic simu-
lation models to very large networks such as this poses a number of
methodological and practical challenges that are not faced with smaller
applications. Solutions to these problems are both heuristic and analyt-
ical. The solutions presented are generic and hence applicable to any
large-scale microscopic traffic modeling.

Microscopic traffic simulation models have drawn significant attention
from both practitioners and academicians in recent years. However,
their applications are limited to small to medium-sized networks.
Furthermore, the calibration of the simulation model is limited to
ad hoc changes in a few driving parameters to match field conditions.
Although such calibration methods often result in satisfactory per-
formance for small networks, a much more thorough calibration
that includes both estimation of origin–destination (O-D) flows
and route choice and driving behavior parameters is needed for
large-scale applications. This paper presents the development and
calibration of a large-scale microscopic traffic simulation model
using MITSIMLab (1, 2) for the metropolitan area of Des Moines,
Iowa, and derives insights from this application.

Simulation models have been applied to perform operational analy-
sis of highways for a number of decades. However, their applica-
tion to complex networks is fairly recent. With the development of
new traffic simulation models such as AIMSUN (3), MITSIMLab,
PARAMICS (4), and VISSIM (5 ), it is now possible to simulate
increasingly larger networks with complex scenarios that involve
intelligent transportation system (ITS) elements, incident scenar-
ios, highway construction, and such. Even though the simulation
of large networks is similar to that of small ones at the abstract level,
it poses a number of practical (and sometime theoretical) difficulties
concerning the development and calibration of such models. Some

of these difficulties have not been addressed in the literature so far and
are therefore a significant obstacle to the application of microscopic
traffic simulation models to large-scale networks.

Researchers have long been concentrating their efforts toward the
calibration of microscopic simulation tools to match the field condi-
tions. Most studies have focused on either parameter calibration or
O-D estimation, but not both. Some of the methodologies adopted for
calibrating parameters include simple search techniques (6), genetic
algorithms (7, 8), and a simplex-based approach (9). Approaches that
have been adopted for O-D estimation include generalized least
squares (GLS) (10, 11), maximum likelihood (12, 13), and entropy
maximization or information minimization (14).

It is only recently that O-D estimation and parameter calibra-
tion are being done jointly. Liu and Fricker (15) sequentially esti-
mate O-D flows and route choice parameters for uncongested
networks by first fixing route choice parameters and estimating
O-D flows and then using the estimated O-D flows as inputs to
estimate the route choice parameters. Toledo et al. (16 ) propose
an iterative approach to calibrate model parameters jointly and
estimate O-D flows with aggregate data and apply the method to
calibrate MITSIMLab for a test network in Stockholm, Sweden,
under congested traffic conditions. This approach is also applied
in Darda (17 ) for a network in Irvine, California.

The rest of this paper is organized as follows: the next section
describes the project and input development followed by a brief
description of our methodology for calibration and O-D estimation.
Practical challenges that were faced in the development and cali-
bration of large-scale models are described next, followed by pre-
sentation of calibration and validation results. Finally, we provide
some concluding remarks concerning the future applications of
such models.

PROJECT DESCRIPTION

The Des Moines Area Metropolitan Planning Organization (MPO)
and Iowa Department of Transportation (DOT) jointly decided to
develop a large-scale microscopic traffic simulation model using
MITSIMLab for the entire Des Moines area. This model is intended
to complement the existing regional planning model and would
enable the agencies to perform detailed operational analyses of traf-
fic ranging from studying the impact of a planned reconstruction
project that would cause significant route diversions to evacuation
planning. Traditionally, only regional models are used for both short-
and long-term policy decisions. In the immediate application the
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MITSIMLab model is used to evaluate the impact of various con-
struction staging scenarios and devise traffic management plans for
the I-235 reconstruction.

The Des Moines area network consists of approximately 200 mi2

of various types of roads including freeway, principal arterials, and
other major roads. The scope of the network is shown in Figure 1.
The network consists of three major freeways: I-35, I-80, and I-235.
I-235 traverses through the downtown area and connects the two
major interchanges between I-35 and I-80 in the northeast and
southwest corners of the network. The two interchanges are com-
monly known as NE and SW Mixmasters because of the complex
connections among the three freeways. I-35 and I-80 merge in the
area between the Mixmasters and act as a bypass for traffic pass-
ing through the metropolitan area. The freeway network includes
approximately 35 interchanges of various configurations. In addi-
tion to the freeways, all other major roads shown in Figure 1 have
been included in the model. In total the Des Moines model consists
of 1,479 nodes, 3,756 links, 5,479 segments (a segment is a part of
a link with uniform geometric properties), 10,657 lanes, 1,979 sen-
sors, and traffic signals at about 250 intersections. The total road-
way within the network is approximately 2,500 lane-miles. To the
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best of our knowledge, this is the largest network that has been
modeled in a microscopic simulation model to date.

MODEL DEVELOPMENT

This section describes the development of the simulation model and
discusses some of the practical approaches to problems that arise
with the large-scale application.

Network Development

Development of a simulation model at this scale requires procedures
to automate the network preparation phase, which is otherwise
prohibitively expensive and time consuming. In this study various
sources were utilized to obtain network information. The most useful
source of network information is the regional planning model main-
tained by the MPO. The basic network database for the MITSIMLab
model was directly imported from this model. Additional information
that was not included in the planning model, such as the number of

FIGURE 1 Des Moines area network.



lanes and detailed representations of intersections and interchanges,
were supplemented from the Iowa state geographic information sys-
tem (GIS) database. Design details, such as locations, lengths, and
configurations of turning lanes, were extracted from design drawings
and available aerial photographs. Locations of the surveillance and
control devices and the specifications of their operation were obtained
in a similar fashion. The MITSIMLab graphical network editor was
used to edit the corresponding properties of lanes, segments, links,
signals, and sensors.

Travel Demand

Travel demand is input into MITSIMLab, as well as most other traf-
fic simulation models, in the form of time-dependent O-D flows.
However, accurate estimates of these flows were not readily avail-
able. Therefore, O-D matrices were estimated as part of the model
calibration effort, which is described in the next section. The O-D
estimation process requires as input a seed O-D matrix, which rep-
resents prior beliefs on the structure of O-D flows. In this study, the
seed O-D matrix was derived from the existing planning model.
However, planning models are static and often provide only daily
O-D flows. This poses a significant challenge in making the derived
O-D flows useful for simulation studies. The authors provide a brief
overview of the issues involved and our approach to solve them.

The planning model for Des Moines metropolitan area consists of
about 400 traffic analysis zones (TAZs) that translate to approxi-
mately 150,000 O-D pairs. An interesting observation regarding the
number of O-D pairs is that more than 80% of the O-D pairs have
a volume of less than 1 vehicle per hour. A significant number of
O-D pairs have volumes that are less than 0.1 vehicle per hour. While
this property does not pose a problem in planning models because
the flow is a continuous variable, it has serious implications for sim-
ulation models, which utilize discrete vehicles and interpret these
volumes as a probability of making trips. For example, 0.1 vehicle
per hour would indicate one trip in 10 days (or 10 simulation runs).
The simulation model applies time-dependent O-D flows, at 15-min
intervals in this case. Therefore, a demand of 0.1 vehicle per hour dur-
ing a particular time interval would translate to one trip per 15-min
period in 40 time intervals (and hence on average 40 simulation
replications would be needed to realize this demand). It is also
worth mentioning here that O-D pairs with less than 1 vehicle per
hour contributed to approximately 15% of the total demand in the
network. Thus we could not simply remove them without creating
significant underestimation of demand.

Clearly, an aggregation was needed in order to create O-D matri-
ces that would not have unrealistically low volumes. For that pur-
pose, a number of TAZs were combined to form “super zones.” The
number of trips from each TAZ to destination super zones was cal-
culated by adding up the vehicles that originated from that TAZ and
had destinations in one of the nodes within the super zone. Then, ori-
gin and destination nodes were assigned within the respective super
zones for each O-D pair. The zone aggregation was performed
only on those O-Ds that had demand levels of less than 1 vehicle
per hour. O-D matrices that were obtained after aggregation do not
include any demands that are less than a unit. Even though the
smallest entries in the O-D matrix were a unit, this still translated
to 0.25 vehicle per 15-min interval. Therefore, multiple replica-
tions were still required to realize the demand and generate assign-
ment matrices, as is discussed in the next section. This effort was
performed for both the a.m. and p.m. peak periods. The two static
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seed O-D matrices that were generated include around 19,000 and
21,000 O-D pairs, respectively.

Signal Data

The study area includes approximately 250 signalized intersections.
The controllers are actuated in about 200 of these. The other 50 are
fixed-time signals. While coding them in a microscopic model is just
time consuming, obtaining all the relevant data is tedious and involves
significant agency coordination. Signals are typically controlled and
operated by the local city or county. The number of agencies with
jurisdictions in the area covered by such a large model can be sig-
nificant. For example, the Des Moines area consists of 20 counties.
Thus the project team had to contact a large number of individuals
in various counties to obtain the signal data. Furthermore, these
agencies do not follow a common approach for the implementation
of actuated signal control algorithms. In brief, signal data, which are
widely believed to be readily available, are perhaps one of the most
difficult data sets to obtain for microscopic model development.

CALIBRATION AND O-D ESTIMATION

In addition to the difficulties in developing the model, calibration of
a microscopic traffic simulation model for this size of network with
various kinds of roads, signals, and other controls poses significant
problems that are not realized in small-scale networks. Some criti-
cal issues in the model calibration include route choice modeling,
obtaining historical travel time estimates, and estimation of time-
dependent O-D flows. In this study the process of jointly estimat-
ing time-dependent O-D flows and calibrating behavior parameters
was automated. This automatic calibration process used the avail-
able 15-min sensor data. A naïve calibration approach, based on trial
and error, could not be applied for a network of this magnitude. This
section presents the calibration approach and results.

Calibration Methodology

The parameters and inputs to be calibrated include four elements:
parameters of the driving behavior models (i.e., acceleration, lane
changing, etc.), parameters of the route choice model, O-D flows,
and habitual travel times (which are used as explanatory variables
in the route choice model). Ideally, all these should be calibrated
jointly. However, the scale of the problem and the computational
time implications led us to calibrate driving behavior parameters
separately from the others. For the other parameters, an iterative
approach in which one group of parameters is calibrated while
others remain fixed was used.

First, driving behavior parameters were calibrated with a single
freeway section on I-235 westbound. This section was selected such
that the O-D matrix for this section could be inferred directly from
available sensor counts and there was no route choice for the vehi-
cles within this small section. This approach allowed us to reduce
errors from estimating O-D flows and eliminate the effect of route
choices. Thus the impact of driving behavior on the performance of
the simulation could be isolated and calibrated separately.

Once driving behavior parameters were calibrated for the specified
freeway section, their values were fixed, and the iterative process to
jointly calibrate route choice parameters and estimate O-D flows and



where

Yobs = vector of observed traffic counts at sensor locations,
A = assignment matrix that maps O-D flows to counts at

sensor locations,
ODo = seed (a priori) O-D matrix, and

W and V = variance–covariance matrices of sensor counts and
O-D flows, respectively. For a given seed O-D and
weights for sensor, the problem has a unique solution.

The assignment matrix is not directly observable and so has to be
estimated from the simulation model itself. A significant number of
the O-D flows in this large network have a very small demand for
a 15-min interval. Therefore, an assignment matrix calculated from
a single realization would not reflect the path choice fractions. In
order to reduce the effect of the simulation stochasticity, an average
assignment matrix calculated from five replications was used for
O-D estimation.

The size of the O-D flow matrix raised a computational difficulty.
In this case, the p.m. O-D matrix included 20,953 O-D pairs, which
were estimated for four 15-min intervals with data for three 15-min
peak period intervals at 404 sensors. Estimation of O-D flows for the
additional interval at the beginning of the peak hour (the first time
interval) was necessary to capture the contribution of O-D flows
from previous time intervals on traffic counts rather than assume
that the network is initially empty. Although simultaneous estima-
tion of all O-D flows across all time periods was desirable, it was
computationally intensive and perhaps infeasible to estimate 83,812
O-D flows using standard equipment. But, it was clear that the O-D
flows from each period would have contributed significantly toward
traffic counts for subsequent periods. Thus sequential estimation
could not be applied directly as the authors had to estimate O-D
flows for four time intervals to match sensor counts of three inter-
vals. Therefore, the authors estimated O-D flows for the first two
time intervals simultaneously. For the other time intervals, sequen-
tial estimation was used after subtracting the contributions of O-D
flows from previous time intervals from the sensor counts in the
third and fourth time intervals.

CHALLENGES IN LARGE-SCALE 
TRAFFIC SIMULATION

Development of a large-scale microscopic traffic simulation model
poses a number of practical challenges. The following sections pre-
sent some of these issues and discuss approaches to address them
and the limitations associated with these approaches.

Data Collection

The development, calibration, and validation of large-scale micro-
scopic traffic simulation models require considerable amount of
detailed data. There are two types of problems associated with the
data collection. The first is that data collection at this scale is tedious
and requires significant amount of time and agency coordination.
Clearly, obtaining and coding the network configuration, signal
locations, and timings fall into this category. Another type of prob-
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obs obshabitual travel times was performed. This process can be succinctly
described as follows:

1. Set the seed O-D flows and the initial route choice parameters
as the current estimates of O-D flows and route choice parameters,
respectively.

2. Use the current estimate of O-D flows and route choice
parameters to calculate habitual travel times.

3. Generate an assignment matrix, which maps O-D flows to
sensor counts.

4. Use the assignment matrix to obtain new estimates of the 
O-D flows.

5. Recalibrate route choice parameters using the habitual travel
times calculated in Step 2 and O-D flows estimated in Step 4.

6. Check convergence, based on the magnitude of change in the
route choice parameters, O-D flows, and habitual travel times from
previous estimates. If convergence is achieved, stop; otherwise, go
back to Step 2.

A detailed discussion of this approach is given in Toledo et al. (16).
Equilibrium travel times were generated through an iterative process,
which estimates habitual travel times as a weighted average of a
sequence of experienced travel times.

where TT hab, k
it and TT exp, k

it are the habitual and experienced travel
times on link i at time period t on iteration k, respectively; and λk is
a weight parameter (0 < λk < 1). A constant value of 0.8 was used in
this study.

The calculation of habitual travel times is the most time-consuming
component in the entire calibration process. In the case of large
networks, it is likely that unrealistic congestion in some parts of
the network will occur during these iterations. Using the experi-
enced link travel times that will be generated to estimate habitual
travel times may lead to overcompensation that would shift sig-
nificant flows to other paths in the next iteration and cause conges-
tion of these paths. Therefore, a large number of iterations would
be required to obtain the equilibrium travel times, which would be
achieved when the difference between experienced travel times and
habitual travel times (maximum over all the links and time periods)
is below a predefined criterion. In order to make the process more
efficient, there is a need to adopt heuristic mechanisms to bound the
values of experienced (and habitual) travel times. From the travel
time data available, it was observed that it was realistic to bound
experienced travel times such that they were not more than five
times the free-flow travel times:

where TT ff
it is the free-flow travel time on link i at time period t.

O-D Estimation

The O-D estimation in this study was performed with the GLS for-
mulation (10), to minimize a weighted function of the deviations
between estimated and observed traffic counts and between the
estimated O-D flows and seed O-D flows. The GLS formulation is
given by

TT TT TT TTit
k k

it
k

it
ff k

it
khab exp hab, , ,min , ( )+ = ( ) + −( )1 5 1 2λ λ

TT TT TTit
k k

it
k k

it
khab exp hab, , , ( )+ = + −( )1 1 1λ λ
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lem is related to the unavoidable inaccuracy, uncertainty, and lack
of coverage within the available traffic data, such as speed, count,
and travel time measurements. Although these problems are con-
fronted in almost all traffic simulation studies, their impact may be
more serious for large-scale networks. For example, the available data
may be collected by various agencies at different times with different
equipment and methods. These uncoordinated efforts may give rise to
temporal inconsistencies. In this study, the authors were generally
able to avoid this problem by using data from a comprehensive
data collection program by Iowa DOT.

Computational Requirements and Problem Size

Microscopic traffic simulation models are widely perceived to be
computationally intensive to the extent that many researchers believe
that they are not applicable to large-scale networks. This study clearly
demonstrated that this was not necessarily true. The authors per-
formed the simulation runs on a P4 laptop with 512 MB memory and
a processor speed of 1.8 GHz. While the authors did not perform a
detailed analysis for CPU use, it took approximately 90 min to sim-
ulate traffic for 75 min. Thus the time required for model run is by
no means prohibitive. However, the computational requirement for
calibration of the model is a more relevant problem than that for per-
forming the model runs and requires special attention. In this study,
approximately 300 simulation runs, which translated to 450 hours,
were required for the calibration. The reason for this significant
effort was in the comprehensive calibration framework. A complete
iteration that included several runs to calculate habitual travel times,
generation of an average assignment matrix from a few simulation
runs, O-D estimation, and calibration of route choice parameters
required about 25 replications. A total of 12 iterations for a.m. and
15 iterations for p.m. were performed to obtain the final results.

Conversion of Planning O-D to Simulation O-D

Almost all simulation studies derive their demand data from plan-
ning models. The conversion of planning O-D flows to dynamic
O-D matrices poses several challenges. A number of theoretical
issues involved in the conversion have been discussed elsewhere
and therefore the authors focus on practical aspects of this prob-
lem in the context of large-scale models. As discussed previously,
planning O-D matrices must be aggregated in order to be useful for
simulation models. Thus the number of trips from an origin (or to
a destination) is higher in the simulation model compared to that in
the corresponding planning model. Furthermore, unlike planning
models, simulation models incorporate hard capacity constraints
at links and loaders. This may give rise to problems in network
loading. The number of vehicles from an origin is often so high that
it is impossible to load all of them on the network, which results in
unrealistic spillbacks at the centroids. These spillbacks negatively
impact route assignment and the results of O-D estimation. A detailed
discussion of the implications of this spillback is beyond the scope
of this paper. However, the authors found that a successful conver-
sion of planning O-D flows to simulation O-D matrices required
applying heuristic rules that would avoid unrealistic spillbacks. The
heuristics included appropriately aggregating centroids, ignoring
sensor data located close to the centroids, and imposing constraints
that would have prohibited O-D estimation algorithms to increase
from such origins.
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Impact of Small Errors

Microscopic traffic simulation models are unforgiving. For example,
a simple error in signal coding could have detrimental impacts on 
the route assignment for the entire network and through that affect the
course of the calibration. The impact of such small errors is exponen-
tially magnified in large networks resulting in significant additional
effort in calibration. In this respect, unrealistic spillbacks have simi-
lar impacts to coding errors. Clearly, efforts should be made to make
the model free of such errors before running it in the automated fash-
ion. A simple approach to achieve this objective is to first visually
inspect the model results to ensure that traffic behavior is reasonable.

RESULTS

Calibration Results

As mentioned previously, 15-min data were available at 404 sensor
locations for calibration. These data were collected over a period of
5 weeks on Tuesdays, Wednesdays, and Thursdays. The average
count data over the 15 days were used for calibration. In addition,
travel time data that were collected using floating cars were available
for 1 week. Three trips were made each day during the peak period
for 3 days. The available travel time data are an average of nine
observations. The travel times for individual trips were not available.
These data were used for validation of the calibrated model.

Time-dependent traffic flows in the Des Moines area showed that
the morning and afternoon peak periods were between 7:30 and
8:15 a.m. and 4:30 and 5:15 p.m., respectively. In order to allow an
initial warm-up period and a dissipation period at the end of the sim-
ulation run it was decided to perform the simulation runs for peak
periods of 75 min between 7:15 and 8:30 a.m. and 4:15 and 5:30 p.m.

The authors compared 15-min count data at the 404 sensor loca-
tions before and after O-D estimation for three time intervals. The
calibration results are presented for both the a.m. and p.m. peak. Fig-
ures 2 and 3 present the scatter plots for the a.m. peak period between
7:30 and 8:15 a.m. before and after calibration, respectively. Fig-
ures 4 and 5 present the scatter plots for the p.m. peak period between
4:30 and 5:15 p.m. Each point on these figures indicates the field
count (on the x-axis) and simulated count (on the y-axis) for one sen-
sor at the given time interval. If a straight line is drawn at a 45%
angle, a perfect calibration would result in all points falling on this
line. In addition, Figures 6 and 7 present histograms of the differ-
ences between field and simulated counts before and after calibra-
tion, respectively. The bins are defined by ranges of 100 vehicles.
For example, all observations of differences between −50 and 50 vehi-
cles are in the bin designated as zero. The figures show the improve-
ments in fit induced by the calibration and O-D estimation process.
The initial results generally underestimate the observed traffic counts.
In the final results, approximately 90% of the total data points have
an error of less than 100 vehicles.

These figures indicated that the joint calibration and O-D estima-
tion made a significant improvement in the model fit. Errors in the
field measurements inhibited further improvement of the fit. In a
large network such as the Des Moines model, errors in sensor data
affect the calibration of route choice parameters, habitual travel times,
and O-D flows. Thus a large error in sensor data not only made it
impossible for simulated count to match field count, it also affected
the calibration on alternate routes. For example, University Avenue
in West Des Moines served as an alternative to I-235 freeway. Field
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FIGURE 2 Scatter plot of field and simulated a.m. counts before calibration: 
(a) 7:30–7:45, (b) 7:45–8:00, and (c) 8:00–8:15.
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FIGURE 3 Scatter plot of field and simulated a.m. counts after calibration: 
(a) 7:30–7:45, (b) 7:45–8:00, and (c) 8:00–8:15.
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FIGURE 4 Scatter plot of field and simulated p.m. counts before calibration:
(a) 4:30–4:45, (b) 4:45–5:00, and (c) 5:00–5:15.
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FIGURE 5 Scatter plot of field and simulated p.m. counts after calibration:
(a) 4:30–4:45, (b) 4:45–5:00, and (c) 5:00–5:15.
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FIGURE 6 Histogram of difference between field and simulated traffic a.m. counts before and 
after calibration.

FIGURE 7 Histogram of difference between field and simulated traffic p.m. counts before and 
after calibration.

counts at two intersections in University Avenue were significantly
biased downward. This affected both the total demand for O-D pairs
that used University Avenue and the route choice parameters that
determined the split between University Avenue and the I-235 alter-
natives. However, route choice parameters are global and so also
affect other parts of the network. Although this problem poses no
new theoretical issue, it has an important practical significance.

Validation

Travel times in four corridors were collected with floating cars
during the a.m. peak period for validation purposes. These travel
times were not used in the calibration and so formed an independent

set of observations for validation. The travel time comparison,
although a good validation measure, should be interpreted with cau-
tion. Simulated travel times were based on the average travel time
over the entire analysis period, whereas observed travel times were
the averages of nine trips made in 3 days.

The travel time comparisons for four corridors are presented in
Table 1. The first corridor was the I-235 freeway from 74th Street
in West Des Moines to 31st Street in Des Moines. For this corridor,
the average simulated travel time of 776 s was 27 s higher than the
observed average travel time. Thus the error was approximately 4%.
Corridors 2, 3, and 4 followed major arterials. Compared with field
observations, the simulated travel times were 13 s or 3% higher in
Corridor 2, 38 s or 5% lower for Corridor 3, and 241 s or 40% higher
for Corridor 4. The large difference in the last results was due to unre-



alistic congestion in MITSIMLab at one of the intersections along
this corridor (Hickman Road and 86th Street). Further investigation
of this intersection revealed that the count data at this intersection
might have been erroneous and resulted in unrealistic congestion in
MITSIMLab.

SUMMARY

This paper presented the development, calibration, and validation
of a microscopic traffic simulation model for a large-scale network.
The network included all major roads in the entire Des Moines metro-
politan area. MITSIMLab was used for developing the model. The
MITSIMLab model was one of the largest networks modeled in 
a microscopic simulation model to date. Joint calibration of model
parameters and O-D estimation was performed. Calibration and vali-
dation results were promising. However, some obvious errors in sen-
sor data that adversely affected the calibration results were detected.
It was suggested that accuracy of sensor data should be investigated
before applying the automated calibration for future applications.
Although some erroneous sensor may be difficult to identify, it is still
possible to identify sensor measurements that have large error, which
could dramatically improve the performance of the calibration.

A significant area of research in this direction lies in empirical
investigation of convergence of the calibration. Each component
within the calibration module relies on some convergence criterion.
The properties of convergence are not well known. Also, the impacts
of various levels of aggregation, such as time intervals for habitual
travel time and the O-D flows, need to be studied.
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Travel Times (sec) 
Corridor Observed Simulated

1 I-235, from 74th St to 31st St 749 776 
2 Douglas Ave/Euclid Ave, from Beaver Ave to NE 14th St 550 563 
3 Grand Ave, from EP True Pkwy to 18th St 868 830 
4 86th St/22nd St, from I-35/80 to I-235 599 840 

TABLE 1 Observed and Simulated Travel Times
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