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In this paper, a method for early detection of vehicles is presented.
By contrast with the common frame-based analysis, this method
focuses on tracking motion rather than vehicle objects. With the
detection of motion, the actual shape and size of the objects become
less of a concern, thereby allowing detection of smaller objects at an
earlier stage. One notable advantage that early detection offers is the
ability to place cameras at higher vantage points or in oblique views
that provide images in which vehicles in the near parts of the image
can be detected by their shape or features while vehicles in the far
view cannot. The ability to detect vehicles earlier and to cover longer
road sections may be useful in providing longer vehicle trajectories
for the purpose of traffic models development (e.g., 4–6) and for
improved traffic control algorithms.

RELATED WORK

Various vehicle detection methods have been reported in the literature.
A general subdivision of them shows three main categories, including
(a) optical flow, (b) background subtraction, and (c) object-based
detection.

Optical flow is an approximation of the image motion on the
basis of local derivatives in a given sequence of images. That is,
it specifies how much each image pixel moves between adjacent
images. Bohrer et al. (7 ) used a simplified optical flow algorithm
for obstacle detection. De Micheli and Verri (8) applied the method
to estimate the angular speed of vehicles relative to the direction
of the road as part of a system to detect obstacles. Batavia et al. (9)
described another system for obstacle detection, which is based on
the optical flow method, although it does not explicitly calculate the
flow field. This system aims to detect approaching vehicles that are
in the blind spot of a car. Wang et al. (10) pointed out that for vehi-
cle detection, optical flow suffers from several difficulties such as
lack of texture in the road regions and small gray level variations
that introduce significant instabilities in the computation of the
spatial derivatives.

Although most optical flow–based techniques require high com-
putational effort, object recognition via background subtraction
techniques usually require significantly lower computational effort.
Cheung and Kamath (11) identified the following four major steps
in background subtraction algorithms: preprocessing, background
modeling, foreground detection, and data validation. They also
identified two main categories of background subtraction methods:
recursive and nonrecursive. Nonrecursive techniques usually esti-
mate a single background image. For example, frame differencing
uses the pervious frame as the background model for the current
frame (12). Alternatively, the background is estimated by the median
value of each pixel in all the frames in the video sequence (13).
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Detection and tracking of vehicles from video and other image sequences
are valuable in several traffic engineering application areas. Most of
the research in this area has focused on detection of vehicles that are
sufficiently large in the image that they can be detected on the basis
of various features. As a result, the acquisition is feasible on limited
sections of roads and may ignore significant parts of the available image.
A method for early detection of vehicles was developed and demon-
strated. This method focused on tracking motion rather than vehicle
objects. With the detection of motion, the actual shape and size of 
the objects become less of a concern, thereby allowing detection of smaller
objects at an earlier stage. One notable advantage that early detection
offers is the ability to place cameras at higher vantage points or in oblique
views that provide images in which vehicles in the near parts of the
image can be detected by their shape or features, whereas vehicles in
the far view cannot.

Detection and tracking of vehicles from video and other image
sequences are valuable to many application areas such as road safety,
automatic enforcement, surveillance, and acquisition of vehicle tra-
jectories for traffic modeling. An indication of the importance of
vehicle tracking is the growing number of related projects reported
in recent literature. Among these are research at the University of
Arizona that used video cameras, both digital and analogue, mounted
on helicopter skids for the acquisition of video sequences for traffic
management purposes (1); a project at the Delft University of Tech-
nology in the Netherlands, where traffic monitoring from airborne
platforms was applied using digital cameras (2); and work at the
Berkeley Highway Laboratory in California (3) where several cam-
eras were deployed in a single location to form panoramic coverage
of a road section. A common thread in all these projects is the appli-
cation of methods that consider images with high resolution and
large scale, which readily provide information on salient vehicle
features (e.g., color and shape). Under these assumptions, the detec-
tion is useful in the near field of view when images are taken from
an oblique view or to data from low altitudes for horizontal images.
As a result, the acquisition is feasible on limited sections of roads
and may ignore significant parts of the available image. These parts
of the image may be valuable for early detection of vehicles that enter
image frames.
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Variations on the median method were suggested by Cutler and Davis
(14) and Cucchiara et al. (15). Toyama et al. (16) proposed to estimate
the background using a one-step Wiener prediction filter. Elgammal
et al. (17) proposed development of a probabilistic background model
by estimating a nonparametric density function of the pixel value.
Cheung and Kamath (11) showed that the complexity of building
this background model is similar to that of the median method, but
that the foreground detection is more complex with this approach.
Recursive background subtraction techniques estimate a different
background for each frame. Recursive methods require less storage,
but are generally more computationally complex compared with non-
recursive methods. Furthermore, errors in the background model affect
the results for longer periods. Among the recursive background sub-
traction techniques are an adaptive implementation of the median
value technique, as proposed by McFarlane and Schofield (18) and
implemented for an integrated traffic and pedestrian model-based
vision system in Remagnino et al. (19). Another method, which was
first suggested by Karmann and von Brandt (20) and was implemented
for traffic by Kilger (21) uses Kalman filtering, in which the object
mask is obtained by comparing evolved background images with
the corresponding original images. Another alternative is the mixture
of Gaussian method, which estimates the foreground and back-
ground as a mixture of Gaussian distributions that are tracked simul-
taneously and their parameters updated online (22). Although this
method is very popular, it was shown by Cheung and Kamath (11)
that it is computationally intensive, and its parameters require careful
tuning. In addition, it is very sensitive to sudden changes in lighting
conditions.

Background subtraction methods define objects by learning the
background. By contrast, object-based detection focuses on iden-
tifying the objects themselves. With these methods, vehicles are
detected using models of their features and shape. Some of the
algorithms that have been proposed focus on generic pose estima-
tion with predefined shape (23, 24), whereas others focus on high-
resolution ground views (25, 26). Zhao and Nevatia (27 ) detected
cars in aerial images by examining their rectangular shape, front
and rear windshields, and shadow. They achieved a detection rate of
approximately 90% with 5% false detections. Kim and Malik (28)
proposed three-dimensional vehicle detection based on line features
followed by a probabilistic feature grouping. Viola et al. (29) pro-
posed a pedestrian detection system that combines appearance and
motion cues extracted from image pairs. Levin et al. (30) used a
co-training algorithm to improve vehicle detection with unlabeled
data. Bose and Grimson (31) used scene-specific context features,
such as image position and direction of motion of objects. They
showed that this can greatly improve classification. Chachich et al.
(32) used color as an alternative feature for detection. Vehicles are
initially detected in the frame by determining the probability that
an object is not the same color as the road surface. Most object-
based methods require large computational effort compared with
background subtraction methods.

The methods discussed previously were designed for situations in
which the vehicle object was large enough in the frame to be recog-
nized. However when the vehicles are in low-resolution or a vehicle
feature is not available, those methods are not applicable. The goal
of this research is to introduce a far-view vehicle motion detection
method, aiming to detect vehicles as early in the image sequence as
possible and in the part of the frame where most of the commonly used
features will still be unnoticeable. A study by Cho and Rice (33) has
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dealt with this problem; however, they were interested only in extract-
ing speed profiles and so designed an algorithm that avoids detection
and tracking of individual vehicles.

EARLY VEHICLE MOTION DETECTION

As the literature review shows, most of the reported approaches
focused on the detection of well-defined vehicles and usually within
a single frame. Most commonly, cameras are placed such that their
view is against the direction of traffic flow. Vehicles in the far view
field are characterized by a small size of only a few pixels. In this
case, standard frame-based detection methods are of limited use,
because objects of this size usually cannot be differentiated from noise.
Therefore, the detection is limited to the near to middle field of view
and vehicles are detected later compared with the time they actually
enter the frame.

This paper addresses this problem in the case of oblique video
cameras, which is often the viewing scheme for traffic surveillance
cameras. Figure 1 demonstrates this situation, showing data acquired
by the University of California at Berkeley Highway Laboratory (34).
The oblique camera geometry dictates that vehicles in the far view,
which is marked by a box in the upper left corner of the frame, cannot
be seen properly. Although this part of the view takes up only a small
portion of the frame, it amounts to approximately 50% of the actual
road length covered in the frame. Therefore, algorithms that focus
only on the nearer part of the image result in substantial delay in the
detection of vehicles.

The proposed method focuses on early vehicle motion detection in
the far view field. It is composed of five steps, as shown in Figure 2.
Considering a video sequence as an input, frame differencing is
applied first to obtain background and foreground estimation for
each frame. Blobs that remain in the foreground frames may be noise,
vehicles, or other objects. A frame summation scheme is used to dis-
tinguish blob vehicles from other objects and noise. In this method,
several foreground frames are summed to observe the movement of
blobs. Information on the road layout and on traffic parameters are
then used to identify those blobs whose movement is consistent with
that of vehicles in traffic. The algorithms used in this step will be
discussed in further detail in the next section. Finally, the vehicles
that were detected may be tracked between frames in a similar manner.
The working assumptions underlying the proposed detection method
are as follows:

1. The imaging geometry is estimable by estimating the camera
external orientation parameters, through the camera-to-road homog-

FIGURE 1 Sample frame from Berkeley Highway Laboratory Video.



raphy or by vanishing point orientation estimation [e.g., Hartley and
Zisserman, (35); Kim (36)].

2. The traffic flow direction in each lane is known. This will
help to distinguish noise from vehicle blobs. Given the camera
position and road geometry, typical vehicle dimensions can be esti-
mated. In addition, given traffic flow characteristics, the average
spacing between two vehicles can be calculated. These properties
will be used in selecting the number of frames to be summed in the
analysis.

As noted previously, the detection here concerns with objects
whose size in the image is a few pixels, and feature-based meth-
ods are likely to fail. Therefore a frame differencing method was
applied as the first step in the identification of motion. Let the
video sequence consist of N frames and denote the pixel intensity
as I(x, y, k) where (x, y) are the spatial coordinates of a certain
pixel in the frame and k is the frame index. To simplify the pre-
sentation, the spatial coordinates are removed from the intensity
notation in the following. The time difference between subse-
quent frames is assumed to be constant and known. The differ-
ence pixel intensity image, B(k), between two subsequent frames
is defined by

From the difference pixel intensity sequence the summed image,
S, is obtained by summation

where M is the number of frames to be summed.
In S, objects that have a distinct motion will feature a linear trend,

whereas random noise will not accumulate into a significant shape.
The summation outcome and the quality of the detection depend on
the value of M. On the one hand, if it is set too low, the summed
image may contain significant noise, which will make the distinc-
tion between noise and vehicles blobs difficult. On the other hand,
if it is set too high, the accumulated signatures of vehicles may over-
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lap, which will result in detection of multiple vehicles as a single
unit. This problem is illustrated in Figure 3. Figure 3a shows the first
frame to be summed, with three vehicle blobs labeled. The images
in Figures 3b through 3f show the result of the summation of a vary-
ing number of frames—2, 4, 8, 12, and 16, respectively. All three
vehicles are detectable when 4, 8, or 12 frames are summed. But,
Vehicle 3 is not detected when only 2 frames are summed, and when
16 frames are used, the blobs of Vehicles 1 and 3 overlap, which
leads to their detection as a single vehicle.

To avoid this problem, it is necessary to determine the maxi-
mum number of frames to be summed. The value of M may be set
constant for all frames in the sequence or calculated adaptively for
each frame. A constant value for M offers computational benefits
at the cost of potentially lower detection rate compared with an
adaptive approach.

An adaptive value for M for a specific frame may be calculated as
follows. First, the frame difference in question is summed with the
subsequent one using Equation 2. The resulting summed image may
include blobs that are vehicles and others that are noise. Under the
conservative assumption that all blobs are vehicles, an upper bound
on the possible number of vehicles is obtained. Using the measure-
ments of the offset, Δx, of each blob between frames, and the elapsed
time between frames, Δt, the average travel speed of these blobs can
be estimated as follows:

where, n is the number of blobs in the summed image.
Using the information on the road layout, the minimum distance

between blobs in each lane is calculated. The minimum distance
value among all lanes defines the overall minimum blob distance dmin.
The maximum permissible time interval of the frame summation to
avoid overlap among any of the blobs can be calculated as follows:

Finally, the permissible maximum number of frames to be summed
is given by

This calculation may be conducted for each frame separately,
yielding different M values for each frame. Calculation of a constant
value of M may be conducted in a similar fashion.

In the following, details concerning the implementation of the
detection method are discussed. After its creation, the summed image,
S, is enhanced using morphological operations. The methods applied
are top-hat and bottom-hat filtering (37 ). Top-hat and bottom-hat
filtering subtract the open image and the closed image from the orig-
inal one, respectively. Next, image segmentation is performed using
marker-controlled watershed segmentation (38) to isolate the objects
in the summed image from the background. In some cases when
applying the watershed transformation, oversegmentation occurs.
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FIGURE 2 Flow chart of early
vehicle motion detection method.



To overcome this concern, markers (connected components) are used.
There are two types of markers: internal markers, which are inside each
of the objects of interest, and external markers, which are contained
within the background. Various methods for computing internal and
external markers, involving both linear and nonlinear filtering, have
been proposed (37 ). In this implementation, a condition on the
marked blob size is added to the watershed procedure. If the blob is
smaller than a characteristic area of a vehicle, it is removed from the
list of blobs that are vehicle candidates.

After the segmentation phase, blobs in the image are identified.
Several criteria are used to determine those that are vehicles: The blob
should be within the lane, and the direction of the blob growth should
be in line with the direction of the traffic. When those criteria are
met, the blob is considered a vehicle.

RESULTS AND DISCUSSION

Video data collected by the Berkeley Highway Laboratory (34) was
used to demonstrate the proposed method. The early vehicle motion
detection method was applied to the part of the frame in which vehi-
cles first appear. The results reported were obtained using a constant
number of frames differences that were summed in each case. The
calculations to determine this value, as discussed previously, yield
a value of eight frames. The sensitivity of the results to this value
was also examined.
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Figure 4 shows examples of the application of the method to two
different frames in the video sequence, one at the top and one at the
bottom of the figure. Figure 4a shows the two frames being studied.
In each case, eight frames are summed. The last of these frames is
shown in Figure 4b. The resulting summed images are shown in
Figure 4c. The blobs in the first and last images were marked: Vehicles
are circled, and noise blobs are marked with squares. The blobs that
were detected were marked in the summed image. The noise blobs
were identified as such and removed during the differencing proce-
dure. The vehicle blobs were detected in the analysis. As expected,
no overlapping of blobs occurred with the number of frames that
were summed. The summation of 8 frames implies that given a video
sequence with a rate of 24 frames per second, vehicles may be iden-
tified 0.33 s after they enter the frame. Methods that operate on a
vehicle feature can be used only when the vehicle gets closer to the
camera. In this sequence, the time that elapses from the time the
vehicle enters the frame to the time it is detectable on the basis of its
features is approximately 7 s.

The overall detection results for a sample of 185 vehicles in the
video sequence, as a function of the number of frames, M, that are
summed in each case are presented in Table 1 and Figure 5. Vehicles
in the images may not be correctly detected in two ways: They may
be missed altogether by the algorithm, or their blobs may overlap
with other vehicles and so not be detected as individual vehicles.
The probabilities of occurrence of the two error types vary in oppos-
ing directions when M is increased: the number of missed vehicles

(a)

(d)

(b)

(e)

(c)

(f)

FIGURE 3 Vehicle blobs in the difference summation: (a) first frame to be summed, with three vehicle blobs
labeled; (b) summation result of two frames; (c) summation result of four frames; (d ) summation result of
eight frames; (e) summation result of 12 frames; and (f ) summation result of 16 frames.



decreases, whereas the number of overlapping vehicles increases.
The selection of the parameter M should reflect the trade-off between
these two errors. In this sequence, the optimal detection rate is highest
(91.4%) when eight frames are summed, which is the value rec-
ommended by the analysis in the previous section. Detection rates
decrease substantially when M is increased or decreased. A third
source of errors is the false detection of nonvehicle blobs as vehi-
cles. The occurrence of this error follows a similar trend to that of
errors in detecting vehicles and is also lowest when eight frames
are summed.
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SUMMARY

This paper presented a new approach for vehicle detection in
video image sequences. The method is based on detection of the
movement of vehicles between frames. It does not rely on detec-
tion of vehicle features and so may be used in cases in which vehi-
cles occupy a small number of pixels in the image. Cameras at an
oblique view enable detection of vehicles in the far view whose
features are not identifiable and so are not normally detectable with
other methods. The early detection of vehicles can significantly
increase the lengths of the sections of roads that can be monitored
by cameras.

Further study of this method is underway. Among the questions
that may be studied are the ability to apply the method to extract
vehicle classification information, the handling of shadows, adap-
tation of the method to aerial video sequence, and the integration
and handing over of information between this method and meth-
ods that are more appropriate for detection in the near-view of 
the image.
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FIGURE 4 Example of application of early vehicle motion detection: (a) the two frames being 
studied, (b) the last summed frame, and (c) the resulting summed image.

TABLE 1 Summary of Detection Results

Vehicles Not Detected

Vehicles Missed Overlapping False Total
M Detected Vehicles Vehicles Detections Errors

1 86 99 0 16 115

3 142 42 1 31 74

5 154 21 10 9 40

8 169 6 10 4 20

11 158 3 24 19 46

15 151 0 34 48 82

18 130 1 54 53 108
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