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The lane-changing model is an important component within microscopic
traffic simulation tools. Following the emergence of these tools in recent
years, interest in the development of more reliable lane-changing models
has increased. Lane-changing behavior is also important in several other
applications such as capacity analysis and safety studies. Lane-changing
behavior is usually modeled in two steps: (a) the decision to consider a lane
change, and (b) the decision to execute the lane change. In most models,
lane changes are classified as either mandatory (MLC) or discretionary
(DLC). MLC are performed when the driver must leave the current lane.
DLC are performed to improve driving conditions. Gap acceptance mod-
els are used to model the execution of lane changes. The classification of
lane changes as either mandatory or discretionary prohibits capturing
trade-offs between these considerations. The result is a rigid behavioral
structure that does not permit, for example, overtaking when mandatory
considerations are active. Using these models within a microsimulator
may result in unrealistic traffic flow characteristics. In addition, little
empirical work has been done to rigorously estimate the parameters of
lane-changing models. An integrated lane-changing model, which allows
drivers to jointly consider mandatory and discretionary considerations,
is presented. Parameters of the model are estimated with detailed vehicle
trajectory data.

Lane-changing behavior has a significant effect on traffic flow. There-
fore, the understanding of lane-changing behavior is important in sev-
eral application fields such as capacity analysis and safety studies. In
particular, lane-changing behavior is among the most important com-
ponents of a microscopic traffic simulator. In recent years, following
the emergence of these tools as a useful tool for the analysis of trans-
portation systems, interest in the development of more reliable driving
behavior models, in particular lane-changing models, has increased.

Lane changing is usually modeled in two steps: (a) the decision to
consider a lane change, and (b) the decision to execute the lane change.
In most models, lane changes are classified as either mandatory or dis-
cretionary. Mandatory lane changes (MLC) are performed when the
driver must leave the current lane. Discretionary lane changes (DLC)
are performed to improve driving conditions. Gap acceptance models
are used to model the execution of lane changes.

The classification of lane changes as either mandatory or dis-
cretionary prohibits capturing trade-offs between these consider-
ations. The result is a rigid behavior structure that does not permit,
for example, overtaking when mandatory considerations are active.
Applying these models within microsimulators may result in un-

realistic traffic flow characteristics. In addition, little empirical
work has been done to rigorously estimate the parameters of lane-
changing models.

In this paper, an integrated lane-changing model, which allows
joint evaluation of mandatory and discretionary considerations, is pre-
sented. Parameters of the model are estimated with detailed vehicle
trajectory data.

The rest of this paper is organized as follows: state-of-the-art
lane-changing models and their limitations are discussed in the next
section. The proposed model is presented in the third section. The
data used to estimate the parameters of this model are described in
the fourth section. Estimation results are presented and interpreted
in the fifth section, followed by concluding remarks.

LANE-CHANGING MODELS

Gipps (1) introduced the first lane-changing model intended for
microsimulation tools. The model covers various urban driving situ-
ations, in which traffic signals, transit lanes, obstructions, and the
presence of heavy vehicles affect drivers’ lane selection. The model
considers the necessity, desirability, and safety of lane changes. Driv-
ers’ behavior is governed by two basic considerations: maintaining a
desired speed and being in the correct lane for an intended turning
maneuver. The zone the driver is in, defined by the distance to the
intended turn, determines which of these considerations is active.
When the turn is far away it has no effect on the behavior and 
the driver concentrates on maintaining a desired speed. In the middle
zone, lane changes are considered only to the turning lanes or lanes
that are adjacent to them. Close to the turn, the driver focuses on keep-
ing the correct lane and ignores other considerations. The zones are
defined deterministically, ignoring variation between drivers and
inconsistencies in the behavior of a driver over time. When more than
one lane is acceptable the conflict is resolved deterministically by a
priority system considering locations of obstructions, the presence of
heavy vehicles, and potential speed gain. No framework for rigor esti-
mation of the model’s parameters was proposed.

Several microsimulators implement lane-changing behaviors based
on Gipps’s model. CORSIM (2, 3) classifies lane changes as MLC or
DLC. MLC are performed when the driver must leave the current lane
(e.g., to use an off-ramp or avoid a lane blockage). DLC is performed
when the driver perceives that driving conditions in the target lane are
better, but a lane change is not required. In MITSIM (4), drivers per-
form MLC to connect to the next link on their path, bypass a down-
stream lane blockage, obey lane-use regulations, and respond to
lane-use signs and variable message signs. Conflicting goals are
resolved probabilistically with utility maximization models. DLC is
considered when the speed of the leader is below a desired speed. The
driver then checks the opportunity to increase speed by moving to a
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neighbor lane. In SITRAS (5) downstream turning movements and
lane blockages may trigger either MLC or DLC, depending on the
distance to the point where the lane change must be completed. MLC
are also performed to obey lane-use regulations. DLC are performed
in an attempt to obtain speed or queue advantage, defined as the adja-
cent lane allowing faster traveling speed or having a shorter queue.
A similar model is used in MRS (6).

Ahmed et al. (7 ) and Ahmed (8) developed and estimated the
parameters of a lane-changing model that captures both MLC and
DLC situations. A discrete choice framework is used to model three
lane-changing steps: decision to consider a lane change, choice of a
target lane, and acceptance of gaps in the target lane. When an MLC
situation applies, the decision to respond to it depends on the time
delay since the MLC situation arose. DLC is considered when MLC
conditions do not apply or the driver chooses not to respond to them.
The driver’s satisfaction with conditions in the current lane depends
on the difference between the current and desired speeds. The model
also captures differences in the behavior of heavy vehicles and the
effect of the presence of a tailgating vehicle. If the driver is not sat-
isfied with driving conditions in the current lane, neighboring lanes
are compared with the current one and the driver selects a target
lane. Lane utilities are affected by the speeds of the lead and lag
vehicles in these lanes relative to the current and desired speeds of
the subject vehicle. A gap acceptance model is used to represent the
execution of lane changes. Ahmed estimated the parameters of this
model with second-by-second vehicle trajectory data. The model does
not explain the conditions that trigger MLC situations. Therefore,
parameters of the MLC and DLC components of the model were esti-
mated separately. The MLC model was estimated for the special case
of vehicles merging to a freeway, under the assumption that all vehi-
cles are in an MLC state. Gap acceptance models were estimated
jointly with the target lane model in each case.

Wei et al. (9) developed a model for drivers’ lane selection when
turning into two-lane urban arterials. The model captures the effect of
the driver’s path plan on the lane choice. Arterial lanes are classified
according to the following criteria:

• Target (nontarget) lane—a lane (not) connecting to the turn the
driver wishes to perform at the next intersection.

• Preemptive (nonpreemptive) lane—a lane (not) connecting to
the turn the driver wishes to perform at an intersection further
downstream.

• Closest (farther) lane—the lane closest to (farther away from)
the curb on the side from which the driver is turning into the arterial.
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Using observations made in Kansas City, they identified a set of
deterministic lane selection rules:

• Drivers wishing to turn at the next intersection choose the target
lane.

• Drivers wishing to turn farther downstream choose the preemp-
tive lane if it is the closest. If the preemptive lane is the farthest, the
choice is based on the aggressiveness of the driver.

• Drivers already traveling on the arterial remain in their lanes.

Gap acceptance is an important element in most lane-changing
models. To execute a lane change, the driver assesses the positions
and speeds of the lead and lag vehicles in the target lane (see Fig-
ure 1) and decides whether the gap between them is sufficient to
execute the lane change.

Gap acceptance models are formulated as binary choice problems,
in which drivers decide whether to accept or reject the available gap
by comparing it with the critical gap (minimum acceptable gap). Crit-
ical gaps are modeled as random variables to capture the variation in
the behaviors of different drivers and for the same driver over time.

In CORSIM, critical gaps are defined through risk factors. The
risk factor is defined by the deceleration a driver will have to apply
if the leader brakes to a stop. The risk factors to the subject vehicle
with respect to the intended leader and to the intended follower with
respect to the subject vehicle are calculated for every lane change.
The risk is compared with an acceptable risk factor, which depends
on the type of lane change to be performed and its urgency.

Kita (10) used a logit model to estimate a gap acceptance model for
the case of vehicles merging from a freeway ramp. He found that
important factors are the length of the available gap, the relative speed
of the subject with respect to mainline vehicles, and the remaining
distance to the end of the acceleration lane.

Ahmed (8), within the framework of the lane-changing model
described previously, assumed that the driver considers the lead gap
and the lag gap separately. Both gaps must be acceptable to execute
the lane change. Critical gaps are assumed to follow a lognormal dis-
tribution to guarantee that they are nonnegative. Ahmed jointly esti-
mated the parameters of the target lane and gap acceptance models.
He found that lead and lag critical gaps in MLC situations are smaller
than those in DLC situations.

In summary, a number of lane-changing models have been pro-
posed in the literature. However, there has been very little rigorous
estimation of the parameters of these models. Most models either
ignore the issue of calibration completely or assume values for some
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FIGURE 1 Definitions of front, lead, and lag vehicles and their relations with the 
subject vehicle.
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speed advantage offered by the left lane (discretionary considera-
tion). Hence, the driver may choose to stay in the left lane until he or
she passes Vehicle B.

INTEGRATED LANE-CHANGING MODEL

In this section, an integrated lane-changing model, in which the
driver jointly evaluates mandatory and discretionary considerations,
is presented. The lane-changing process consists of two steps: choice
of target lane and gap acceptance decisions. This decision process is
latent because the target lane choice is unobservable; only the driv-
er’s lane-changing actions are observed. The structure of the model
is presented in Figure 3. Latent choice variables are indicated as
ovals, observed ones are rectangles.

The target lane is the lane the driver perceives as best to be in. The
Current branch corresponds to a situation in which the driver decides
not to pursue a lane change. In the Right and Left branches, the driver
perceives that moving to these lanes, respectively, would improve his
or her condition. In these cases, the driver evaluates the adjacent gap
in the target lane and decides whether the lane change can be executed
or not. Only if the driver perceives that the gap is acceptable is the
lane change executed (Change Right or Change Left); otherwise, the
driver does not execute the lane change (No Change). This decision
process is repeated at every time step.

Explanatory variables for lane-changing behavior can be classified
into the following types of considerations:

1. Neighborhood variables: The vehicle’s surroundings strongly
affect behavior. Most importantly, the presence of other vehicles
and their actions directly influence drivers’ decisions. Both the tar-
get lane and gap acceptance decisions depend on the relative posi-
tions and speeds of the subject vehicle with respect to the vehicles
surrounding it. Other elements in the vehicle’s surroundings that may
affect behavior include geometry elements, signals and signs, and
police presence.

2. Path plan variables: Drivers are assumed to have already
selected a destination, path, and desired arrival time for their trip.
These decisions affect driving behavior because drivers change lanes
to follow their paths. Variables in this group may include the distance
to a point when the driver needs to be in a specific lane to follow a path
and the number of lane changes required to be in the correct lane.

3. Network knowledge and experience: Variables that capture
drivers’ considerations and preferences based on their knowledge
and experience with the transportation system. For example, free-
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FIGURE 2 Lane-changing situation illustrating integrated 
lane-changing model.

FIGURE 3 Structure of lane-changing model.

parameters and use ad hoc procedures to determine values for others.
Moreover, existing models are based on a rigid separation between
MLC and DLC and therefore suffer from two important weaknesses:

1. They do not capture trade-offs between mandatory and dis-
cretionary considerations.

2. These models assume that the existence (or nonexistence) of an
MLC situation is known (i.e., drivers start responding to the MLC sit-
uation at a certain point, often defined by the distance from the point
where they have to be in a specific lane). However, except for very
special cases, such as on-ramp merging traffic, the emergence of
MLC situations is unobservable. Therefore, the conditions that trig-
ger MLC have not been estimated. Instead, microsimulators use sim-
ple rules to determine whether MLC conditions apply. The parameters
of these rules usually are based on the modelers’ judgment.

The model proposed in this paper overcomes these limitations of
existing models by integrating mandatory and discretionary consid-
erations into a single utility model. The relative importance of these
considerations varies depending on explanatory variables such as the
distance to the off-ramp. This way the awareness of the MLC situa-
tion is more realistically represented as a continuously increasing
function instead of a step function. To illustrate the advantage of the
integrated utility approach, consider the situation presented in Fig-
ure 2. Suppose Vehicle A is planning to use the off-ramp, and Vehi-
cle B is a slow-moving heavy vehicle. In existing models, once
Vehicle A enters an MLC state it will change to the right lane and
stay in it until the off-ramp. The presence of Vehicle B does not affect
this behavior. The proposed model captures the trade-off between the
utility of being in the correct lane (mandatory consideration) and the



way lane choices may be affected by a preference to avoid using the
rightmost lane to avoid interacting with merging traffic. The knowl-
edge that determines such behaviors is built over time. Commuters
repeatedly travel the same parts of the network and thus learn the spe-
cific attributes of their paths. With experience, drivers also develop
a more general knowledge that they use when traveling in networks
they are not familiar with. Knowledge considerations may influence
the behavior before the situation actually arises. For example, the
presence of an on-ramp merging lane may affect lane choices long
before the vehicle actually arrives at the merging point and regard-
less of the presence of traffic on the ramp. Other examples of situa-
tions in which such behaviors may occur include urban arterials with
permissive left-turning movements, bus stops, bus traffic, and toll
plazas.

4. Driving style and capabilities: Individual driver and vehicle
characteristics, such as the aggressiveness of the driver and perfor-
mance capabilities of the vehicle.

Target Lane Model

The target lane (TL) choice set includes up to three alternatives: the
driver may stay in the current lane (CL) or target either the right lane
(RL) or the left lane (LL). The utilities of these lanes are given by:

where

U n
lane i(t) = utility of lane i to driver n at time t;

X n
lane i(t) = vector of explanatory variables;
β lane i = corresponding vector of parameters;

� n
lane i(t) = random term associated with lane utility;

υn = driver-specific random term that represents unobserv-
able characteristics of the driver and vehicle, thus cap-
turing correlations between observations of the same
driver over time (υn is assumed to be normally distrib-
uted in the drivers’ population); and

α lane i = parameters of υn.

In model estimation, not all the α values can be identified. Instead,
one of these parameters must be normalized to zero.

Assuming that the random terms �n
CL(t), �n

RL(t), and � n
LL(t) are inde-

pendently and identically Gumbel distributed, the choice probabili-
ties of target lanes, conditional on the individual specific error term
(υn), are given by:

V n
lane i(t)�υn are the conditional systematic utilities of the alternatives,

given by:

Lane utility functions may depend on explanatory variables from
the four categories discussed previously. Variables should reflect the
conditions in the immediate neighborhood in each lane (e.g., relative
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leader speed in each lane, presence of heavy vehicles, and tailgating),
path plan considerations (e.g., the distance to a point where the driver
must be in a specific lane and the number of lane changes needed to
be in that lane), and knowledge of the system (e.g., avoiding the left
lane before permissive left turns or avoiding on-ramp merging lanes).
In most cases, information about the driver’s style and characteristics
is not available. Nevertheless, these characteristics are captured by the
individual specific error term υn.

Gap Acceptance Model

The gap acceptance model captures drivers’ decisions to execute the
lane change. The driver evaluates the adjacent gap in the target lane,
which is defined by the lead and lag vehicles in that lane (Figure 1).
The lead gap is the clear spacing between the rear of the lead vehi-
cle and the front of the subject vehicle. Similarly, the lag gap is the
clear spacing between the rear of the subject vehicle and the front of
the lag vehicle. Note that both of these gaps may be negative if the
vehicles overlap.

The driver compares the available space lead and lag gaps with the
corresponding critical gaps, which are the minimum acceptable space
gaps. An available gap is acceptable if it is greater than the critical gap.
Critical gaps are modeled as random variables. Their means are func-
tions of explanatory variables. The individual specific error term
captures correlations between the critical gaps of the same driver over
time. Critical gaps are assumed to follow lognormal distributions to
ensure that they are always nonnegative.

where

Gn
gap g TL,cr(t) = critical gap g in target lane (m),
Xn

gap g TL(t) = vector of explanatory variables affecting the critical
gap g,

βgap g = corresponding vector of parameters,
� n

gap g(t) = random term: �n
gap g(t): N(0, σ2

gap g), and
αgap g = parameter of driver-specific random term υn.

The gap acceptance model assumes that the driver must accept
both the lead gap and the lag gap to change lanes. The probability of
executing a lane change, conditional on the individual specific term
and the target lane, is therefore given by:

where

TL ∈ {RL, LL} = target lane (that requires a lane change),
Gn

lead TL(t) and Gn
lag TL(t) = available lead and lag gaps in the target

lane, respectively, and
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Assuming that critical gaps follow lognormal distributions, the
conditional probability that the lead gap is acceptable is given by:

where Φ[�] denotes cumulative standard normal distribution.
Similarly, the conditional probability that the lag gap is acceptable

is given by:

The gap acceptance decision is primarily affected by neighbor-
hood variables such as the subject relative speeds with respect to the
lead and lag vehicles. Path plan variables, capturing the necessity of
the lane change, may also affect critical gaps.

Likelihood Function

The data available for estimation of this type of model consist of
observations of the positions of vehicles on a section of road at dis-
crete points in time. Measurement times are equally spaced with short
time intervals between them, typically 1 s. Explanatory variables re-
quired by the model are inferred from the raw data set (e.g., speeds
and relations between the subject vehicle and other vehicles). In this
section, the likelihood function of lane-changing actions observed in
the data is presented.

Important explanatory variables affecting the target lane choice are
those related to the path plan. However, when studying a section of
road, this information may not be observed for some of the vehicles
(e.g., vehicles exiting a freeway downstream of the section observed).
To capture the effect of these variables, a distribution of the distances
from the downstream end of the road section being studied to the exit
points is used. A discrete distribution, which exploits information
about the locations of downstream off-ramps, is used in this study.
The alternatives considered are the first, second, and subsequent exits.
The probability mass function of the distance beyond the downstream
end of the section to the off-ramps used by drivers is given by:

where

π1 and π2 = parameters to be estimated, and
d1, d 2, and d 3 = distances beyond the downstream end of the

section to the first, second, and subsequent
exits, respectively.

The first and second exit distances (d 1 and d 2 ) are measured
directly. For the subsequent exits an infinite distance is used (d 3 = ∞).
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This corresponds to an assumption that, while on the section being
studied, drivers who use these exits ignore path plan considerations.
The parameters of this distribution are estimated jointly with the
other parameters of the model.

The joint probability density of a combination of target lane (TL)
and lane action (l) observed for driver n at time t, conditional on the
individual specific variables (dn, vn), is given by:

Pn(TLt � �) and Pn(lt � �) are given by Equations 2 and 5, respectively.
Only the lane-changing action is observed. The marginal prob-

ability of the lane action is given by:

The behavior of driver n is observed over a sequence of T consec-
utive time intervals. Assuming that, conditional on dn and vn, these
observations are independent, the joint probability of the sequence of
observations is given by:

where l is the vector of lane observations.
The unconditional individual likelihood function (Ln) is obtained

by integrating (summing for the discrete variable dn) over the distri-
butions of the individual specific variables:

p(d ) is given by Equation 8, and φ(v) is the standard normal prob-
ability density function.

Assuming that the observations from different drivers are inde-
pendent, the log-likelihood function for all N individuals observed
is given by:

Maximum-likelihood estimators of the model parameters can be
found by maximizing this function.

DATA FOR ESTIMATION

The model parameters were estimated with data collected in a section
of I-395 southbound in Arlington, Virginia, presented schematically in
Figure 4. The data set contains observations on the position, lane, and
dimensions of every vehicle in the section every 1 s. Details of the col-
lection effort are presented elsewhere (11). This data set is particularly
useful for estimating the lane-changing model because of the geomet-
ric characteristics of the site: the site is 997 m long with two off-ramps
and an on-ramp and therefore included weaving sections that are very
important in freeway operations, often being the capacity bottleneck.
Thus, it serves to demonstrate the integrated model.

The vehicle trajectory data were used to generate the required
explanatory variables including speeds and relations between the
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subject vehicle and other vehicles. The resulting estimation data
set includes 442 vehicle records for a total of 15,632 observations.
On average, a vehicle was observed for 35.4 s (observations). All
vehicles were first observed at the upstream end of the freeway
section. At the downstream end, 76% stay on the freeway, and 8%
and 16% use the first and second off-ramps, respectively. Observed
speeds range from 0.4 to 25.0 m/s, with a mean of 15.6 m/s. Den-
sities range from 14.2 to 55.0 vehicles/km/lane, with a mean of
31.4 vehicles/km/lane. The level of service on the section ranges
from D to E.

ESTIMATION RESULTS

Estimation results of the proposed lane-changing model are presented
in Table 1.

Target Lane Model

Path plan variables are critically important in this model. The effect
of the path plan is represented by a group of variables that capture the
distance to the point where the driver needs to be in a specific lane
(i.e., to take an off-ramp) and the number of lane changes required to
be in the correct lane. The functional form adopted for these variables
is as follows:

where

dn
exit(t) = distance from vehicle’s current position to intended exit

point from the freeway (km),
θMLC = parameter to be estimated, and

δn
j,i(t) = indicators of number of lane changes required to follow

the path:
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The utility of a lane decreases with the number of lane changes
the driver needs to perform to maintain the desired path. This effect
is magnified when the distance to the off-ramp decreases (θMLC =
−0.378). The use of a power function to capture the effect of the dis-
tance to the off-ramp guarantees that, at the limits, the path plan
impact approaches 0 when dn

exit(t) → +∞ and approaches −∞ when
dn

exit (t) → +0. Figure 5 indicates the impact of lane changes required
by the path plan on the probability of targeting the right lane as a
function of the distance from the off-ramp.

Drivers’ perception and awareness of path plan considerations are
likely to depend on the geometric road layout. In particular, drivers
are more likely to respond to constraints that involve the next road
facility they will encounter. Such behavior would present itself for
drivers who exit the freeway using the next off-ramp (as opposed to
drivers who use subsequent exits). A dummy variable is used to cap-
ture the disutility of being in a wrong lane when the driver is taking
the next exit:

The indicator variables δ n
next exit(t) and δn

wrong, i(t) are given by:

As expected, the estimated coefficient of this variable is negative.
The disutility associated with being in a wrong lane is larger when the
driver needs to take the next exit. An attempt to interact the next exit
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Variable Parameter value t-statistic 
Target lane model 

CL constant 2.490 3.74 
RL constant -0.173 -0.51 
Right-most lane dummy  -1.230 -3.89 
Subject speed, m/sec. 0.0615 1.59 
Relative front vehicle speed, m/sec 0.163 3.02 
Relative lag speed, m/sec  -0.0741 -1.30 
Front vehicle spacing, m  0.0192 3.42 
Tailgate dummy -3.162 -1.68 
Path plan impact, 1 lane change required -2.573 -4.86 
Path plan impact, 2 lane changes required -5.358 -5.94 
Path plan impact, 3 lane changes required -8.372 -5.70 
Next exit dummy, lane change(s) required -1.473 -2.30 

MLCθ  -0.378 -2.29 

1π  0.0035 0.46 

2π  0.0095 0.77 
CLα  0.734 4.66 
RLα  2.010 2.73 

Lead Critical Gap 
Constant 1.353 2.48 

( )( ),0lead
nmax V t∆ , m/sec -2.700 -2.25 

( )( ),0lead
nmin V t∆ , m/sec -0.231 -2.42 

leadα  1.270 2.86 
leadσ  1.112 2.23 

Lag Critical Gap 
Constant 1.429 6.72 

( )( ),0lag
nmax V t∆ , m/sec 0.471 3.89 

lagα  0.131 0.64 
lagσ  0.742 3.68 

Number of drivers = 442 
Number of observations = 15632 

( )0 1434.76L =   

( ) 1037.05L c =   

( )ˆ 888.78L β =   

2 0.362ρ =  

TABLE 1 Estimation Results of Integrated Lane-Changing Model
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FIGURE 5 Impact of path plan on probability of targeting the right lane (speeds of subject, front,
and lag vehicles � 15 m/s; front spacing � 20 m).



dummy variable with the number of lane changes required did not
significantly improve the model. This implies that being in a wrong
lane is a more significant factor in drivers’ perception relative to the
number of lane changes that are required.

A second group of variables captures driving conditions in the
neighborhood of the vehicle. These include the speed of the subject
vehicle, the relative speed and spacing with respect to the vehicle in
front, and the relative speed with respect to lag vehicles in the lanes to
the right and to the left of the subject vehicle. The subject speed and
the relative speed and spacing of the front vehicle (appearing only 
in the utility of the current lane) capture the likely satisfaction of the
driver with conditions in the current lane. The utility of the current lane
increases with the subject speed, the relative front speed, and the spac-
ing between the two vehicles. The subject is less likely to perceive the
front vehicle as constraining when the front vehicle speed is higher and
the spacing is larger and therefore is less likely to seek a lane change.

The relative lag speed appears in the utilities of the right and left
lanes. The lag vehicle may pose a risk if the driver tries to change
lanes. The coefficient of this variable is negative, hence suggesting
that drivers consider the likelihood of being able to execute the lane
change when selecting a target lane.

The tailgating dummy variable captures drivers’ tendency to move
out of their current lanes if they are being tailgated. Tailgating is
not directly observable in the data. Instead, tailgating behavior is
assumed if the vehicle behind is close to the subject vehicle, although
traffic conditions allow longer headways. Mathematically, the tailgate
dummy variable is defined by

The estimated coefficient of the tailgate dummy is negative and its
magnitude is large relative to the coefficients of other variables. It
implies a strong preference to avoid tailgating situations. This result
is consistent with those of Ahmed (8), who also found tailgating to
be an important explanatory variable.

The right-most lane variable captures the preference of freeway
drivers to avoid the right-most lane because of the merging and
weaving activity that takes place there. This variable is defined by:

The heterogeneity coefficients αCL and αRL capture the effects of
the individual specific error term υn on the target lane choice, thus
accounting for correlations between observations of the same indi-
vidual due to unobserved characteristics of the driver and vehicle.
Both estimated parameters are positive. Hence, υn can be interpreted
as positively correlated with timidity: timid drivers are more likely
than more aggressive drivers to choose the right lane and the current
lane over the left lane.

In summary, the target lane utilities are given by:
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Gap Acceptance Model

Lead and lag critical gaps are functions of the relative lead and lag
speeds, respectively. The relative speed with respect to a vehicle is
defined as the difference between the speed of that vehicle and the
speed of the subject vehicle.

The lead critical gap decreases with the relative lead speed—that
is, it is larger when the subject vehicle is faster relative to the lead
vehicle. The effect of the relative speed is strongest when the lead
vehicle is faster than the subject. In this case, the lead critical gap
quickly diminishes as a function of the speed difference. This result
suggests that drivers perceive very little risk from the lead vehicle
when it is getting away from them.

Inversely, the lag critical gap increases with the relative lag speed:
the faster the lag vehicle is relative to the subject, the larger the lag
critical gap is. In contrast to the lead critical gap, the lag gap does not
diminish when the subject is faster. A possible explanation is that
drivers may maintain a minimum critical lag gap as a safety buffer
because their perception of the lag gap is not as reliable as it is for the
lead gap because of the use of mirrors. Median lead and lag critical
gaps as a function of the relative speeds are presented in Figure 6.

Estimated coefficients of the unobserved driver characteristics
variable, υn, are positive for both lead and lag critical gaps and hence
are consistent with the interpretation of υn as positively correlated
with timid drivers, who require larger gaps for lane changing than
more aggressive drivers.

Contrary to a priori expectations, the distance to the point the lane
change must be completed did not have a significant effect on critical
gap lengths. This may be because traffic conditions (level of service D
or E) are such that acceptable gaps are available, and therefore drivers
are not forced to take risks (reduce their critical gaps) to lane change.

In summary, the estimated lead and lag critical gaps are given by:

CONCLUSION

Existing lane-changing models classify lane changes as either MLC
or DLC. As a result, trade-offs between these considerations are
ignored. In addition, these models require determination of the con-
ditions that trigger MLC. In most cases, simple rules are used to define
these conditions. In this paper, an integrated lane-changing model that
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overcomes both of these limitations is proposed. The model combines
mandatory and discretionary considerations into a single utility
model. The lane-changing process consists of two steps: choice of tar-
get lanes and gap acceptance decisions. A logit model is used to model
the choice of target lanes. Gap acceptance behavior is modeled by
comparing the available space gaps with the critical gaps. The model
requires that both the lead and lag gaps are acceptable. The effect
of unobserved driver and vehicle characteristics on the lane-
changing process is captured by a driver-specific random term
included in all model components. Missing data due to limitations of
data collection are also accounted for.

Parameters of all components of the model were estimated jointly
with detailed vehicle trajectory data. Estimation results indicate that
drivers’ lane selection is affected by both path plan variables and traf-
fic conditions in their neighborhood, hence suggesting that trade-offs
between mandatory and discretionary considerations are important.
Critical gaps depend on the relative speeds with respect to the lead and
lag vehicles. Further research with more data sets is required to iden-
tify geometry and other site-specific effects and develop robust and
more general models that can be used in any urban freeway section.
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