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Lane-Changing Behavior
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Thelane-changing model isan important component within microscopic
traffic smulation tools. Following the emergence of these toolsin recent
years, interest in the development of morereliable lane-changing models
hasincreased. L ane-changing behavior isalsoimportant in several other
applications such as capacity analysis and safety studies. Lane-changing
behavior isusually modeled in two steps: (a) thedecision to consider alane
change, and (b) the decision to execute the lane change. In most models,
lane changes ar e classified as either mandatory (ML C) or discretionary
(DLC). MLC areperformed when thedriver must leavethecurrent lane.
DL C areperformed toimprovedriving conditions. Gap acceptance mod-
elsareused to model the execution of lane changes. The classification of
lane changes as either mandatory or discretionary prohibits capturing
trade-offs between these considerations. Theresult isarigid behavioral
structurethat doesnot per mit, for example, overtaking when mandatory
considerations are active. Using these models within a microsimulator
may result in unrealistic traffic flow characteristics. In addition, little
empirical work has been doneto rigorously estimate the parameter s of
lane-changing models. An integr ated lane-changing model, which allows
driverstojointly consider mandatory and discretionary consider ations,
ispresented. Parametersof themodel are estimated with detailed vehicle
trajectory data.

Lane-changing behavior hasasignificant effect on traffic flow. There-
fore, the understanding of lane-changing behavior isimportant in sev-
eral application fields such as capacity analysis and safety studies. In
particular, lane-changing behavior isamong the most important com-
ponents of amicroscopic traffic simulator. In recent years, following
the emergence of these tools asauseful tool for the analysis of trans-
portation systems, interest in the development of morereliabledriving
behavior models, in particular lane-changing models, has increased.

Lane changing is usually modeled in two steps: (a) the decision to
consider alane change, and (b) the decision to executethelane change.
In most models, lane changes are classified as either mandatory or dis-
cretionary. Mandatory lane changes (ML C) are performed when the
driver must leave the current lane. Discretionary lane changes (DLC)
are performed to improve driving conditions. Gap acceptance models
are used to model the execution of lane changes.

The classification of lane changes as either mandatory or dis-
cretionary prohibits capturing trade-offs between these consider-
ations. Theresult isarigid behavior structure that does not permit,
for example, overtaking when mandatory considerations are active.
Applying these models within microsimulators may result in un-
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realistic traffic flow characteristics. In addition, little empirical
work has been done to rigorously estimate the parameters of lane-
changing models.

In this paper, an integrated lane-changing model, which allows
joint eval uation of mandatory and discretionary considerations, ispre-
sented. Parameters of the model are estimated with detailed vehicle
trgjectory data.

The rest of this paper is organized as follows: state-of-the-art
lane-changing models and their limitations are discussed in the next
section. The proposed model is presented in the third section. The
data used to estimate the parameters of this model are described in
the fourth section. Estimation results are presented and interpreted
in the fifth section, followed by concluding remarks.

LANE-CHANGING MODELS

Gipps (1) introduced the first lane-changing model intended for
microsimulation tools. The model covers various urban driving situ-
ations, in which traffic signals, transit lanes, obstructions, and the
presence of heavy vehicles affect drivers' lane selection. The model
considersthe necessity, desirability, and safety of lane changes. Driv-
ers behavior is governed by two basic considerations: maintaining a
desired speed and being in the correct lane for an intended turning
maneuver. The zone the driver isin, defined by the distance to the
intended turn, determines which of these considerations is active.
When the turn is far away it has no effect on the behavior and
the driver concentrates on maintaining adesired speed. Inthemiddle
zone, lane changes are considered only to the turning lanes or lanes
that are adjacent to them. Closeto theturn, thedriver focuses on keep-
ing the correct lane and ignores other considerations. The zones are
defined deterministically, ignoring variation between drivers and
inconsistenciesin the behavior of adriver over time. When morethan
one lane is acceptable the conflict is resolved deterministically by a
priority system considering locations of obstructions, the presence of
heavy vehicles, and potentia speed gain. No framework for rigor esti-
mation of the model’ s parameters was proposed.

Several micros mulatorsimplement |ane-changing behaviors based
on Gipps smodel. CORSIM (2, 3) classifieslane changesasMLC or
DLC. MLC are performed when thedriver must |leavethe current lane
(e.g., touse an off-ramp or avoid alane blockage). DLC is performed
whenthedriver perceivesthat driving conditionsinthetarget laneare
better, but alane changeisnot required. In MITSIM (4), drivers per-
form MLC to connect to the next link on their path, bypass a down-
stream lane blockage, obey lane-use regulations, and respond to
lane-use signs and variable message signs. Conflicting goals are
resolved probabilistically with utility maximization models. DLC is
considered when the speed of theleader isbelow adesired speed. The
driver then checks the opportunity to increase speed by moving to a
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neighbor lane. In SITRAS (5) downstream turning movements and
lane blockages may trigger either MLC or DLC, depending on the
distanceto the point where thelane change must be completed. MLC
are also performed to obey lane-use regulations. DL C are performed
inan attempt to obtain speed or queue advantage, defined asthe adja-
cent lane allowing faster traveling speed or having a shorter queue.
A similar model isused in MRS (6).

Ahmed et a. (7) and Ahmed (8) developed and estimated the
parameters of alane-changing model that captures both MLC and
DLC situations. A discrete choice framework is used to model three
lane-changing steps: decision to consider alane change, choice of a
target lane, and acceptance of gapsin thetarget lane. Whenan MLC
situation applies, the decision to respond to it depends on the time
delay sincethe ML C situation arose. DLC is considered when MLC
conditions do not apply or the driver chooses not to respond to them.
Thedriver’ s satisfaction with conditionsin the current lane depends
on the difference between the current and desired speeds. The model
also captures differences in the behavior of heavy vehicles and the
effect of the presence of atailgating vehicle. If the driver isnot sat-
isfied with driving conditionsin the current |ane, neighboring lanes
are compared with the current one and the driver selects a target
lane. Lane utilities are affected by the speeds of the lead and lag
vehiclesin these lanes relative to the current and desired speeds of
the subject vehicle. A gap acceptance model is used to represent the
execution of lane changes. Ahmed estimated the parameters of this
model with second-by-second vehicletrgectory data. Themodel does
not explain the conditions that trigger MLC situations. Therefore,
parameters of the ML C and DL C components of the model were esti-
mated separately. The ML C model was estimated for the special case
of vehicles merging to afreeway, under the assumption that all vehi-
cles are in an MLC state. Gap acceptance models were estimated
jointly with the target lane model in each case.

Wei et a. (9) developed amodel for drivers' lane selection when
turning into two-lane urban arterials. Themodel capturesthe effect of
the driver’s path plan on the lane choice. Arterial lanes are classified
according to the following criteria:

* Target (nontarget) lane—alane (not) connecting to theturn the
driver wishesto perform at the next intersection.

* Preemptive (nonpreemptive) lane—alane (not) connecting to
the turn the driver wishes to perform at an intersection further
downstream.

* Closest (farther) lane—the lane closest to (farther away from)
the curb on the side from which the driver isturning into the arterial.
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Using observations made in Kansas City, they identified a set of
deterministic lane selection rules:

* Driverswishing to turn at the next intersection choose the target
lane.

* Driverswishing to turn farther downstream choose the preemp-
tivelaneif it isthe closest. If the preemptive lane isthe farthest, the
choiceis based on the aggressiveness of the driver.

* Driversalready traveling on the arterial remain in their lanes.

Gap acceptance is an important element in most lane-changing
models. To execute alane change, the driver assessesthe positions
and speeds of the lead and lag vehicles in the target lane (see Fig-
ure 1) and decides whether the gap between them is sufficient to
execute the lane change.

Gap acceptance modelsare formulated as binary choice problems,
inwhich drivers decide whether to accept or reject the available gap
by comparing it with the critical gap (minimum acceptable gap). Crit-
ical gaps are modeled asrandom variablesto capturethevariationin
the behaviors of different drivers and for the same driver over time.

In CORSIM, critical gaps are defined through risk factors. The
risk factor is defined by the deceleration adriver will have to apply
if the leader brakes to astop. Therisk factors to the subject vehicle
with respect to theintended | eader and to theintended follower with
respect to the subject vehicle are calculated for every lane change.
Therisk is compared with an acceptable risk factor, which depends
on the type of lane change to be performed and its urgency.

Kita(10) used alogit model to estimate agap acceptance model for
the case of vehicles merging from a freeway ramp. He found that
important factors are thelength of the available gap, therel ative speed
of the subject with respect to mainline vehicles, and the remaining
distance to the end of the acceleration lane.

Ahmed (8), within the framework of the lane-changing model
described previously, assumed that the driver considersthe lead gap
and the lag gap separately. Both gaps must be acceptable to execute
thelane change. Critical gapsare assumed to follow alognormal dis-
tribution to guarantee that they are nonnegative. Ahmed jointly esti-
mated the parameters of the target lane and gap acceptance models.
Hefoundthat lead and lag critical gapsin MLC situationsare smaller
than those in DL C situations.

In summary, a number of lane-changing models have been pro-
posed in the literature. However, there has been very little rigorous
estimation of the parameters of these models. Most models either
ignore theissue of calibration completely or assume valuesfor some

Adjacent gap —_—
- > Traffic direction
Lag Lead
vehicle Lag gap Lead gap vehicle
Subject Front spacin Front
vehicle P 9 vehicle

FIGURE 1 Definitions of front, lead, and lag vehicles and their relations with the

subject vehicle.
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FIGURE 2 Lane-changing situation illustrating integrated
lane-changing model.

parameters and use ad hoc proceduresto determine valuesfor others.
Moreover, existing models are based on arigid separation between
MLC and DL C and therefore suffer from two important weaknesses:

1. They do not capture trade-offs between mandatory and dis-
cretionary considerations.

2. These model s assumethat the existence (or nonexistence) of an
MLC situationisknown (i.e., drivers start responding to the ML C sit-
uation at a certain point, often defined by the distance from the point
where they have to bein a specific lane). However, except for very
special cases, such as on-ramp merging traffic, the emergence of
MLC situations is unobservable. Therefore, the conditions that trig-
ger ML C have not been estimated. |nstead, microsimulators use sim-
plerulesto determinewhether ML C conditionsapply. The parameters
of these rules usually are based on the modelers' judgment.

The model proposed in this paper overcomes these limitations of
existing models by integrating mandatory and discretionary consid-
erationsinto asingle utility model. The relative importance of these
considerations varies depending on explanatory variables such asthe
distance to the off-ramp. This way the awareness of the MLC situa-
tion is more realistically represented as a continuously increasing
function instead of astep function. To illustrate the advantage of the
integrated utility approach, consider the situation presented in Fig-
ure 2. Suppose Vehicle A is planning to use the off-ramp, and V ehi-
cle B is a dow-moving heavy vehicle. In existing models, once
Vehicle A enters an MLC state it will change to the right lane and
stay init until the off-ramp. The presence of Vehicle B doesnot affect
thisbehavior. The proposed model capturesthetrade-off betweenthe
utility of being in the correct lane (mandatory consideration) and the

Target
lane
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speed advantage offered by the left lane (discretionary considera
tion). Hence, the driver may chooseto stay in theleft lane until he or
she passes Vehicle B.

INTEGRATED LANE-CHANGING MODEL

In this section, an integrated lane-changing model, in which the
driver jointly evaluates mandatory and discretionary considerations,
ispresented. Thelane-changing process consists of two steps: choice
of target lane and gap acceptance decisions. This decision processis
latent because the target lane choice is unobservable; only the driv-
er'slane-changing actions are observed. The structure of the model
is presented in Figure 3. Latent choice variables are indicated as
ovals, observed ones are rectangles.

Thetarget laneisthelanethe driver perceivesasbest to bein. The
Current branch correspondsto a situation in which the driver decides
not to pursue alane change. Inthe Right and L eft branches, the driver
perceivesthat moving to these lanes, respectively, would improve his
or her condition. In these cases, the driver evaluates the adjacent gap
inthetarget lane and decideswhether thelane change can be executed
or not. Only if the driver perceivesthat the gap is acceptable isthe
lane change executed (Change Right or Change L eft); otherwise, the
driver does not execute the lane change (No Change). Thisdecision
process isrepeated at every time step.

Explanatory variablesfor lane-changing behavior can be classified
into the following types of considerations:

1. Neighborhood variables: Thevehicle' s surroundings strongly
affect behavior. Most importantly, the presence of other vehicles
and their actions directly influence drivers decisions. Both the tar-
get lane and gap acceptance decisions depend on the relative posi-
tions and speeds of the subject vehicle with respect to the vehicles
surrounding it. Other elementsin thevehicl€' ssurroundingsthat may
affect behavior include geometry elements, signals and signs, and
police presence.

2. Path plan variables: Drivers are assumed to have already
selected a destination, path, and desired arrival time for their trip.
These decisions affect driving behavior because drivers change lanes
tofollow their paths. Variablesin thisgroup may include thedistance
to apoint when thedriver needsto bein aspecific laneto follow apath
and the number of lane changes required to be in the correct lane.

3. Network knowledge and experience: Variables that capture
drivers' considerations and preferences based on their knowledge
and experience with the transportation system. For example, free-

Gap NO CHANGE
acceptance | CHANGE LEFT

NO CHANGE NO
CHANGE RIGHT CHANGE

FIGURE 3 Structure of lane-changing model.
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way lane choices may be affected by a preferenceto avoid using the
rightmost lane to avoid interacting with merging traffic. The knowl-
edge that determines such behaviors is built over time. Commuters
repeatedly travel the same parts of the network and thuslearn the spe-
cific attributes of their paths. With experience, drivers also develop
amore general knowledge that they use when traveling in networks
they are not familiar with. Knowledge considerations may influence
the behavior before the situation actually arises. For example, the
presence of an on-ramp merging lane may affect lane choices long
before the vehicle actually arrives at the merging point and regard-
less of the presence of traffic on the ramp. Other examples of situa
tionsin which such behaviors may occur include urban arterialswith
permissive left-turning movements, bus stops, bus traffic, and toll
plazas.

4. Driving style and capabilities: Individual driver and vehicle
characteristics, such as the aggressiveness of the driver and perfor-
mance capabilities of the vehicle.

Target Lane Model

Thetarget lane (TL) choice set includes up to three alternatives: the
driver may stay inthe current lane (CL) or target either theright lane
(RL) or the left lane (LL). The utilities of these lanes are given by:

U]Lmei(t) - Xrllane\(t)BIanei + cxIeneiUn + €Inanei(t)

lanei = CL,RL,LL (1)

where

Ularei(t) = utility of lanei to driver nat timet;
Xlanei(t) = vector of explanatory variables;

B'aei = corresponding vector of parameters;
el@ei(t) = random term associated with lane utility;

U, = driver-specific random term that represents unobserv-
able characteristics of the driver and vehicle, thus cap-
turing correlations between observations of the same
driver over time (v, is assumed to be normally distrib-
uted in the drivers’ population); and

a'@ei = parameters of v,,.

In model estimation, not all the o values can be identified. Instead,
one of these parameters must be normalized to zero.

Assuming that therandom termse§-(t), el (t), and e ;- (t) areinde-
pendently and identically Gumbel distributed, the choice probabili-
ties of target lanes, conditional on the individual specific error term
(v,), aregiven by:

expVa™ ] v,]

R.(lanei |v,) = -
( anei.|v,) Z exp[\/n'a“e‘ ) Un]
J

lanei O1= {CL,RL, L} (2)

Viaei(t)| v, arethe conditional systematic utilities of the aternatives,
given by:

Vi) v, = X WB™ +a™'v,  lanei =CL,RL,LL (3)
Lane utility functions may depend on explanatory variables from

the four categories discussed previoudly. Variables should reflect the
conditionsin the immediate neighborhood in each lane (e.g., relative
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leader speed in each lane, presence of heavy vehicles, and tailgating),
path plan considerations (e.g., the distance to a point where the driver
must be in a specific lane and the number of lane changes needed to
bein that lane), and knowledge of the system (e.g., avoiding the left
lane before permissiveleft turns or avoiding on-ramp merging lanes).
In most cases, information about the driver’ s style and characteristics
isnot available. Neverthel ess, these characteristics are captured by the
individual specific error term v,,.

Gap Acceptance Model

The gap acceptance model capturesdrivers' decisionsto executethe
lane change. Thedriver evaluatesthe adjacent gapin thetarget lane,
which is defined by thelead and lag vehiclesin that lane (Figure 1).
The lead gap isthe clear spacing between the rear of the lead vehi-
cle and the front of the subject vehicle. Similarly, thelag gap isthe
clear spacing between therear of the subject vehicle and thefront of
the lag vehicle. Note that both of these gaps may be negative if the
vehicles overlap.

The driver comparesthe available spacelead and lag gapswith the
corresponding critical gaps, which are the minimum acceptable space
gaps. Anavailablegap isacceptableif itisgreater than thecritical gap.
Critical gapsare modeled asrandom variables. Their meansare func-
tions of explanatory variables. The individual specific error term
captures correl ations between the critical gapsof the samedriver over
time. Critical gaps are assumed to follow lognormal distributions to
ensure that they are always nonnegative.

IN[GFI™ ()] = X (DR + a*,

+e®°(t) gapg = lead, lag 4

where

GgpoTle(t) = critical gap g in target lane (m),
Xg@9T(t) = vector of explanatory variables affecting the critical
gap g,
99 = corresponding vector of parameters,
e 9(t) = random term: eg9(t): N(O, 03, ), and
099 = parameter of driver-specific random term v,

The gap acceptance model assumes that the driver must accept
both the lead gap and the lag gap to change lanes. The probability of
executing alane change, conditional on theindividual specific term
and the target lane, is therefore given by:

P,(changeto target lane| TL,, u,) = R(I™ = 1| TL,u,)
= R (accept lead gap| TL,, v,) R (accept lag gap| TL, v,,)
= P[G=™ (1) > G (1| TL, v,]
‘R[GE™®) > GP™ ()| TL, v, (5)

where

TL O{RL, LL} = target lane (that requiresalane change),
GledT(t) and G ™(t) = available lead and lag gapsin the target
lane, respectively, and
I T+ = indicator to the lane-changing action.

o i alane change to lane TL is executed at timet
v = 0
o

otherwise
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Assuming that critical gaps follow lognormal distributions, the
conditional probability that the lead gap is acceptable is given by:

R[GFT® > G ()] TL, v,

P{IN[G=™®] > In[G=™"®]| T, v}

an[G=™®] - [X=™®p™ + a'v,| O
_ oG] - [ 0p= + 0
a Ol O

(6)

where ®[+] denotes cumulative standard normal distribution.
Similarly, the conditional probability that thelag gapisacceptable

isgiven by:

R[G®™® > G®™ | TL, u,]

P{IN[G@™®] > In[G®™ ®)]| TL, v}

an[G2™®)] - [X=2™®p= + a™@u,| O
= ol ] - [X@™ B 19
D O-Iag D

()

The gap acceptance decision is primarily affected by neighbor-
hood variables such asthe subject rel ative speeds with respect to the
lead and lag vehicles. Path plan variabl es, capturing the necessity of
the lane change, may a so affect critical gaps.

Likelihood Function

The data available for estimation of this type of model consist of
observations of the positions of vehicles on a section of road at dis-
cretepointsin time. Measurement timesare equally spaced with short
time interval s between them, typically 1 s. Explanatory variablesre-
quired by the model are inferred from the raw data set (e.g., speeds
and relations between the subject vehicle and other vehicles). Inthis
section, the likelihood function of lane-changing actions observed in
the datais presented.

Important explanatory variables affecting thetarget lane choice are
those related to the path plan. However, when studying a section of
road, this information may not be observed for some of the vehicles
(e.g., vehiclesexiting afreeway downstream of the section observed).
To capturethe effect of these variables, adistribution of the distances
from the downstream end of the road section being studied to the exit
points is used. A discrete distribution, which exploits information
about the locations of downstream off-ramps, is used in this study.
Thealternatives considered arethefirst, second, and subsequent exits.
The probability massfunction of the distance beyond the downstream
end of the section to the off-ramps used by driversis given by:

oy first downstream exit (d*)

p(d,) = %Tz second downstream exit (d*) ®)
0
H-m-m  othewise(d®)

where

14 and T, = parameters to be estimated, and
dt, d?, and d® = distances beyond the downstream end of the
section to the first, second, and subsequent
exits, respectively.

The first and second exit distances (d* and d?) are measured
directly. For the subsequent exitsan infinite distanceis used (d® = ).

Transportation Research Record 1857

This corresponds to an assumption that, while on the section being
studied, driverswho usethese exitsignore path plan considerations.
The parameters of this distribution are estimated jointly with the
other parameters of the model.

Thejoint probability density of acombination of target lane (TL)
and lane action (1) observed for driver n at timet, conditional on the
individual specific variables (d., v,), is given by:

fo(TLe, b doy Vi) = R(TLe | Aoy Vo) R (| TLe, Vi) ©)

P.(TL.| -) and P,(l, | -) are given by Equations 2 and 5, respectively.
Only the lane-changing action is observed. The marginal prob-
ability of the lane action is given by:

fn(ltldnvvn) = Z fn(TLllllldnvvn) (10)

t

The behavior of driver nis observed over asequence of T consec-
utive time intervals. Assuming that, conditional on d, and v,, these
observationsareindependent, thejoint probability of the sequence of
observationsis given by:

(1) = |‘J £ (] o i) (@)

wherel isthe vector of lane observations.

The unconditional individual likelihood function (L,) isobtained
by integrating (summing for the discrete variable d,)) over the distri-
butions of theindividual specific variables:

L, = I Z_ £.(1] dy, Vi) P @) dv 12)

p(d) isgiven by Equation 8, and @(v) is the standard normal prob-
ability density function.

Assuming that the observations from different drivers are inde-
pendent, the log-likelihood function for all N individuals observed
isgiven by:

L= iln(Ln) (13)

Maximum-likelihood estimators of the model parameters can be
found by maximizing this function.

DATA FOR ESTIMATION

Themodel parameterswere estimated with data collected in asection
of 1-395 southbound in Arlington, Virginia, presented schematically in
Figure 4. The data set contains observations on the position, lane, and
dimensionsof every vehicleinthe section every 1 s. Detailsof the col-
lection effort are presented elsewhere (11). Thisdataset isparticularly
useful for estimating the lane-changing model because of the geomet-
ric characterigtics of the site: the siteis 997 m long with two off-ramps
and an on-ramp and thereforeincluded weaving sectionsthat are very
important in freeway operations, often being the capacity bottleneck.
Thus, it serves to demonstrate the integrated model.

The vehicle trajectory data were used to generate the required
explanatory variables including speeds and relations between the
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FIGURE 4 Data collection site (not to scale).
subject vehicle and other vehicles. The resulting estimation data N E! j lane changes are required from lanei
set includes 442 vehiclerecordsfor atotal of 15,632 observations. &' =g (a5

On average, a vehicle was observed for 35.4 s (observations). All
vehicles were first observed at the upstream end of the freeway
section. At the downstream end, 76% stay on the freeway, and 8%
and 16% usethefirst and second off-ramps, respectively. Observed
speeds range from 0.4 to 25.0 m/s, with amean of 15.6 m/s. Den-
sities range from 14.2 to 55.0 vehicles’km/lane, with a mean of
31.4 vehicles’km/lane. The level of service on the section ranges
fromD to E.

ESTIMATION RESULTS

Estimation results of the proposed |ane-changing model are presented
inTable 1.

Target Lane Model

Path plan variables are critically important in this model. The effect
of the path plan isrepresented by agroup of variablesthat capturethe
distance to the point where the driver needs to be in a specific lane
(i.e., totake an off-ramp) and the number of lane changesrequired to
bein the correct lane. The functional form adopted for these variables
isasfollows:

path_plan_impact_j;™*'(t) = [dn@d‘(t)]BMLC 3 (1)
lanei = CL, RL, LL; J =123 (14)

where

dedt(t) = distance from vehicl€e’ scurrent position to intended exit
point from the freeway (km),
BMLC = parameter to be estimated, and
d}i(t) = indicators of number of lane changes required to follow
the path:

) otherwise

The utility of alane decreases with the number of lane changes
the driver needsto perform to maintain the desired path. This effect
is magnified when the distance to the off-ramp decreases (6M-¢ =
-0.378). The use of apower function to capture the effect of the dis-
tance to the off-ramp guarantees that, at the limits, the path plan
impact approaches 0 when dgi{(t) - +co and approaches —co when
dgit(t) —» +0. Figure5 indicates theimpact of lane changes required
by the path plan on the probability of targeting the right lane as a
function of the distance from the off-ramp.

Drivers perception and awareness of path plan considerationsare
likely to depend on the geometric road layout. In particular, drivers
are more likely to respond to constraints that involve the next road
facility they will encounter. Such behavior would present itself for
driverswho exit the freeway using the next off-ramp (as opposed to
driverswho use subsequent exits). A dummy variableis used to cap-
ture the disutility of being in awrong lane when the driver istaking
the next exit:

next_exit_impact™' (t) = 3/ =" (t) 5" (t)
lanei = CL,RL,LL  (16)

Theindicator variables 7@t i(t) and dyone i(t) are given by:

) 1 the next off -ramp is used
et () = O ) a7
W) otherwise
_ 1 lane change(s) are required from lanei
o' () = O ) (18)
) otherwise

As expected, the estimated coefficient of this variableis negative.
Thedisutility associated with being inawrong laneislarger whenthe
driver needs to take the next exit. An attempt to interact the next exit
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TABLE 1 Estimation Results of Integrated Lane-Changing Model
Variable | Parameter value | t-statistic
Target lane model
CL constant 2.490 3.74
RL constant -0.173 -0.51
Right-most lane dummy -1.230 -3.89
Subject speed, m/sec. 0.0615 1.59
Relative front vehicle speed, m/sec 0.163 3.02
Relative lag speed, m/sec -0.0741 -1.30
Front vehicle spacing, m 0.0192 3.42
Tailgate dummy -3.162 -1.68
Path plan impact, 1 lane change required -2.573 -4.86
Path plan impact, 2 lane changes required -5.358 -5.94
Path plan impact, 3 lane changes required -8.372 -5.70
Next exit dummy, lane change(s) required -1.473 -2.30
oM -0.378 -2.29
L 0.0035 0.46
i 0.0095 0.77
a® 0.734 4.66
a™ 2.010 2.73
Lead Critical Gap
Constant 1.353 2.48
max (AV,™ (t),0), m/sec -2.700 225
min(AV,™ (t),0), m/sec -0.231 242
a'™ 1.270 2.86
o' 1112 2.23
Lag Critical Gap
Constant 1.429 6.72
max (AV,® (t),0), m/sec 0471 3.89
a'® 0.131 0.64
'™ 0.742 3.68
Number of drivers = 442
Number of observations = 15632
L(0)= 1434.76
L(c)= 1037.05
L(B) = 88878
p° =0.362

Probability of targeting the right lane

1 lane change

FIGURE 5

4.5 4 3.5 3

Distance from the exit (km)

2.5

2

1.5

Impact of path plan on probability of targeting the right lane (speeds of subject, front,
and lag vehicles = 15 m/s; front spacing = 20 m).
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dummy variable with the number of lane changes required did not
significantly improve the model. Thisimplies that being in awrong
lane isamore significant factor in drivers' perception relative to the
number of lane changes that are required.

A second group of variables captures driving conditions in the
neighborhood of the vehicle. These include the speed of the subject
vehicle, the relative speed and spacing with respect to the vehiclein
front, and the relative speed with respect to lag vehiclesin thelanesto
the right and to the left of the subject vehicle. The subject speed and
the relative speed and spacing of the front vehicle (appearing only
in the utility of the current lane) capture the likely satisfaction of the
driver with conditionsin the current |lane. The utility of the current lane
increases with the subject speed, therelative front speed, and the spac-
ing between the two vehicles. The subject islesslikely to perceivethe
front vehi cle as constraining when the front vehicle speed ishigher and
the spacing islarger and thereforeislesslikely to seek alane change.

The relative lag speed appears in the utilities of the right and eft
lanes. The lag vehicle may pose arisk if the driver tries to change
lanes. The coefficient of thisvariable is negative, hence suggesting
that drivers consider the likelihood of being able to execute thelane
change when selecting atarget lane.

Thetailgating dummy variable capturesdrivers tendency to move
out of their current lanes if they are being tailgated. Tailgating is
not directly observable in the data. Instead, tailgating behavior is
assumed if thevehicle behind is closeto the subject vehicle, although
traffic conditionsallow longer headways. Mathematically, thetailgate
dummy variable is defined by

v gap behind < 10 m and leve of service
() = isA B,or C (19

B) otherwise

The estimated coefficient of thetailgate dummy isnegativeand its
magnitude is large relative to the coefficients of other variables. It
implies astrong preference to avoid tailgating situations. Thisresult
is consistent with those of Ahmed (8), who also found tailgating to
be an important explanatory variable.

The right-most lane variable captures the preference of freeway
drivers to avoid the right-most lane because of the merging and
weaving activity that takes place there. This variableis defined by:

S lanei isthe
Jronmosti (t) = [ rightmost lane

B) otherwise

i = CL,RL (20)

The heterogeneity coefficients o and a® capture the effects of
the individual specific error term v,, on the target lane choice, thus
accounting for correlations between observations of the same indi-
vidual due to unobserved characteristics of the driver and vehicle.
Both estimated parameters are positive. Hence, v, can beinterpreted
as positively correlated with timidity: timid drivers are more likely
than more aggressive driversto choose the right lane and the current
lane over theleft lane.

In summary, the target lane utilities are given by:

VS () = 2.490 — 1.230519"™ (1) + 0.0615V, (1)
+ 01634V, (1) - [de t)] ™"
x [-2.5735;° (1) - 5.35857° (1) — 8.372& ()]
+0.0192S™" (1) — 3.1625'"
- 14735 (1) + 0.7340, (21)
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A (3]

-0.173 - 1.2308)"" ™" (t) ~ 0.0741AV,™ (1)
- [det )] [ -2.5738 ™ (t) — 5.35852(t)
- 83726iRL (t)] _ 1.473629xtexit,RL ) + 1.035 U, (22)

VEL® = -0.0741AV,S (1) - 1473504 (1)

- [d=t )] **"*[-2.5738 (1) — 5.3585% (1)
- 837258 (1)) (23)

Gap Acceptance Model

Lead and lag critical gaps are functions of the relative lead and lag
speeds, respectively. The relative speed with respect to avehicleis
defined as the difference between the speed of that vehicle and the
speed of the subject vehicle.

Thelead critical gap decreases with the relative lead speed—that
is, it islarger when the subject vehicle is faster relative to the lead
vehicle. The effect of the relative speed is strongest when the lead
vehicle is faster than the subject. In this case, the lead critical gap
quickly diminishes as afunction of the speed difference. Thisresult
suggests that drivers perceive very little risk from the lead vehicle
when it is getting away from them.

Inversaly, thelag critical gap increaseswith therelative lag speed:
the faster the lag vehicle is relative to the subject, the larger the lag
critical gapis. In contrast to thelead critical gap, thelag gap does not
diminish when the subject is faster. A possible explanation is that
drivers may maintain a minimum critical lag gap as a safety buffer
becausetheir perception of thelag gap isnot asreliableasitisfor the
lead gap because of the use of mirrors. Median lead and lag critica
gaps as afunction of the relative speeds are presented in Figure 6.

Estimated coefficients of the unobserved driver characteristics
variable, v, arepositive for both lead and lag critical gapsand hence
are consistent with the interpretation of v, as positively correlated
with timid drivers, who require larger gaps for lane changing than
more aggressive drivers.

Contrary to apriori expectations, the distance to the point the lane
change must be completed did not have a significant effect on critical
gap lengths. Thismay be becausetraffic conditions (level of serviceD
or E) are such that acceptable gaps are available, and therefore drivers
are not forced to take risks (reduce their critica gaps) to lane change.

In summary, the estimated |ead and lag critical gapsare given by:

[4.353 - 2.700 max [0, AV,= ™ (t)] -U

G ™ (D = exp-0.231 min [0, AV/™ ™ (1)] o (249
Hr 12700, + €= ()

04

Gl™ (1) = exp{1.429 + 0.471 max [0, AV} *™ (1]
+0.1310, + €21} (29

e (t): N (0,1.112%) and €®(®): N (0, 0.7422).

CONCLUSION

Existing lane-changing models classify lane changes as either MLC
or DLC. As a reault, trade-offs between these considerations are
ignored. In addition, these models require determination of the con-
ditionsthat trigger MLC. Inmost cases, smplerulesare used to define
these conditions. In this paper, anintegrated lane-changing model that
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FIGURE 6 Median (a) lead and (b) lag critical gaps as a function of relative speeds.

overcomes both of theselimitationsis proposed. Themodel combines
mandatory and discretionary considerations into a single utility
modd. Thelane-changing process consists of two steps: choice of tar-
get lanesand gap acceptance decisions. A logit model isused to model
the choice of target lanes. Gap acceptance behavior is modeled by
comparing the available space gaps with the critical gaps. The model
requires that both the lead and |ag gaps are acceptable. The effect
of unobserved driver and vehicle characteristics on the lane-
changing process is captured by a driver-specific random term
included in all model components. Missing data due to limitations of
data collection are a so accounted for.

Parameters of all components of the model were estimated jointly
with detailed vehicle trgjectory data. Estimation results indicate that
drivers' lane selectionisaffected by both path plan variablesand traf-
fic conditionsin their neighborhood, hence suggesting that trade-offs
between mandatory and discretionary considerations are important.
Critical gapsdepend on the rel ative speedswith respect to thelead and
lag vehicles. Further research with more data setsis required to iden-
tify geometry and other site-specific effects and develop robust and
more general models that can be used in any urban freeway section.
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