
they proposed using the multinomial probit (MNP) model, which
can account for similarity between alternatives. However, the MNP
model is unattractive from a computational standpoint because the
probability function cannot be expressed in closed form.

In recent years, a number of other discrete choice model structures
were adapted to route choice behavior in an attempt to overcome the
limitation of the MNL model and capture the impact of similarity
among various routes on drivers’ perceptions and decisions. These
models range from modifications of MNL, such as C-logit (7 ) and
path-size logit (8, 9) that capture similarities through additional terms
in the systematic utilities of the various routes to models based on
the generalized extreme value theory, such as paired combinatorial
logit (PCL) (10, 11) and cross-nested logit (CNL) (10, 12), and logit
kernel models (9, 13), which capture these similarities by allowing
more general correlation structures. Although formulations of the SUE
assignment problem that correspond to some of these route choice
models have been introduced in the literature (14), there has been
little study of the practical implications of using them on the assign-
ment results and even less development of appropriate algorithms
for their solution.

This paper presents a SUE assignment based on the CNL route
choice model. Algorithms for solution of the CNL-SUE problem
are developed and tested; they are based on adaptation of the dis-
aggregate simplicial decomposition (DSD) method developed by
Damberg et al. (15) for the MNL-SUE problem. These algorithms are
used to solve large-scale traffic networks and to test the impact of
parameters of the route choice models on the assignment results and
on the difference between the CNL-SUE and MNL-SUE solutions.

The rest of this paper is organized as follows. First, a brief review
of the CNL route choice model is presented, followed by formulation
of the CNL-SUE assignment problem. The adaptation of the DSD
algorithm to the CNL-SUE problem is presented next. Then case
studies are presented that evaluate the performance of the proposed
algorithm and compare the assignment results and computational
effort with those of the MNL-SUE problem using two well-known
test networks. The final section summarizes the findings and dis-
cusses the potential use of the different route choice models in traffic
assignment problems.

CNL ROUTE CHOICE MODEL

The CNL model was adapted to route choice situation by Prashker
and Bekhor (10) and Vovsha and Bekhor (12). Their adaptation uses
a two-level nesting structure in which the upper level (nests) includes
all the links in the network. The lower level consists of all the routes in
the set C of routes that connect between the origin and destination.
Each of the routes is allocated to all the nests that represent links that
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Most stochastic user equilibrium (SUE) model applications reported in the
literature are based on the multinomial logit (MNL) model. This paper
presents a SUE assignment based on the cross-nested logit (CNL) route
choice model, which can better represent route choice behavior. The paper
develops path-based algorithms to solve the CNL-SUE problem based
on adaptation of the disaggregate simplicial decomposition method. The
algorithms differ for the step-size determination; three different meth-
ods are considered. The algorithms are tested in two well-known net-
works. Two main tests are conducted: (a) the impact of the CNL model
parameters on the assignment results is analyzed and (b) the differences
between the CNL-SUE and the MNL-SUE solutions are investigated.
The results indicate that the path-based algorithm with Armijo’s step-
size rule outperforms other step-size determinations. This paper indi-
cates that depending on the model parameters, particularly the nesting
coefficient, the CNL-SUE path flows may be quite different from the
MNL-SUE path flows.

The deterministic static traffic assignment model assumes that drivers
have complete and accurate information on the state of the network
when they make their route choices and so are able to select optimal
routes. Stochastic user equilibrium (SUE) traffic assignment, which
is defined as a state in which drivers cannot improve their perceived
travel times by unilaterally changing routes (1), relaxes this assump-
tion. Instead, the SUE model assumes that the traffic assignment fol-
lows a probabilistic route choice model. Most of the applications of
SUE models reported in the literature are based on the multinomial
logit (MNL) model. Special properties of the MNL model make it
possible to use efficient solution algorithms that avoid explicit enu-
meration of the route choice set (2, 3) to solve the MNL-SUE prob-
lem. However, the MNL model assumes that the utilities of different
routes, even overlapping ones, are uncorrelated. This may lead to
counterintuitive assignment results (4–6).

The MNL model exhibits the property of independence of irrelevant
alternatives (IIA), which turns out to be a deficiency of the MNL model
in the route choice context and can be interpreted as a failure to account
for similarities between alternatives. Daganzo and Sheffi (1) presented
simple network examples to illustrate counterintuitive results that may
be obtained when the MNL model is applied for route choice. Instead,
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are part of it. Assuming this structure, the probability (P) of choosing
route k is given by

where

j, k, l = route indicators;
m = nest indicator;
M = set of links that compose path k;
ck = generalized cost of travel on path k;
θ = dispersion parameter that determines the sensitivity of

route choices to changes in travel costs;
μ = parameter that indicates the degree of nesting, as in the

nested logit model: when μ = 1, the model collapses to
MNL, and when μ → 0, the model becomes probabilistic
at the higher (link) level and deterministic at the lower
(path) level; and

αmk = parameters that determine allocation of route k among the
links that compose m.

It is possible to rewrite the expression for the probability of choosing
a route as follows:

where the conditional probability of a route k being chosen in link
(nest) m is

and the marginal probability of a nest m being chosen is

where b is a nest indicator.
The potentially large number of allocation parameters poses a dif-

ficulty in calibrating the model. Prashker and Bekhor (10) proposed
determining these parameters exclusively based on the network
topology using the physical length of the links that are common to
various routes with the following function:

where

Lm = length of link m,
Lk = length of route k,

δmk = 1 if link m is on route k and 0 otherwise, and
γ = parameter that reflects drivers’ perception of similarity among

routes.
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FORMULATION OF THE CNL-SUE 
ASSIGNMENT PROBLEM

Bekhor and Prashker (14) presented mathematical program formula-
tion, which corresponds to the CNL-SUE assignment problem—that
is, the CNL model is derived as the first-order conditions for the
solution of this program. This formulation is similar to the one derived
by Fisk (16) for MNL-SUE. The CNL-SUE assignment is obtained
as the solution of the following mathematical program:

where

xa and ca = flow and cost, respectively, on link a;
w = flow variable;

f rs
mk = flow on path k of nest m between origin r and destina-

tion s; and
qrs = demand for travel from r to s.

The expression

is defined as zero if either f rs
mk = 0 or α rs

mk = 0.
The preceding formulation is composed of three terms. The first

term (Z1) is identical to the deterministic user equilibrium formulation.
The second term (Z2) is an entropy term similar to Fisk’s formula-
tion for the MNL-SUE problem but modified to include the allocation
coefficients and the nesting coefficient. The third term (Z3) is also an
entropy term, where the flows f rs

mk are aggregated by all routes. Bekhor
and Prashker (14) showed that the entropy terms (Z2) and (Z3), respec-
tively, correspond to the conditional and marginal probabilities of
choosing a route. The constraints of the problem are similar to other
mathematical formulations for the equilibrium problem (conservation
equations and nonnegativity of path flows).

There are several important modifications in the preceding math-
ematical program compared with Fisk’s formulation for the MNL-SUE
problem. The problem itself is defined in terms of f rs

mk , a decompo-
sition of path flows to the m links. In addition, the entropy term (Z2)
is modified to include the allocation coefficients. Finally, a second
entropy term (Z3), which corresponds to the higher choice level, is
also added.

Assuming that the link cost functions are continuous monotonically
increasing functions of link flows, Bekhor and Prashker (14) showed
that the objective function is continuous and convex. For finite demand,
its derivatives exist and are bounded, and therefore it is also Lipschitz
continuous. In addition, if the nesting coefficient is equal to 1, the
preceding formulation collapses to the SUE-MNL formulation.
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Few studies have actually implemented the CNL-SUE. Bekhor and
Prashker (17 ) applied their formulation using the method of succes-
sive averages (MSA) algorithm (18) to a small network. Chen et al.
(19) developed an algorithm based on the partial linearization method
for solving the PCL-SUE problem. The PCL-SUE formulation is
similar to Equation 6, as demonstrated by Bekhor and Prashker (14).
In this paper, the DSD algorithm proposed for the MNL-SUE problem
by Damberg et al. (15) is adapted to the CNL-SUE problem.

DSD ALGORITHM FOR CNL-SUE PROBLEM

Damberg et al. (15) extended the DSD algorithm of Larsson and
Patriksson (20) to solve the MNL-SUE problem. The method is based
on iterative solution of subproblems that are generated through partial
linearization of the objective function. The new iteration solution is
found as a convex combination of the solution of the linearized sub-
problem and the previous iteration solution. This section presents
the adaptation of the method to the CNL-SUE problem.

Suppose that at iteration n a feasible path-flow solution is given. The
first term in Formulation 6 is linearized, which amounts to assum-
ing that travel costs are fixed at their current values. The resulting
subproblem is given by

where ck
rs(n) is the travel cost on path k based on the vector of path

flows at iteration n. The solution to this subproblem is given by the
CNL model route choices

If the vector h(n) − f (n) is nonzero, it defines a descent direction
with respect to the objective Function 6—that is, a new solution that
would be generated by taking an appropriate step size in this direction
would decrease the value of the objective function. The new solution
is given by

where λ(n) is the step size in iteration n. In this paper, three different
methods to calculate the step size are considered: an exact calcula-
tion of the optimal step size, approximation of the optimal step size
using Armijo’s rule, and application of predetermined step sizes as
in the MSA algorithm.

An exact optimal step size is calculated by using the golden section
line search method as the optimal solution of the following problem:

The exact line search may be computationally expensive to per-
form in the case of the CNL-SUE problem, because the variable
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of interest is f rs
mk (the flow on path k of nest m between r and s).

The dimension of this variable may be very large even for moderately
sized networks. Consequently, the number of operations required
to calculate the objective function value and the overall effort to find
the optimal step size may be very large. An alternative approach is
to use Armijo’s approximate step-size rule (21), which is defined
as follows:

where mk is the first integer, m ≥ 0, which satisfies

and 0 < β < 1 and 0 < � < 1 are parameters.
Finally, the simplest approach to the step-size calculation is use

of predetermined step sizes. These approaches require very little effort
in each iteration but may require many more iterations to reach con-
vergence. The following step-size rule, which simplifies the proposed
algorithm to a path-based MSA method, was applied:

The flows calculated in Equation 9 are then used to update link
costs and path costs. A new subproblem with the updated path costs
is solved by using Equation 8 to produce a new descent direction.
This iterative process continues until the convergence criterion is
satisfied.

CASE STUDIES

The three variations of the algorithm (i.e., with MSA, Armijo, and
golden section step sizes) were implemented and tested on two well-
known networks: Sioux Falls, South Dakota (22), and Winnipeg,
Manitoba, Canada (23). Two tests were conducted to evaluate the
following questions.

Test 1 evaluates the performance of the proposed algorithm for
solution of the CNL-SUE and compares the relative efficiency of the
three step-size calculation methods in terms of computational effort.
The three methods require increasing amounts of work per iteration.
However, the more complex methods may require a smaller number
of iterations to converge to the optimal solution. The performance of
the algorithms may depend on the parameters of the problem; therefore,
the calculation was repeated for the two networks for different values
of the dispersion parameter θ and the nesting coefficient μ.

Test 2 compares the CNL-SUE assignment results and required
computational effort with those obtained for the MNL-SUE prob-
lem. The CNL-SUE problem formulation uses decomposed path-link
flows f rs

mk as decision variables and not directly the path flows f k
rs as in

MNL-SUE. This significantly increases the dimension of the problem.
As a result, the effort required to solve the problem is also larger.
However, the CNL route choice model is a more realistic represen-
tation of drivers’ behavior. The aim of this test is to quantify the
trade-off between behavioral realism and computational effort with
the two assignment models.

Path-based assignment requires generating a choice set of travel
routes. In this study, predetermined route sets are used that are not
augmented during the various runs. Although column generation
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methods may be used to update the route set during the assignment
[see Damberg et al. (15) for a discussion], this approach provides a
common basis for comparison of all algorithms and assignment
models. Routes were generated by using a combination of the link elim-
ination method of Azevedo et al. (24) and the penalty method of de la
Barra et al. (25) with a penalty of 5% on travel times on the shortest
route links. Only acyclic routes were considered in these methods.

The Sioux Falls network (Figure 1) is composed of 24 nodes,
76 links, and 550 origin–destination (O-D) pairs. The choice set
generation method created an average of 6.3 routes for each O-D pair.
The maximum number of routes generated for any O-D pair was 13.
The Winnipeg network (Figure 2) includes 948 nodes, of which
154 are zone centroids, 2,535 are links, and 4,345 are O-D pairs
with positive demand for travel. The total demand is 54,459 trips;
174,491 unique routes were generated (an average of 40.1 routes per
O-D pair). The maximum number of routes generated for any O-D
pair was 50. The thick black lines in Figure 2 indicate the links that
belong to the path set of a specific O-D pair. The Bureau of Public
Roads function with link-specific parameters is used in both networks.

RESULTS

Test 1. Algorithm Performance

The various algorithms were run on a PC with a 3.0-GHz Pentium 4
processor. Figures 3 and 4 present four graphs each showing the
number of iterations and the central processing unit (CPU) time,
respectively, needed to reach convergence in the Sioux Falls network
as a function of the value of the parameter θ for various values of μ.
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The y axes in Figures 3 and 4 have logarithmic scales. Convergence
was measured by the root-mean-square error (RMSE) of the internal
inconsistency of the solution:

where K is the total number of routes in the choice sets. Figures 3
and 4 are based on the criterion RMSE(n) ≤ 0.0001.

When the dispersion parameter θ is smaller than 0.5, fewer itera-
tions are required to obtain convergence. For values of θ that are
higher than 0.5, the level of effort required to converge, in terms of
the number of iterations and CPU time, is similar in all cases. In the
problem formulation in Equation 6, the terms Z2 and Z3 depend on
the reciprocal of this parameter. When the value of θ is small, the
contribution of these two terms to the overall objective function is
very large and dominates that of the term Z1. Their contribution then
decreases as θ increases. The solution algorithm is based on a linear
approximation of the term Z1 in each iteration, and so the descent
direction is more accurate when θ is small. This result is consistent with
findings discussed by Prashker and Bekhor (27 ). For larger values
of θ, Z1 dominates the objective function and the problem becomes
insensitive to changes in the value of θ. The nesting parameter μ
appears to have little impact on the performance of the algorithms.

The variants that use the step sizes based on the Armijo rule and the
golden section search exhibit similar performance in terms of num-
bers of iterations. Both largely outperform the MSA algorithm in all
cases. However, the amount of work required by the algorithms in
each iteration differs. The golden section search requires the most
work per iteration, and the MSA requires the least. As a result, for
small values of θ, in which all algorithms require relatively small
numbers of iterations to converge, the MSA outperforms the golden
search in terms of CPU time. As θ increases, more iterations are
required, in particular by MSA, and its performance deteriorates.
For the Sioux Falls network, it uses more CPU time than the golden
section search for θ ≥ 0.1. However, the Armijo rule provides the
best convergence results in all cases. The amount of work it requires
per iteration is significantly smaller than for the golden section search.
The reason for this is that it performs fewer evaluations of the objec-
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tive function in Equation 6, which is time-consuming because of the
summations over the very large number of link path flows f rs

mk . Still,
the Armijo rule requires roughly the same number of iterations to
converge as the golden section search. It requires three to four times
more work per iteration than MSA, but it takes one to two orders of
magnitudes fewer iterations to converge. Therefore, it outperforms
both the MSA and the golden section search.

The performance results for the Winnipeg network are similar to
those for Sioux Falls and, for brevity, are not presented in this paper.
The Armijo rule and the golden section search take similar numbers
of iterations to converge. But, in terms of CPU time, the Armijo rule
is superior to the other methods. The impact of the value θ on the
performance is also similar to the Sioux Falls network, with θ ≈ 0.5
marking the point beyond which the performance is insensitive to
changes in the value of θ.

Test 2. Comparison with MNL-SUE Assignment

Figures 5 and 6 show the difference between the CNL-SUE and
MNL-SUE assignment results as a function of the value of the problem
parameters (θ and μ) for the Sioux Falls and Winnipeg networks,
respectively. The difference between the two assignment solutions
was measured in each case by the RMSE:

where f rs*
k,MNL and f rs*

k,CNL are the convergence path flows in the MNL-SUE
and CNL-SUE assignment, respectively.

The results indicate that the differences between the two solutions
may be substantial. To put the RMSE statistics in context, it may be
noted that the average path flow is 0.11 in the Sioux Falls network and
0.31 in the Winnipeg network. The nesting parameter μ, which deter-
mines the degree of correlation among overlapping routes, has a very
strong impact on this difference, which decreases when μ increases.
This result is also consistent with the CNL model theory, which
shows that, when this parameter tends to 1, the CNL results become
closer to the MNL results, as indicated by the diminishing RMSE.
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Different results are observed in the two networks with respect to
the dispersion parameter θ. Whereas this parameter does not affect
the results in the Sioux Falls network (RMSE slightly decreases with
increasing values of θ), the RMSE increases with increasing values
of θ in the Winnipeg network. The explanation in this case is related
to the range of the parameter combined with the congestion level in
the networks. Recall that when θ tends to zero, the path flows tend to
be distributed equally among the routes, meaning that MNL-SUE and
CNL-SUE flows will tend to be equal. On the other hand, when θ tends
to infinity, the SUE problem collapses to the deterministic assignment
problem, regardless of the choice model, and again MNL-SUE and
CNL-SUE flows will tend to be equal. This means that a curved-shape
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behavior for the difference between CNL-SUE and MNL-SUE flows
is expected as a function of the value of θ.

In the Sioux Falls network, congestion is higher than in the Winnipeg
network. This means that congestion term (Z1) in the objective func-
tion, which is independent of θ, is more dominant in this network.
Therefore, the impact of θ is small in this network. In the Winnipeg
network, which is relatively less congested, the parameter range con-
sidered (between 0.01 and 0.5) significantly affects the flow difference
between the two models.

To illustrate the results at the disaggregate level, a comparison
between path flows obtained from each model for a specific O-D pair
in the Winnipeg network (displayed in Figure 2). Figure 7 shows the
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path flow difference for this specific O-D pair, obtained with θ = 0.5
for both models and μ = 0.5 for the CNL model. The routes were
sorted by increasing order of the difference between CNL-SUE and
MNL-SUE path flows.

The figure shows that the amount of flow in most of the 47 paths
is quite small. The 10 highest path flows carry 87% and 93% of the
total demand for the MNL-SUE and CNL-SUE, respectively. How-
ever, the path flows in these routes can be quite different. For example,
the highest MNL-SUE path flow carries 14% of the total demand,
and the corresponding highest CNL-SUE path flow is about 19% of
the total demand, or 35% higher.

An additional test was performed to compare the computational
performance when using the two route choice models. Figure 8 shows
the number of iterations and the CPU time required to solve the
MNL-SUE model and CNL-SUE model as a function of the problem
parameters (θ and μ) for the Sioux Falls network. The Armijo rule
was used in all assignment runs.

The encouraging result is that, whereas in most cases MNL-SUE
can be solved faster, the differences are not prohibitively large in
most cases. The computational effort increases with increasing values
of the dispersion parameter θ. The computational effort also increases
when the nesting parameter μ decreases (i.e., when the correlations
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among overlapping routes are higher). Higher correlations indirectly
introduce impacts of flows on one route on other routes and so may
slow convergence.

In addition to the results presented in Figure 8, Table 1 summarizes
selected results for both networks tested, assuming θ = 0.5 for both
models and μ = 0.5 for the CNL model. Table 1 shows that the Armijo
rule for step-size determination performs quite well for both networks
presented, but more tests are needed to verify the efficacy of the rule.

SUMMARY AND CONCLUSIONS

This paper discussed path-based algorithms to solve the CNL-SUE
problem. The aim of the paper was to incorporate more realistic route
choice models into the traffic assignment problem. The results of
the paper show that it is possible to implement such algorithms with
affordable computer resources. In particular, the Armijo step-size
rule was found to perform well for the networks tested, but more
experiments need to be conducted to verify whether the rule also
works well for extended problems.

The CNL route choice model can overcome deficiencies of the
MNL model. However, in heavy congested networks, both models
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TABLE 1 Summary of Algorithm Results (� � 0.5)

Time per
Route Choice Step Size Total Number Objective Iterations CPU Time Iteration 

Network Model Method of Paths Function Value to Converge (s) (s)

Sioux Falls MNL MSA 3,441 −269.29 147 1.7 0.012
Sioux Falls MNL Armijo 3,441 −269.29 31 1.4 0.045
Sioux Falls MNL G-S 3,441 −269.29 29 8.7 0.300

Sioux Falls CNL MSA 3,441 −229.75 144 3.6 0.025
Sioux Falls CNL Armijo 3,441 −229.75 32 2.8 0.086
Sioux Falls CNL G-S 3,441 −229.75 22 10.2 0.463

Winnipeg MNL MSA 174,491 917,976 >10E5 >10E6 77
Winnipeg MNL Armijo 174,491 917,976 28 9,967 356
Winnipeg MNL G-S 174,491 917,976 26 55,510 2,135

Winnipeg CNL MSA 174,491 989,445 >10E5 >10E6 128
Winnipeg CNL Armijo 174,491 989,445 50 21,597 432
Winnipeg CNL G-S 174,491 989,445 46 102,120 2,220



result in similar flows. The differences are more pronounced in mod-
erately congested networks, as in the Winnipeg network. This means
that the CNL-SUE model can better represent traffic phenomena for
any congestion level than the MNL-SUE model because of the advan-
tages of the CNL over the MNL model. This is also true for other
equilibrium procedures such as MNP-SUE and PCL-SUE, and fur-
ther research will address the trade-offs (specifically, algorithm per-
formance versus path-flow difference) between these models and
the CNL-SUE model.

The tests presented in this paper focused on two model parameters:
the dispersion parameter and the nesting coefficient. The demand
matrices for the two networks in all tests were fixed. As suggested
in this paper, there is a need to investigate further the effect of dif-
ferent demand levels on the algorithm performance and to verify the
difference between CNL-SUE and MNL-SUE flow patterns.

In this paper, the route choice model is a function of travel times
only. The formulation of the problem can accommodate additional
explanatory variables, similar to the “generalized cost” variable in
deterministic traffic assignment problems. The generalized cost is a
linear transformation of the travel time and cost. More complex utility
functions are yet to be implemented in traffic assignment models.

The results presented in this paper are based on several assump-
tions common to simple equilibrium models: static assignment, fixed
demand, separable volume-delay function, single-user class. Addi-
tional research is needed to extend and verify the CNL-SUE model
for more general problems.

The results presented in this paper were obtained for a fixed set of
routes. The results may be different for other choice set compositions
and sizes. A recent paper by Bekhor et al. (28) compares MNL-SUE
and CNL-SUE models for different path-set sizes generated before
the assignment process, similar to this paper. The effect of column
generation methods in the algorithm performance and path-flow
results is being investigated, and the results will be presented in a
future paper.
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