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models capture the similarity among routes through the structure of 
the error component of the utility function. Another group of models 
is obtained by modifying the systematic part of the utility function to 
account for route overlapping. This approach retains the simple closed-
form structure of the MNL model. Models in this group include the 
C-logit model (8) and the path-size logit model (9). All these models 
maintain the assumption of RUM-based decision making. In con-
trast, this paper derives the SUE formulation in the context of a new 
decision rule that is not utility based but regret based.

Although the RUM-SUE problem can be formulated as an opti-
mization problem assuming that the cost function is link separable, 
the RRM-SUE problem cannot be formulated in the same way, 
because the cost function in this case is not separable. Adapting a 
variational inequality (VI) formulation to the RRM-SUE context 
solves this issue.

The rest of this paper is organized as follows. The next section pre
sents the RRM route choice model (more specifically, its MNL-model 
form) and provides a brief comparison to RUM’s MNL model. The 
subsequent section formulates the RRM-SUE problem and adapts a 
path-based algorithm to solve the problem. Results of its application 
and a comparison with RUM-SUE are illustrated for a simple grid 
network and for the well-known Winnipeg, Canada, network. The 
last section discusses the results and presents directions for further 
research.

RRM ROUTE CHOICE MODEL  
(MNL MODEL FORM)

For ease of communication, the terms RRM and RUM are used to 
refer to their respective MNL model forms.

For a given network, the cost (disutility) ck,pq of path k connect-
ing origin p to destination q is generally assumed to be a linear 
combination of the link costs as follows:

c t vk pq ak pq a a
a

, , ( )= ( )∑δ 1

where

	δak,pq	=	� link path indicator, which equals 1 if link a is a part of 
path k from p to q and 0 otherwise;

	ta(va)	=	� travel time on link a, which is assumed to depend only 
on the flow on link a; and

	 va	=	flow on link a.

Although travel costs may depend on attributes other than travel 
time, they are used interchangeably in this paper.
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A static stochastic user equilibrium (SUE) problem was formulated: 
the mode of random regret minimization (RRM) was used for route 
choices. The RRM approach assumes that individuals minimize antici-
pated regret, rather than maximize expected utility, when choosing 
from alternative routes. The cost function for the RRM model is not 
separable, and so a variational inequality approach was adopted to for-
mulate the problem. A path-based algorithm was applied to solve the 
RRM-SUE problem with the method of successive averages. Implemen-
tation of the algorithm in a real-world network is illustrated, and the 
trade-offs and differences between the proposed model and the SUE 
based on random utility models is discussed.

The random regret minimization (RRM) model (1) is an alternative 
to random utility maximization (RUM) models of travel choice. The 
RRM approach assumes that individuals minimize anticipated regret, 
rather than maximize expected utility, when choosing routes. Regret 
occurs when one or more nonchosen alternatives perform better than 
a chosen alternative for one or more attributes. The RRM model 
features multinomial nested logit (MNL) choice probabilities and 
can be estimated with conventional discrete choice software pack-
ages. In a number of recent empirical studies, the RRM paradigm 
(particularly its MNL model form) has been shown to provide a 
useful representation of behavior in several travel decision-making 
contexts, including route, departure time, destination, parking lot, 
travel information acquisition, and vehicle purchase choices (2, 3).

This paper applies the RRM model in the context of user equi-
librium traffic assignment. A stochastic user equilibrium (SUE) 
formulation for the RRM model (its MNL model form) is presented, 
implemented, and tested. A mathematical problem whose solution 
corresponds to the SUE of an RRM-based route choice model is 
formulated and applied.

Several RUM-based route choice models have been developed 
to overcome the deficiencies of the basic RUM-MNL model form 
for route choice modeling, in particular to account for the similarity 
among overlapping routes (4). One group of models is based on the 
generalized extreme value theory (5), for example, the cross-nested 
logit model (6) and the paired combinatorial logit model (7). These  
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The well-known RUM route choice model expresses the route 
flows as follows:

h g P g
c

ck pq pq k pq pq
k pq

l pq
l
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,

exp

exp
= =

−( )
−( )
θ

θ∑∑ ( )2

where

	 gpq	=	� total demand for trips between p and q in the period of 
analysis,

	hk,pq	=	flow on path k from p to q,
	Pk,pq	=	 route choice probability of path k from p to q, and
	 l	=	path l.

The positive parameter θ represents a measure of the dispersion 
among drivers: small values of θ indicate a large perception vari-
ance among drivers. As θ increases, the variability among drivers 
decreases, and the corresponding equilibrium flows approach those 
of the deterministic user equilibrium.

In an RRM formulation (1), the regret c of path k from p to q is 
computed by comparing the cost of this path to the costs of the other 
alternative routes as follows:

c t v t vk pq ak pq a a al pq a a
aa

, , ,ln exp= + ( ) − ( ) ∑∑1 δ δ
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This formulation leaves out the random error associated with a 
path’s regret. Various assumptions regarding the random regret term 
can be made. This paper focuses on the MNL form of the RRM 
model, in which the random regret term is distributed such that 
the negative of the error term has an independent and identically 
distributed extreme value Type I distribution. Random errors in an 
RRM model are formulated and interpreted differently from those 
in an RUM model: in an RRM model they represent unobserved 
regret (which in turn is a function of cost comparisons), whereas in 
a RUM model they directly represent unobserved costs. That is, in 
the RRM model the error is about perception errors not at the cost 
level but at the level of cost comparisons. An in-depth discussion 
of the rationale behind and the properties of the RRM model, along 
with an overview of empirical comparisons of the performance of 
RRM- and RUM-based models, is available elsewhere (10).

This formulation indicates that the regret of a specific path decreases 
when it compares favorably to other paths and increases when its 
travel costs are larger compared with alternative paths. In the case that 
all path costs are equal, their regrets will also be equal, and travelers 
will be indifferent to the choice among them. The corresponding 
route flows are obtained as in Equation 2 but with the regret costs 
given by Equation 3:
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In the binary choice case, Equation 4 is identical to the RUM 
case in Equation 2. Assuming two alternatives, k and l, for each 
origin–destination (O-D) pair pq, the route choice probabilities are

P
c c

k pq
k pq l pq
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After some manipulations, the binary logit expression is obtained:
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The detailed proof is available elsewhere (11).
The behavioral intuition behind the RRM model in Equation 3 is as 

follows. The traveler is assumed to compare a considered path with all 
other paths for their respective costs. If the considered path has a lower 
cost than another path with which it is compared, there is no regret. 
If the path with which the considered path is compared has a lower 
cost, then the regret for the considered path equals the difference in 
costs. This behavioral intuition translates into a regret function

c t v t vk pq ak pq a a al pq a a
aa
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rather than the function presented in Equation 3. However, because 
of the max operator, this latter function is discontinuous and therefore 
not differentiable around zero, which poses theoretical and practical 
problems for the model estimation. The logsum function used in 
Equation 3 provides a continuous approximation. Further discussion 
of this logsum form and an illustration of the close approximation it 
provides of the max-based formulation are available elsewhere (1).

A concise discussion is provided here of the properties of the RRM 
model in the single-attribute case. A choice among three parallel 
routes is considered, assuming that the costs of all three routes are 
independent of the flows. The costs on Routes A and B are 16 min 
and 18 min, respectively. The cost of Route C varies from 15 min to 
19 min. The dispersion parameter θ = 1 in all cases. Choice prob-
abilities are plotted for the three routes in Figure 1 for the RRM and 
RUM models as a function of the travel cost on Route C. The market 
shares computed by the RUM model are shown as solid lines, and 
the RRM market shares are shown as dotted lines. The results show 
that the RRM model predicts that when the travel costs of Route C 
decrease, it attracts more market share (compared with the RUM 
model) from the route with higher costs (B) than from the faster 
route (A). Furthermore, the sensitivity of the RRM choice prob-
abilities to the travel cost is higher than that of the RUM model. When 
travel times on Route C are high, RUM predicts a higher share 
for Route C than RRM does. This trend is reversed when Route C  
becomes more attractive. Both these results are consistent with the 
general properties of the RRM model (1), which penalizes poor per-
formance more heavily than RUM and rewards a strong performance 
more substantially compared with RUM models.

The higher sensitivity of the RRM model cannot be eliminated by 
tuning the scale of the utilities in the RUM model. To demonstrate 
this, Figure 2 shows the difference between the RUM and RRM 
models as a function of the value of the dispersion parameter θ in 
the RUM model (θ = 1 in the RRM model) for the case in which  
the travel time on Route C is 17 min. The results suggest that for 
Route C, a RUM model with θ = 1.15 would generate the same choice 
probability as in the RRM model for Route C; an MNL model with 
θ = 1.25 is needed to approximate the RRM choice probability for 
Route A, and θ = 1.5 is needed to approximate the RRM choice 
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FIGURE 1    Choice probabilities generated by RUM (solid lines) and RRM (dashed lines) for three routes with different travel times.
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FIGURE 2    Differences between RUM-based and RRM-based choice probabilities for each route as function of RUM 
dispersion parameter.
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probability for Route B. That these values differ substantially across 
routes suggests that the difference between RUM and RRM cannot 
be eliminated by tuning the dispersion parameters.

Finally, observation of the change in the differences in choice prob-
abilities predicted by RRM and RUM as a function of the dispersion 
parameter is useful when the dispersion parameter is constrained to 
be equal across the two model types. These differences are shown in 
Figure 3. The figure shows that when θ is large or close to zero, RRM 
choice probabilities tend to the RUM choice probabilities. This is in 
line with expectations: when θ is very large, route choices become 
deterministic, and the fastest route is chosen by all travelers. When θ 
approaches zero, route choices are fully random for both models, and 
the market shares are equal for all alternatives. However, for inter
mediate values of θ, there are clear differences between the two model 
types. In this example, these differences reach a maximum of almost 
10% market share approximately when θ = 0.75.

The RRM and RUM models may yield significantly different mar-
ket shares when the dispersion parameter does not have an extreme 
value. For a given value of θ, RRM tends to allocate higher market 
shares to the best routes compared with RUM, at the expense of the 
worst routes.

RRM-SUE PROBLEM

Model Formulation

The concept of SUE was defined by Daganzo and Sheffi (11). At 
SUE, no driver can improve his or her perceived travel time by uni-
laterally changing routes. The SUE is mathematically represented 
as follows:

f g Pk pq pq k pq, , ( )= 7

P P c c l Kk pq k pq k pq l pq l pq pq, , , , , ( )= + ≤ + ∀ ∈( )ε ε 8

where

	 fk,pq	=	� flow on path k connecting origin p and destination q;
	εk,pq and εl,pq	=	� random terms of paths K and l, respectively, con-

necting O-D pair p and q; and
	 Kpq	=	set of paths connecting O-D pair pq.

The first SUE models used either the simple MNL or the more 
complex multinomial probit as route choice models. An optimization 
formulation for the MNL-SUE problem was provided in the work of 
Fisk (12), in which the MNL route choice model gives the solution to 
the minimization problem. Given the nonclosed mathematical formu-
lation for the multinomial probit, the method of successive averages  
was proposed to solve the multinomial probit SUE problem (13). 
Additional equilibrium models based on generalized extreme-value 
route choice models were developed by Bekhor and Prashker (14).

Because the cost function defined in Equations 1 and 2 is sepa-
rable, an optimization program can be formulated. In contrast, because 
the RRM cost function expressed in Equation 3 is nonseparable 
(because of the path comparisons), an equivalent optimization pro-
gram cannot be formulated. The definition of the RRM-SUE is 
slightly different from that of RUM-SUE—RRM-SUE refers to the 
situation in which no driver can decrease his or her perceived regret 
by unilaterally changing routes.

A VI approach is applied to formulate the RRM-SUE (15). The 
VI is a general problem formulation that encompasses a plethora of 
mathematical problems, including, among others, nonlinear equations, 
optimization problems, and fixed-point problems (16). In geometric 
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terms, the classical VI formulation states that a function F(x*) is 
orthogonal to the feasible set K at the point x*:

F x x x x
T* * ( )( ) −( ) ≥ ∀ ∈0 9K

This formulation is particularly convenient because it allows for 
a unified treatment of equilibrium problems and optimization prob-
lems. A modified formulation proposed by Zhou et al. is used in this 
paper (15). Let P represent the vector of route choice probabilities, 
where Pk,pq is defined as the RRM route choice probability as in 
Equation 4. The equivalent RRM-SUE model can be formulated as 
a VI problem, which is to find a vector f* ∈ Ω such that

f f f P c f q f
T−( ) − ( )( )( ) ≥ ∀ ∈Ω* * * ( )i 0 10

where • is the Hadamard product, that is, z = x • y ⇔ zi = xiyi,  
i = 1, 2, . . . , n; f* is a solution of the RRM-SUE model if and 
only if f* is a solution of the VI problem expressed in Equation 12. 
The feasible set Ω consists of the following equations:

q frs h rs
h

= ∑ , ( )11

fh rs, ( )≥ 0 12

The proof of the proposition follows the work of Zhou et al. (15). 
First, if f* is a solution of the RRM-SUE model, from the SUE 
condition in Equation 7 the VI problem is satisfied naturally. Thus, 
any equilibrium solution of the RRM-SUE model is a solution of 
the VI problem. Second, suppose f* is a solution of the VI problem; 
without loss of generality, fix a path h from the set of all routes 
connecting O-D pair (r, s) and construct a feasible flow f such that 
f l

mn = f l
mn*, (l, m, n) ≠ (h, r, s) but f h

rs ≠ f h
rs*. On substituting it into 

Equation 10, one obtains ( f h
rs − f h

rs*)T( f h
rs* − Prs

h(crs( f*)) • qrs) ≥ 0. 
For every effective route h between O-D pair (r, s), there should be 
f h

rs > 0. Therefore, f h
rs* − Ph

rs(crs ( f*)) • qrs = 0. Thus, the SUE condition 
in Equation 7 is satisfied, and the solution of the VI problem is the 
solution of the RRM-SUE problem.

If the route travel cost function c( f ) is continuous, then the VI 
formulation has at least one solution. According to the assumption 
of continuity, it can be seen that F(f ) = f − P(c( f ))  q is a continuous 
mapping from Ω to Rn. Since Ω is a nonempty, convex, and compact 
set, the VI problem has at least one solution (17 ).

The VI formulation for the RRM-SUE model can be written as 
a general form,

F f f f f
T( ) −( ) ≥ ∀ ∈Ω* ( )0 13

where F(.) is a general mapping from Ω to Rn. For the VI formula-
tion in Equation 10, the mapping (f − P(c(f ))  q) can be represented 
by F(.). The preceding VI formulation belongs to a broad category 
of nonadditive traffic equilibrium problems (18). The RRM route 
choice model is nonadditive because of the path comparisons in the 
cost function, as in Equation 3.

Uniqueness of a solution to the VI formulation depends on the 
property of mapping F(.). That is, if F(.) is strictly monotone, the VI 
formulation gives one unique equilibrium solution (16). However, the 
uniqueness of the RRM-SUE model may not be guaranteed because 
of the nonseparable route cost structure.

Path-Based Algorithm

An algorithm to solve the RRM-SUE problem is adapted from path-
based algorithms discussed by Bekhor and Toledo (19) and applied 
to solve the cross-nested logit SUE problem (20). Because an opti-
mization problem cannot be formulated, it is not possible to derive an 
optimal step size or to apply Armijo-type rules. Thus, the path-based 
algorithm with the method of successive averages is applied to find 
an approximate solution to the problem.

Routes are generated before the assignment and are kept fixed 
throughout the iterations. After performing an initial loading to obtain 
a feasible solution, the algorithm successively updates the travel times 
and path costs, calculates the RRM choice probabilities, and assigns 
the flows on the given routes. A predetermined step size is used to 
average the current path-based solution with the previous iteration 
(12). The path-based algorithm with the method of successive average 
converges to the equilibrium solution, but at the expense of a very large 
number of iterations (18). The equilibrium solution is achieved only 
if all acyclic paths are included in the path set. Because this is not 
practical for real networks, a suboptimal solution is achieved. If the 
path set is fixed, as in this paper, this solution is unique.

Because of the nonoptimized step size, the algorithm needs a large 
number of iterations to reach convergence. The stopping criterion for 
the algorithm is based on the internal inconsistency of the solution:

RMSE n
k rs
n

k rs
n

krsk
h f( ) ( ) ( )= −( )∑∑1

14
2

, , ( )

where

	RMSE	=	 root mean square error,
	 K	=	number of routes in the choice sets,
	 n	=	 iteration counter,
	 hk,rs	=	� path flow computed according to the route choice model 

for given travel times, and
	 fk,rs	=	current path flow on the network.

RESULTS

Grid Network

Figure 4 shows a simple grid network. The free-flow travel times 
and link capacities are respectively indicated in the network. In this 
example, there are two O-D pairs with positive demand: between 
1 and 6 (10 units of flow) and between 1 and 9 (20 units of flow). 
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FIGURE 4    Grid network.
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For this simple network, the universal choice set can be generated. 
It is composed of three routes for O-D pair 1-6 and six routes for 
O-D pair 1-9. A path-based algorithm with the method of successive 
averages was used for all models, and the stopping criterion was set to 
0.001 maximum RMSE difference between link flows. The following 
link performance function was used in all the tests:

t t
x

sa a
a

a

= ∗ + 













0

4

1 0 6 15. ( )

where

	ta	=	 travel time on link a,
	t0a	=	 free-flow travel time on link a,
	xa	=	flow on link a, and
	sa	=	capacity on link a.

It is assumed that path travel times are obtained by summing the 
travel times of each link that forms the path. The flow xa is obtained 
after assignment of the path flows for each O-D pair with positive 
flow on the network.

This simple example illustrates the differences between the RRM 
and RUM equilibrium results. The uncongested fastest route between 
1 and 9 is Route 1-4-5-6-9, and the uncongested fastest route between 
1 and 6 is Route 1-4-5-6. Figure 5 shows a comparison of the path flow 
probabilities of choosing Route 1-4-5-6-9 according to RUM-SUE 
and RRM-SUE network equilibrium results as a function of the 
dispersion parameter θ. The solid lines represent RUM-SUE results 
for different demand levels, and the dashed lines represent RRM-SUE 
results for different demand levels. The total demand for each O-D 
pair is scaled by constant factors (0.6, 0.8, 1.0, 1.2, and 1.4), and for 
each demand level the equilibrium is computed.

For a given demand, the probability of choosing Route 1-4-5-6-9 
increases with θ. This result is consistent with the theory, because 
high values of θ indicate low variance for travel time perception. For 
a given θ, the probability of choosing Route 1-4-5-6-9 decreases for 
increasing demand. This result is also expected, because as the 
network becomes more congested, the path travel times tend to 
be close to each other, lowering the relative attractiveness of Route 
1-4-5-6-9. However, the proportion of flow in this route is always 
higher than 1/6. This extreme case occurs only when θ is zero, 
meaning that the travel time variance tends to infinity, and there-
fore the probability of choosing any one of the six routes between 
Origin 1 and Destination 9 is equal. In line with expectations 
and the numerical examples, RRM-SUE results in higher shares for 
Route 1-4-5-6-9 than RUM-SUE for all demand levels. Route 1-4-5-
6-9 is the fastest route for this O-D pair, and RRM rewards this path 
more strongly than RUM. However, the difference between RRM 
flow and RUM flow decreases for increasing demand. This result is 
specific for the presented grid network, because the travel times on 
the alternative routes become close to the fastest route for increasing 
demand levels. Similar results are obtained for Route 1-4-5-6.

Winnipeg Network

The database of the network of Winnipeg, Manitoba, Canada, pro-
vided in the EMME/2 software (21) is used to compare RUM-SUE 
and RRM-SUE results for a more realistic network. The network is 
composed of 948 nodes (154 of which are centroids), 2,535 links, and 
4,345 O-D pairs with positive demand. The total demand on the net-
work is 54,459 trips for the morning peak. The volume-delay function 
for each link is based on the Bureau of Public Roads formula with 
link-specific parameters, calculated from the original EMME/2 data.
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Routes were generated before the assignment with a combination 
of the link elimination method (22) and the penalty method (23) 
and with a penalty of 5% increased travel time on the shortest path 
links. Only acyclic paths were considered in these methods. A total 
of 174,491 unique routes were generated for all O-D pairs (average 
of 40.1 routes per O-D pair). The maximum possible number of 
routes generated for each O-D pair was 50. Inspection of the routes 
generated for the O-D pairs reveals that the choice set used for the 
analysis includes both completely disjointed routes and very similar 
routes. This was expected because of the methods (link penalty and 
link elimination) chosen to generate the routes: the link elimination 
method produces disjoint routes (because of the removal of all links 
belonging to the shortest path), and the link penalty method produces 
similar routes because of the low penalty (5% increased link travel 
time) used to find the subsequent routes. The same choice set was 
used in previous papers (24, 25).

Table 1 shows the effect of the values of the parameter θ on the 
RMSE of the difference between RUM-SUE and RRM-SUE. The 
deviation between the two models in Table 1 is measured as follows:

RMSE RUM RRM= −( )( ) ( )∑∑1
16

2

K
f fk rs k rs

krs

, , ( )

The same formula is used to calculate the deviation at the level of 
link flow. The table includes results computed for a more restrictive 
case allowing a maximum of five routes per O-D pair. In this case, 
21,723 routes are generated of 21,725 possible (4,435 * 5).

The results presented in Table 1 indicate that the path flow deviation 
increases with θ. The average demand on a route is about 0.31 for up to 
50 routes per O-D pair (54,459/174,491), and about 2.51 for up to five 
routes per O-D pair. This means that the RMSE for the five-route case 
is relatively small compared with the 50-route case. Nevertheless, 
in both cases the deviation is high, meaning that RUM-SUE and 
RRM-SUE produce significantly different path flows.

In contrast to the path flows, the RMSE link flows do not exhibit a 
monotonic pattern. This result is difficult to interpret, because many 
routes have several links in common. RMSE values are higher for 
the 50-route case than for the five-route case. Following the path flow 
results, in both choice sets the differences between the two models 
are significant.

Figure 6 shows the link flow difference between RRM-SUE and 
RUM-SUE results, setting θ equal to 0.5. Green indicates that RUM 
link flows are higher than RRM link flows. There is a concentration 
of RUM link flows around the city center. This is explained by the 
relatively high number of low-capacity links in the city center; 
consequently, more congested routes pass through the center. Similar  

to the three-route example and the grid network example, the RRM 
route choice model more heavily penalizes the more congested routes, 
in comparison with the RUM route choice. Therefore, the overall 
link flow pattern results in more RUM flows in the city center. This 
interpretation is similar to that of other comparisons of RUM-based 
cross-nested logit SUE and MNL-SUE link flows (25).

The computation times for a single iteration of RRM-SUE and 
RUM-SUE are quite similar because the additional effort related to 
path comparisons in RRM-SUE is not time-consuming. On a desktop 
PC computer (Intel Core 2 Duo CPU, 3.0 GHz speed, and 4.0 GB 
RAM), the computation took 2.2 s per iteration. However, RRM-SUE 
requires more iterations than RUM-SUE to converge. Table 2 gives 
the number of iterations needed to reach convergence for two criteria 
(RMSE equal to 0.1 and 0.01, respectively) and for different values of 
theta with the Winnipeg network and five routes per O-D pair.

SUMMARY AND FURTHER  
RESEARCH DIRECTIONS

This paper discussed the RRM approach to route choice modeling 
and presented a VI formulation for the RRM-SUE model. The results 
show that the model can be implemented on real-size networks in 
practice.

The comparison between RUM-SUE and RRM-SUE results, per-
formed for a simple network and for a real-size network, indicates 
that differences among the equilibrium route flows can be significant 
and are in line with the differences in behavioral premises underlying 
the two model paradigms. Depending on the network topology and 
the number of routes generated, the results may be quite different, 
even at the link flow level.

This study compared the results between RRM and RUM models 
of the MNL form. Further research is needed to compare RRM and 
RUM in the context of other route choice model forms, such as 
C-logit, path-size logit, or cross-nested logit models, and to exam-
ine their effects on the equilibrium solutions. In addition, it would 
be interesting to explore how similarity and route overlap can be 
modeled in an RRM framework. Other issues may affect the per-
formance of the solution algorithm and equilibrium flow patterns, 
such as various demand levels and different generation methods for 
route sets (a priori or column generation). The effects of these issues 
are worth further investigation. The convergence properties, such 
as robustness and efficiency, of path-based algorithms for solving 
equilibrium problems can be compared in future research.

In addition to these theoretical advances, a direction for further 
research would be to provide additional empirical testing between 
RRM-based and RUM-based route choice models. Data should be 

TABLE 1    RMSE between RUM-SUE and RRM-SUE Path Flows and Link Flows

Type of Flow and  
Maximum Number of Routesa

Theta

K 0.01 0.05 0.1 0.5 1

Path
    50 174,491 0.297 0.528 0.642 0.936 0.976
    5 21,723 0.280 0.567 0.740 1.054 1.156

Link
    50 2,535 136.765 143.777 126.271 71.756 52.742
    5 2,535 24.481 30.918 30.435 22.787 18.289

aGenerated for each O-D pair.
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collected and analyzed at the level of the individual traveler’s choices 
(by using stated preference surveys or revealed preference data sets), 
as well as at the level of aggregate network flows.

The route choice model considered in this article is a function of 
travel times only. The formulation of the problem can accommo-
date additional explanatory variables, similar to the generalized cost 
variable in deterministic traffic assignment problems. More com-
plex utility functions are yet to be implemented in traffic assignment 
models. However, the RRM model can be easily formulated at the 
multiattribute level—its original formulation is multiattribute. The 
assumption in a multiattribute setting is that attribute-level regrets 
are summed over all attributes, so that associated parameters reflect 
the relative importance of corresponding attributes. In this regard, 
the multiattribute RRM model resembles the multiattribute RUM 
model (more specifically, its linear-additive model form), which 
also assumes that attribute-level utilities are summed over attributes 
to arrive at alternative-level utilities.

The results presented here are based on several assumptions com-
mon to simple equilibrium models: static assignment, fixed demand, 
separable volume-delay function, and single-user class. Additional 
research is needed to extend and verify the RRM-SUE model for 
more general problems.
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