
The calibration and validation approach and results from a case study
applying the microscopic traffic simulation tool MITSIMLab to a mixed
urban-freeway network in the Brunnsviken area in the north of Stock-
holm, Sweden, under congested traffic conditions are described. Two
important components of the simulator were calibrated: driving behav-
ior models and travel behavior components, including origin–destination
flows and the route choice model. In the absence of detailed data, only
aggregate data (i.e., speed and flow measurements at sensor locations)
were available for calibration. Aggregate calibration uses simulation
output, which is a result of the interaction among all components of the
simulator. Therefore, it is, in general, impossible to identify the effect
of individual models on traffic flow when using aggregate data. The cali-
bration approach used takes these interactions into account by iteratively
calibrating the different components to minimize the deviation between
observed and simulated measurements. The calibrated MITSIMLab
model was validated by comparing observed and simulated measure-
ments: traffic flows at sensor locations, point-to-point travel times, and
queue lengths. A second set of measurements, taken a year after the ones
used for calibration, was used at this stage. Results of the validation
are presented. Practical difficulties and limitations that may arise with
application of the calibration and validation approach are discussed.

Traffic simulation tools are increasingly popular for the analysis
of the operation of transportation systems. For example, a number of
microscopic traffic simulation tools have been used for the study of
intelligent transportation systems at the operational level [see Algers
et al. (1) for a review of tools]. However, the emergence of micro-
simulation tools raises several questions about their appropriate use
and, in particular, calibration and validation for the study they are
used for.

Calibration of traffic simulation tools, especially microscopic
ones, is not a trivial task. The source of the difficulty is that the data
usually available are aggregate measurements of traffic characteris-
tics, which are the emergent results of the interactions between var-

ious behaviors of individual vehicles. Therefore, these types of data
do not support independent calibration of the various models the
microsimulator consists of. As a result, in many cases, simulation
tools are applied by using the default parameter values supplied with
the simulator. For lack of data, validation is also an activity that does
not take place in most studies.

Two groups of parameters require calibration in microsimulators:
driving behavior parameters and travel behavior parameters. Driv-
ing behavior includes acceleration, lane changing, and intersections
models. The major components of travel behavior are the origin–
destination (O-D) flows and the route choice model.

The literature on calibration of traffic simulation models is rather
limited. Most published studies focus on one component of the simu-
lation model (usually driving behavior), while assuming the others are
given. For example, Daigle et al. (2), Abdulhai et al. (3), Lee et al. (4),
and Gardes et al. (5) calibrate only driving behavior parameters.
Ma and Abdulhai (6) also include route choice in the calibration but
still assume given O-D flows. O-D estimation routines assume known
assignment matrices, which capture the effects of route choice and
flow propagation. Cascetta and Postorino (7 ) extend the O-D estima-
tion procedure to explicitly include a route choice model but assume
that the parameters of that model are given. The calibration is in many
cases an ad hoc, sequential procedure. Some parameters are cali-
brated, often through trial and error. Their values are then fixed for the
calibration of a second set and so on. Such procedures do not include
feedback loops to capture interactions between the parameters of
interest.

The objective of this paper is to present the calibration and valida-
tion methods and results from an application of these methods in a
case study with data from Stockholm, Sweden, and the microsimula-
tion tool MITSIMLab. The paper is organized as follows: the next
section briefly describes MITSIMLab and the parameters to be cali-
brated within the model. The test network and data used in the case
study are presented in the third section. The calibration approach is
described in the fourth section, and the validation approach and results
are presented in the fifth section. Discussion and conclusions are
presented in the last section.

SIMULATION MODEL

MITSIMLab (8, 9) is a microscopic traffic simulation laboratory
developed to evaluate advanced traffic management systems and
advanced traveler information systems at the operational level.
MITSIMLab can represent a wide range of traffic management sys-
tems and model the response of drivers to real-time traffic information
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and control. This enables MITSIMLab to simulate the dynamic inter-
actions between traffic management systems and drivers. MITSIMLab
consists of three main modules:

1. Microscopic traffic simulator (MITSIM),
2. Traffic management simulator (TMS), and
3. Graphical user interface.

MITSIM represents traffic and network elements. Movements of
individual vehicles are represented in detail. The road network is rep-
resented by nodes, links, segments (links are divided into segments
with uniform geometric characteristics), and lanes. Traffic controls
and surveillance devices are represented at the microscopic level.
Travel demand is input in the form of time-dependent O-D flows,
which are translated into individual vehicles wishing to enter the net-
work. A probabilistic model is used to capture drivers’ route choice
decisions. Behavior parameters (e.g., desired speed, aggressiveness)
and vehicle characteristics are assigned to each vehicle/driver. 
MITSIM moves vehicles according to detailed driving behavior mod-
els, most notably acceleration and lane changing. The acceleration
model captures drivers’ response to conditions ahead as a function of
relative speeds, headways, and other traffic measures. The model
assumes three possible regimes, depending on the magnitude of the
time headway to the front vehicle: free-flow, car-following, and emer-
gency. The car-following behavior is active when the subject is close
to the leader and therefore directly affected by it. The free-flow model
describes the behavior of vehicles that are not close to their leaders.
Emergency behavior is invoked in near-collision situations. The lane-
changing model distinguishes between mandatory and discretionary
lane changes. These models assume three levels of decision making:
decision to change lane, choice of lane to change to, and execution of
the lane change (gap acceptance). The distribution of desired speeds
in the population is an important input to both the acceleration and
lane-changing models. Merging, drivers’ responses to traffic signals
and signs, speed limits, incidents, and tollbooths are also captured. A
detailed description of driving behavior models implemented in
MITSIMLab is presented elsewhere (10).

TMS mimics the traffic control system in the network under con-
sideration. A wide range of traffic control and route guidance systems
can be simulated. These include intersection controls, ramp control,
freeway mainline control, lane control signs, variable speed limit signs,
portal signals, variable message signs, and in-vehicle route guidance.
TMS can represent different designs of such systems with logic at
varying levels of sophistication (pretimed, actuated, or adaptive). An
extensive graphical user interface is used for both debugging purposes
and demonstration of traffic impacts through vehicle animation.

CALIBRATION METHODOLOGY

In general, calibration of microscopic traffic simulation tools should
be based on the framework presented in Figure 1. According to this
framework the calibration process consists of two steps. First, the
individual models the simulator consists of (e.g., driving behavior and
route choice models) are specified and their parameters are statisti-
cally estimated with disaggregate data, independent of the overall sim-
ulator framework. Disaggregate data include detailed driver behavior
information such as vehicle trajectories of the subject and surround-
ing vehicles. In the second step, aggregate data (e.g., time headways,
speeds, flows) are used to fine-tune parameters and calibrate general
parameters in the simulator.
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While this two-step approach to calibration is desirable, data avail-
ability often dictates what steps are feasible. Most often, as was the
case in this study, only aggregate data collected through loop detec-
tors are available and therefore only aggregate calibration is possible.
Aggregate calibration is based on a formulation of an optimization
problem, which seeks to minimize a measure of the deviation between
observed and corresponding simulated measurements. The reason for
this approach is that, in general, it is not feasible to isolate the con-
tribution of individual models to the overall error. For example,
O-D estimation methods require an assignment matrix as input. The
assignment matrix maps O-D flows to traffic counts at sensor loca-
tions. Usually the assignment matrix is not readily available and needs
to be generated from the simulator. Therefore, the assignment matrix
is a function of the route choice and driving behavior models used.
Similarly, an important explanatory variable in route choice models
is route travel times, which are flow dependent. Simulated flows are
a function of the O-D flows, driving behavior, and the route choice
model itself. Hence, the following optimization problem, which
simultaneously calibrates the parameters of interest (O-D flows,
route choice, and driving behavior parameters), may be formulated
as follows:
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FIGURE 1 Overall calibration framework.



where

β, θ, and OD = vectors of parameters to be calibrated: driving
behavior, route choice, and O-D flows, respec-
tively;

f (�) = measure of the discrepancy between Mobs and
Msim, which are vectors of observed and simu-
lated traffic measurements, respectively;

g(�) = simulation process;
Yobs = observed traffic counts at sensor locations; and

A = assignment matrix.

The preceding problem is very difficult to solve exactly. The O-D
constraint, for example, is a fixed-point problem, which is a hard
problem on its own merit (7). Hence, the iterative heuristic approach
presented in Figure 2 is proposed. This approach accounts for inter-
actions between driving behavior, O-D flows, and route choice behav-
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ior by iteratively calibrating driving behavior parameters and travel
behavior elements. At each step the corresponding set of parameters
is calibrated, while the other parameters remain fixed to their previ-
ous values. Calibration of the route choice model requires a set of rea-
sonable paths for each O-D and expected link travel times used as
explanatory variables in the model. O-D estimation requires gen-
eration of an assignment matrix. Hence, the travel behavior calibra-
tion step is also iterative: based on the existing O-D flows, parameters
of the route choice model are calibrated. The calibrated route choice
model is used to generate an assignment matrix and perform O-D esti-
mation. The new O-D flows are used to recalibrate route choice param-
eters and so forth. In summary, the proposed calibration process
proceeds as follows:

Step 1. Initialize parameters, β0, θ0, and OD0.
Step 2. Estimate O-D and calibrate route choice parameters

assuming fixed driving behavior parameters.
Step 3. Calibrate driving behavior parameters assuming the O-D

matrix and route choice parameters estimated in Step 2.
Step 4. Update habitual travel times using the O-D matrix, route

choice, and driving behavior parameters estimated in Steps 2 and 3.
Step 5. Check for convergence: if convergence, terminate. Other-

wise, continue to step 2.

CASE STUDY

Study Network and Data

Traffic in Stockholm is growing at an annual rate of 2%. Even if all
planned road investments in Sweden were to be allocated to Stock-
holm, that would not be enough to meet the expected traffic increase
in the next 20 years. Hence, road authorities are seeking ways to effi-
ciently manage the use of existing roads, such as advanced traffic
management strategies including coordinated traffic control systems,
bus priority at signals, and bus-lane operations. MITSIMLab was used
to evaluate some of these strategies. A calibration and validation
activity was carried out before evaluation. The calibration focused on
adjusting key parameters to fit local conditions. Validation focused
on demonstrating the ability of the model to replicate observed traffic
patterns in conditions other than the ones used for calibration.

A mixed urban-freeway network in the Brunnsviken area, north of
the Stockholm central business district, was chosen for the purpose of
calibration and validation (Figure 3). This network has been used pre-
viously in the DYMO study (11). The E4 corridor, on the west side of
the network, is the main freeway connecting the northern suburbs to
the central business district. The east side of the network is a parallel
arterial. These routes experience heavy southbound congestion during
the morning peak period.

Morning peak period traffic data from May 1999 were collected for
calibration. Similar data were collected a year later, during May 2000,
for validation. Sensor and other measurement locations for May 1999
and May 2000 are also presented in Figure 3. Sensor data were avail-
able from the motorway control system and additional loop detectors.
The validation data also included measurements of point-to-point
travel times and queue lengths by probe vehicles. Additional queue
measurements were obtained from aerial photographs.

A static morning peak O-D flows matrix, previously developed
for planning studies, was available for O-D estimation. Additional
information about vehicle mix by type (automobiles, buses, trucks,
etc.) and lane-use privilege (i.e., permission to use bus lanes) was
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used to set corresponding input data for the simulator. The type
assigned to a simulated vehicle affects its physical properties (length
and width) and performance capabilities (e.g., maximum speed, accel-
eration and deceleration). The importance of lane-use privileges in this
application stems from the extensive bus lanes system in place. Only
buses and taxis are allowed to use these lanes. The automobiles cate-
gory was further split to two separate groups: high-performance and
low-performance vehicles. Vehicles in these groups have different
performance capabilities.

Now, application of the procedure described in the previous section
to the Brunnsviken network is described in more detail.

Initial Parameter Calibration

Driving Behavior Parameters

Of the driving behavior parameters, only parameters of the distribu-
tion of desired speeds were estimated independently. The other param-
eters were calibrated through the optimization approach already
discussed.

The desired speed is defined as the speed the driver would choose
in the absence of any restrictions imposed by other vehicles or by traf-
fic control devices. This speed is affected by the geometry of the sec-
tion and by driver and vehicle characteristics. A set of parameters
determines the distribution of desired speeds relative to the speed limit.
This distribution was inferred from the speeds of unconstrained
vehicles. Vehicles crossing the sensor stations at times when the
flow rate was less than 600 vehicles (veh)/h/lane were considered un-
constrained. This threshold corresponds to the Highway Capacity
Manual level of service A (12). The sensitivity of the desired speed dis-
tribution with respect to the flow threshold was analyzed. Desired
speed distributions were developed in a similar way, assuming flow
thresholds of 300 and 200 veh/h/lane. The results were not significantly
different from the one obtained for 600 veh/h/lane.

A small subnetwork extracted from the Brunnsviken network was
used to obtain initial values for other driving behavior parameters.
Important considerations that led to adopting this approach were as
follows:

1. The calibration process is more manageable when performed
on a subnetwork.

2. The subnetwork was chosen so that available sensor data can
be used to generate accurate O-D flows at 1-min intervals. Moreover,
for each O-D pair in the subnetwork only one path exists. Therefore,
most of the errors generated by O-D estimation and route choice
modeling were eliminated.

The subnetwork and sensor locations within it are presented in
Figure 4. This subnetwork was chosen for several reasons including
the following:

1. Minimal downstream effects. The location is far from possi-
ble spillbacks from the bottlenecks in the network that may affect
the behavior but are not represented in the MITSIMLab subnetwork
model.

2. Representation of different behaviors. The subnetwork contains
on- and off-ramps, thus capturing mandatory and discretionary lane-
changing and merging behavior, which are likely to be important
behaviors in this case study.
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The risk associated with this approach is that the calibration
may not produce the desired results if the selected subnetwork is
not representative of the network. However, because this is only a
preliminary calibration step, which would be followed by applica-
tion of the calibrated models to the entire network, this risk should
be negligible.

Because sensor counts were used to extract O-D information for the
subnetwork, minimization of the square deviations of simulated sen-
sor speeds from the observed ones was used to calibrate the driving
behavior parameters:

where

V obs
nt and V sim

nt = observed and simulated speeds, respectively,
measured at sensor n during time period t,

N = number of sensors, and
T = number of time periods.

Path Choice Set Generation

The route choice model requires a set of alternative paths for each 
O-D pair in the network. The following procedure was used to
generate these sets:

1. Generation of a comprehensive path set. A comprehensive path
choice set was generated by using a probabilistic link-based route
choice model embedded in MITSIMLab, in which each vehicle
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decides the next link on its path at each node. This choice is based on
the shortest-path travel times to the destination via each one of the
candidate next links as explanatory variables.

2. Unreasonable path elimination. The link-based route choice
tends to generate a large number of paths. Unreasonable paths (e.g.,
paths using off-ramp and on-ramp immediately afterward) were
eliminated.

The path choice set may depend on traffic conditions, and there-
fore the process should be repeated to ensure that all reasonable paths
are captured as O-D flows and the parameters of the route choice
model evolve. The structure of the Brunnsviken network facilitates
the generation of the path set, because only one or two reasonable
paths exist for each O-D pair. Therefore, the path generation exercise
was performed only once.

O-D Estimation and Route Choice

O-D Estimation

The O-D estimation problem is often formulated as a generalized
least-squares (GLS) problem. The GLS formulation minimizes the
deviations between estimated and observed sensor counts while also
minimizing the deviation between the estimated O-D flows and seed
O-D flows [see, for example, Cascetta et al. (13), Cascetta and
Nguyen (14), and Bell (15) for more detail and for review of O-D
estimation methods]. The corresponding optimization problem is as
follows:

min ( )
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H T H H T HAX Y W AX Y X X V X X
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FIGURE 4 Location and details of calibration subnetwork.



where

X and XH = vectors of estimated and historical (seed) O-D flows,
respectively,

Y H = historical (observed) sensor counts, and
W and V = variance–covariance matrices of the sensor counts

and O-D flows, respectively.

However, in the problem discussed here, the assignment matrix is
not known. Hence, the iterative process presented in Figure 5 is pro-
posed. First, the simulation is run, using the calibrated parameters and
a set of seed O-D flows to generate an assignment matrix. This assign-
ment matrix in turn is used for O-D estimation. Because of conges-
tion effects, the assignment matrix generated from the seed O-D
may be inconsistent with the estimated O-D. Therefore, the O-D
estimation process must be iterative.

The Brunnsviken network includes a large number of O-D pairs
and sensor locations, which made O-D estimation computationally
intensive. To overcome this limitation, a sequential estimation tech-
nique, which exploits the sparse structure of the assignment matrix,
was used. The sequential estimation process is as follows: The seed
O-D is taken as fixed for the first time period. An assignment matrix
is generated and used to estimate the effect of the first period demand
on sensor counts in subsequent periods. The demand in the second
period is then estimated, based on the observed counts less the esti-
mated contribution from O-D flows in the first time period. The
assignment matrix is used to estimate the effect of second period
demand on subsequent periods. This process is continued until O-D
flows are estimated for all periods of interest.

This estimation procedure is inferior to a simultaneous one, in
which O-D flows for all time periods are estimated jointly. The mag-
nitude of the error it introduces depends on the degree of traffic
dynamics in the specific application. The impact that O-D flows in one
time period have on subsequent time periods may be used as indi-
cators to this error and therefore to the adequacy of the sequential
process. Figure 6 graphically presents an assignment matrix for the
Brunnsviken network with nonzero elements indicated as dots. The
(almost) block-diagonal structure of the assignment matrix indicates
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that the contribution of O-D flows in one period is mostly to sensor
counts in the same time period and rarely goes beyond the subsequent
time period. Therefore, estimating O-D flows one time period at a
time is a reasonable compromise.

Route Choice Parameter Calibration

Given the O-D flows, path choice sets, and habitual travel times,
parameters of the route choice model were calibrated to match the
split between the two sensors marked 1 and 2 in Figure 3a. These
points were selected because the structure of the network ensures that
all vehicles with a choice of paths pass exactly one of them. Splits
were used instead of counts to reduce errors from inaccuracies in the
scale of the O-D matrix, especially at early stages of the estimation
process.

Driving Behavior Parameters

While the initial calibration of driving models included a wide range
of parameters, during this step only a limited set of parameters was
calibrated. Sensitivity analysis indicated that the calibration could
focus on scale parameters of the various models: the sensitivity con-
stants in the acceleration models and alternative specific constants in
the lane-changing models. Hence, given O-D flows and route choice
parameters, these scale parameters were calibrated with the formula-
tion given in Equation 2, now applied to the entire network. A detailed
description of the parameters calibrated and their optimal values is
found elsewhere (16).

Habitual Travel Times

The route choice model implemented in MITSIMLab uses habitual
path travel times as explanatory variables. Calibration of the model
parameters requires knowledge of these travel times. While planning
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FIGURE 5 O-D estimation process.

FIGURE 6 Structure of assignment matrix showing nonzero entries as dots.



studies can be used to provide initial values, further refinement is
necessary to capture the time-dependent nature of travel times and
improve the accuracy of the models. Therefore, an iterative day-to-
day perception updating model [see Jha et al. (17 ) for a review] was
used to improve initial travel time estimates obtained from planning
studies. At each iteration of this process, representing a day, habitual
travel times were updated as follows:

where TT k
it and tt k

it are the habitual and experienced travel times on
link i, time period t on day k, respectively, and λk is a weight parame-
ter (0 < λk < 1). In this study, a convex combinations approach, which
uses a constant λk = λ, was implemented.

VALIDATION RESULTS

Three types of measurements were used to validate the calibrated
MITSIMLab model—traffic flows, travel times, and queue lengths—
by comparing simulated measurements with the corresponding ob-
served measurements. Measurement locations are indicated in Figure
3b. O-D flows were estimated from the May 2000 traffic counts and
the previously calibrated model parameters.

Traffic Flows

Observed and simulated traffic flows at key sensor locations were
compared by using 2 h of morning peak data at 15-min intervals. The
results are presented in Figure 7. Two measures of goodness of fit
were used to quantify the relationship between observed and simulated
measurements: the root-mean-square normalized error (RMSNE ),
which quantifies the total percentage error of the simulator, and the
mean normalized error (MNE ), which indicates the existence of con-
sistent under- or overprediction in the simulated measurements. These
measures are calculated as follows:

where m obs
n and m sim

n are the observed and simulated measurements,
respectively, and N is the number of measurement points (over time
in this case).

RMSNE values for the different locations range from 5% to 17%.
MNE values range from −12% to 14%. In general, simulated flows
correspond well to the measurements and accurately capture the tem-
poral patterns in traffic flows. Note that sensor flows were used to
estimate the O-D flows. Hence, the results emphasize the importance
of O-D estimation.

Travel Times

Point-to-point travel times measured by the probe vehicles were
compared with average simulated travel times. Only a few probe
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vehicle observations were available. Therefore, mean observed travel
times could not be accurately estimated. Instead, Figure 8 compares
average simulated travel times and individual probe vehicle obser-
vations. The figure also indicates travel time values corresponding
to the average ±2 standard deviations of the simulated travel time.
Assuming that simulated travel times follow a normal distribution,
these values define an interval containing 95% of simulated travel
times. Eighty of the 120 (67%) probe vehicle observations are within
these intervals.

Simulated travel times match very well in sections A to B, B to
C, and D to C, which are relatively uncongested during the morn-
ing peak period. Sections C to D, C to B, and B to A are heavily
congested, as indicated by the shapes of the travel time curves.
These shapes are rather well replicated, although the simulator under-
estimates travel times. The largest incomparability between ob-
served and simulated measurements is in sections A to D and D
to A. These are short and congested sections dominated by traffic
signals and roundabouts. Some of the error in these sections may
be attributed to inconsistencies in the traffic counts in this area
(e.g., entry flows to an intersection do not match exit flows) that
led to poor O-D estimation and to imperfections in the representa-
tion of traffic control (e.g., pedestrian and bicycle signals) in the
simulation tool.

Queue Lengths

Simulated queue lengths were compared with those measured by the
probe vehicles and from aerial photos. Both queues presented in Fig-
ure 9 are very significant. At their peak they may interlock and grow
beyond the northern boundary of the network. They are well repre-
sented in the simulation in terms of both magnitude and time of occur-
rence. However, the number of observations is very limited, which
forbids rigorous statistical analysis of the results.

CONCLUSION

This paper described the calibration and validation methodology of
a microscopic traffic simulator applied to the Brunnsviken network
in northern Stockholm. An extensive sensor data collection effort
was conducted during May 1999 for calibration and May 2000 for
validation. In addition, for the validation, point-to-point travel times
and queue lengths were measured by probe vehicles and from aerial
photographs.

Only sensor data were used to calibrate two important components
of the simulation tool: driving behavior models and travel behavior
components, including O-D flows and route choice parameters. Such
aggregate calibration uses the simulated output, which is a result of
the interaction among all components of the simulator. Therefore, it
is, in general, impossible to identify the effect of individual models
on traffic flow when using aggregate data. The proposed calibration
approach accounts for these interactions by iteratively calibrating
these components.

The calibrated MITSIMLab model was validated by comparing
observed and simulated measurements: traffic flows at sensor loca-
tions, point-to-point travel times, and queue lengths. Flow compar-
isons showed a good fit between observed and simulated flows.
Simulated travel times reproduced the observed peaking patterns
in most of the sections. Queue lengths also replicated well in the
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FIGURE 7 Comparison of observed and simulated flows at sensor locations: (a) 1 westbound, (b) 1 eastbound, (c) 2 southbound, 
(d) 3 northbound, (e) 4 westbound, ( f ) 4 eastbound, (g) 5 westbound, (h) 5 eastbound, (i) 6 northbound, ( j ) 6 southbound, 
(k) 7 southbound, and (l) 7 northbound.
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FIGURE 8 Comparison of observed and simulated point-to-point travel times: (a) A to B, (b) B to A, (c) B to C, (d) C to B, 
(e) C to D, ( f ) D to C, (g) D to A, and (h) A to D.



simulation in terms of both queue dynamics and length. Hence, it
may be concluded that the MITSIMLab model for the Brunnsviken
network fits the empirical measurements reasonably well.

This study also illustrates the importance of using reliable sen-
sor data with good spatial coverage of the network. Sensor data are
prone to significant measurement errors [for example, up to 38%
error is reported by Turner et al. (18)]. Furthermore, there is sig-
nificant probability of using measurements from malfunctioning
sensors. If sensor data are of poor quality, O-D flows and result-
ing simulated traffic flows may deviate considerably from reality.
Hence, it is important to check and correct data before beginning
calibration and validation.
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