
The lane-changing model is an important component of microscopic
traffic simulation tools. With the increasing popularity of these tools, a
number of lane-changing models have been proposed and implemented
in various simulators in recent years. Most of these models are based on
the assumption that drivers evaluate the current and adjacent lanes and
choose a direction of change (or no change) on the basis of the utilities
of these lanes only. The lane choice set is therefore dictated by the cur-
rent position of the vehicle and in multilane facilities would be restricted
to a subset of the available lanes. Thus, existing models lack an explicit
tactical choice of a target lane and therefore cannot explain a sequence
of lane changes from the current lane to this lane. In this paper, a gen-
eralized lane-changing model that explicitly incorporates the choice of
target lane is presented. The target lane is the lane that the driver per-
ceives to be the best when a wide range of factors and goals are taken
into account. The immediate direction in which a driver changes lanes
is determined by the target lane choice. All parameters of the model were
jointly estimated with detailed vehicle trajectory data. The model was
validated and compared with an existing lane-changing model with the use
of a microscopic traffic simulator. The results indicate that the proposed
model performs significantly better than the previous model.

The lane-changing model is an important component of microscopic
traffic simulation tools that has a significant impact on the character-
istics of traffic flow. With the increasing popularity of these tools, a
number of lane-changing models have been proposed and implemented
in various simulators in recent years.

Most lane-changing models classify lane changes as either manda-
tory or discretionary (1–8). Drivers consider mandatory lane changes
when they must move away from their current lanes to follow their
paths, avoid a lane blockage, or comply with lane use regulations. In
any of these cases, drivers will change to the nearest acceptable lane.
Drivers pursue discretionary lane changes when they perceive that
driving conditions in an adjacent lane are better, even though a lane
change is not required. The evaluation of the current and adjacent
lanes is based on variables such as the traffic speeds and densities in
these lanes, the positions and speeds of vehicles that surround the
subject vehicle, and the presence of heavy vehicles. Drivers who decide
to change to an adjacent lane evaluate whether the available gap in
traffic in this lane can be used to complete the lane change or not.

This choice is often modeled by the use of gap acceptance models,
in which drivers compare the available gaps to the smallest accept-
able gap, the critical gap. Critical gaps depend on the relative speed of
the subject vehicle with respect to those of the lead and lag vehicles
in the adjacent lane and on the type of lane change.

In all these models the need for mandatory lane changes preempts
discretionary ones. Toledo et al. proposed a model that integrates
mandatory and discretionary lane changes in a single utility model and
so captures trade-offs between conflicting goals (9). The driver chooses
the direction of a lane change to an adjacent lane or decides to stay
in the current lane. A gap acceptance model determines whether the
change in the chosen direction is completed. The model proposed in
this paper adopts this approach.

The models listed above are all based on the assumption that drivers
evaluate the current and adjacent lanes and choose a direction of
change (or no change) on the basis of the utilities of these lanes only.
The lane choice set is therefore dictated by the current position of the
vehicle and in multilane facilities would be restricted to a subset of
the available lanes. Thus, existing models lack an explicit tactical
choice of a target lane, which may require a sequence of lane changes
from the current lane to get to the target lane. Instead, these myopic
models can explain only one lane change at a time.

This deficiency of existing models is most evident in situations in
which there are large differences in the attributes and utilities of the
available lanes. An example of this are facilities with high-occupancy
vehicle (HOV) lanes or other types of exclusive lanes, which may be
significantly more attractive than other lanes. Eligible vehicles may
make several lane changes to get to the exclusive lane. However, in
the existing models, because only the adjacent lane is considered for
each lane change, the presence of the exclusive lane may not be cap-
tured. To illustrate this, consider the situation presented in Figure 1.
Suppose that Lane 4 is an HOV lane with a significantly higher level
of service than the other lanes. The lane utilities may be affected by
various variables. For simplicity, it is assumed here that the lane util-
ities are fully captured by the average speed. Furthermore, it is assumed
that the subject vehicle, Vehicle A, is eligible to enter the HOV lane.
With the existing models, the driver compares only the current lane
(Lane 2) with the left lane (Lane 3) and the right lane (Lane 1). On the
basis of the lane speeds, Lane 1 is the most desirable of the three and
the driver will change to that lane. However, a more plausible model
would be that, on the basis of the lane speeds, the driver chooses
Lane 4 as the most desirable lane. Thus, Vehicle A will change to
Lane 3 to eventually reach Lane 4. In other words, the driver may move
to a worse adjacent lane (Lane 3) as the means of getting to a lot better
target lane farther away (Lane 4).

This paper presents a generalized lane-changing model that explic-
itly incorporates the choice of a target lane. All parameters of the
model were jointly estimated with detailed vehicle trajectory data
and were validated by using a microscopic traffic simulator. The rest
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of this paper is organized as follows. First, the structure and detailed
specifications of the proposed model are presented. Next, the data
used to estimate the model parameters and formulate the likelihood
function that explains these data are described. Estimation results and
the validation within a microscopic traffic simulator are then presented.
The paper concludes with a summary of the findings.

LANE-CHANGING MODEL

The discussion in the previous section demonstrates the need to intro-
duce an explicit choice of a target lane in the lane-changing model
framework. The target lane is the lane that the driver perceives to be
the best lane when a wide range of factors and goals are taken into
account. These factors may include the attributes of specific lanes as
well as variables that relate to the spatial relations between the subject
vehicle and the other vehicles around it, the driver’s path plan, and
driver-specific characteristics. The choice of the immediate direction
in which a driver changes lanes is determined in the direction from
the current lane to the target lane.

Examples of the structure of this lane-changing model are shown
in Figure 2. The decision structure shown in Figure 2a is for a vehi-
cle that is currently in the second lane to the right (Lane 2) on a four-
lane road. Lanes 3 and 4 are on its left, and Lane 1 is on its right. At
the highest level, the driver chooses the target lane. In contrast to
existing models, the choice set constitutes all four lanes in the road
(Lanes 1, 2, 3, and 4). The driver chooses the lane with the highest
utility as the target lane. If the target lane is the same as the current
lane (Lane 2 in this case), no lane change is required (no change in
Figure 2a). Otherwise, the direction of change is to the right if the
target lane is Lane 1 (right in Figure 2a) and to the left if the target
lane is either Lane 3 or Lane 4 (left in Figure 2a). If the target lane
choice dictates a lane change, the driver evaluates the gaps in the
adjacent lane corresponding to the direction of change and either
accepts the available gap and moves to the adjacent lane (change right
or change left in Figure 2a) or rejects the available gap and stays in
the current lane (no change in Figure 2a). The decision structure in
Figure 2b is for a vehicle in Lane 1 in a similar situation. The model
hypothesizes two levels of decision making: the target lane choice
and the gap acceptance. The target lane choice and the direction of
immediate lane change that is implied by the selected target lane are
latent. Only completed lane changes (or no changes) are observed.
In Figure 2 latent choices are shown as ovals and observed choices
are represented as rectangles.

The lane-changing model explains the choices that drivers make in
two dimensions: the target lane choice and the gap acceptance. Further-
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more, the estimation data include repeated observations of drivers’
lane-changing choices over a period of time. The time-invariant char-
acteristics of the drivers and their vehicles, such as aggressiveness,
level of driving skill, and the vehicle’s speed and acceleration capa-
bilities, create correlations among the choices made by a given driver
over time and choice dimensions. It is important that these correlations
be captured in the utility functions. However, the data available for
model estimation do not include information about these character-
istics. Therefore, an individual-specific latent variable is introduced in
the various utilities to capture these correlations. The model assumes
that, conditional on the value of this latent variable, the error terms
of different utilities are independent. This specification is given by

where

Uc
int = utility of alternative i of choice dimension c to individual n

at time t,
Xc

int = vector of the explanatory variable,
β c

i = vector of parameters,
υn = individual-specific latent variable assumed to follow some

distribution in the population,
α c

i = parameter of υn, and
� c

int = generic random term with an independent and identical
distribution across alternatives, individuals, and time (�c

int

and υn are independent of each other).

The resulting error structure [a detailed discussion is given else-
where (10, 11)] is given by

where σi
c2 is the variance of �c

int.
The specification of the models is now described in further detail

to explain the two choices that drivers make within the lane-changing
model: the target lane choice and the gap acceptance.

Target Lane Model

At the highest level of the lane-changing model the driver chooses
a target lane. The target lane choice set constitutes all available lanes
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FIGURE 1 Illustration of myopic behavior in existing lane-changing models.



to which the driver is eligible to move. In the presence of exclusive
lanes, the choice set would depend on the eligibility of the vehicle to
enter the exclusive lanes, and thus the choice set is not the same for
all drivers. The utilities of the various lanes are given by

where

UTL
int = utility of lane i as a target lane (TL) to driver n at time t,

X TL
int = vector of explanatory variables that affect the utility of

lane i,
βi

TL = corresponding vector of parameters,
�TL

int = random term associated with the target lane utilities, and
α i

TL = parameter of υn.
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The target lane utilities are affected by the lane attributes, such as
the density and the speed of traffic in the lane and the presence of
heavy vehicles, and variables that relate to the path plan, such as the
distance to a point where the driver needs to be in a specific lane and
the number of lane changes required to go from the target lane to the
correct lane. In addition, the vehicle’s current lane and position may
affect the target lane choice through variables that capture the num-
ber of lane changes from the current lane to the target lane that are
required and the spatial relations of the subject vehicle to the vehicles
around it.

The driver chooses as the target lane the lane with the highest utility.
Different choice models are obtained, depending on the assumption
made about the distributions of the random term �TL

int. If it is assumed
that they are independently and identically Gumbel distributed, target
lane choice probabilities (P), conditional on the individual specific
error term, are given by a multinomial logit model:
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FIGURE 2 Examples of structure of proposed lane-changing model.



where V TL
int⎟ υn are the conditional systematic utilities of the alternative

target lanes.
The choice of the target lane dictates the change direction, dnt. If

the current lane is also the target lane, no change is needed. Other-
wise, the change will be in the direction from the current lane to the
target lane.

Gap Acceptance Model

The gap acceptance model captures a driver’s choice whether the
available gap in the adjacent lane in the change direction can be used
to complete the lane change or not. The driver evaluates the available
lead and lag gaps, which are defined by the clear spacing between the
rear of the lead vehicle and the front of the subject vehicle and between
the rear of the subject vehicle and the front of the lag vehicle, respec-
tively. The lead and lag vehicles and the gaps that they define are
shown in Figure 3.

The driver compares the available space lead and lag gaps with the
corresponding critical gaps, which are the minimum acceptable space
gaps. An available gap is acceptable if it is greater than the critical
gap. Critical gaps are modeled as random variables. Their means are
functions of explanatory variables. The individual specific error term
captures correlations between the critical gaps of the same driver
over time. Critical gaps are assumed to follow lognormal distributions
to ensure that they are always nonnegative:

where

Gnt
gd,cr = critical gap g in the direction of change d (m),
Xgd

nt = vector of explanatory variables,
β g = corresponding vector of parameters,
� gd

nt = random term, where � gd
nt ∼ N(0, σ 2

g), and
α g = parameter of the driver specific random term υn.

The gap acceptance model assumes that the driver must accept
both the lead gap and the lag gap to change lanes. The probability of
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changing lanes, conditional on the individual specific term and the
choice of direction of change, is therefore given by

where

dnt ∈ {right, current, left} and the chosen direction
of change for driver n at time t, which is deter-
mined by the target lane choice;

Gnt
lead d and Gnt

lag d = available lead and lag gaps in direction d,
respectively; and

lnt = lane-changing action.

If it is assumed that critical gaps follow lognormal distributions,
the conditional probabilities that gap g ∈ {lead, lag} is acceptable
are given by

where Φ[�] denotes the cumulative standard normal distribution.
Gap acceptance is affected by the spatial relations between the

subject vehicle and the lead and lag vehicles in the adjacent lane,
which is captured by variables such as the subject’s relative speed
and position with respect to the lead and lag vehicles.

DATA FOR MODEL ESTIMATION

A set of detailed vehicle trajectory data that were collected by FHWA
(12) in a section of I-395 southbound in Arlington, Virginia, was used
to estimate the parameters of the lane-changing model. This data set is
particularly useful for estimation of the lane-changing model because
of the geometric characteristics of the site, which is schematically
shown in Figure 4. It is 997 m long with two off-ramps and an on-
ramp and therefore has the length necessary to capture the impact of
the path plan and other variables on lane-changing behavior.

The data set contains observations of the position, lane, and dimen-
sions of every vehicle within the section every 1 s. The vehicle tra-
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jectory data were used to generate the required explanatory variables,
including the speeds and the relations between the subject vehicle
and other vehicles. The estimation data set includes the trajectories
of 442 vehicles, with a total of 15,632 observations. On average, a
vehicle was observed for 35.4 s (observations). All vehicles were first
observed at the upstream end of the freeway section. At the down-
stream end, 76% stayed on the freeway, and 8% and 16% used the
first and second off-ramps, respectively. The observed speeds range
from 0.4 to 25.0 m/s, with a mean of 15.6 m/s. Densities range from
14.2 to 55.0 vehicles per kilometer per lane (veh/km/lane), with a
mean of 31.4 veh/km/lane. The level of service on the section ranges
from D to E.

LIKELIHOOD FUNCTION

The path plan is an important factor that explains lane-changing
behavior. The impact of the path plan is captured by variables such as
the distance to an off-ramp that the driver needs to use. However, the
path plans of drivers who remain on the freeway at the downstream
end of the section are unknown. To capture the effects of these vari-
ables, a distribution of the distance from the downstream end of the
section being studied to the exit points was used. The parameters of
this distribution were estimated jointly with the other parameters of
the model. A discrete distribution of the distances that exploits infor-
mation on the locations of off-ramps downstream of the section was
used. The alternatives considered were the first, second, and subse-
quent off-ramps. The probability mass function of distances to the
off-ramps [ω(sn)] beyond the downstream end of the segment is
given by

where π1 and π2 are the parameters to be estimated; and s1, s2, and s3

are the distances beyond the downstream end of the section to the
first, second, and subsequent exits, respectively.
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The first and second exit distances (s1 and s2, respectively) were
extracted from map information. For the subsequent exits, an infinite
distance was used (s3 = ∞). This corresponds to an assumption that
while they are on the section being studied, drivers that use these
exits are not constrained by their path plans.

The joint probability density of a combination of target lane (TL)
and lane action (l) observed for driver n at time t, conditional on the
distance to the exit point, sn, and the individual-specific characteristic,
υn, is given by

where P(TLnt = i⎟ �) and P(lnt⎟ �) are given by Equations 4 and 6,
respectively.

Only the lane-changing action is observed over a sequence of Tn

consecutive time intervals. If it is assumed that, conditional on sn and
υn, these observations are independent, the joint probability of the
sequence of observations, ln, is given by

The unconditional individual likelihood function (Ln) is obtained by
integrating (summing for the discrete variable sn) over the distributions
of the unobserved individual-specific variables:

If it is assumed that the observations from different drivers are
independent, the log-likelihood function for all N individuals observed
is given by

Maximum likelihood estimators of the model parameters can be
found by maximizing this function.

L Ln

n

N

= ( )
=

∑ ln ( )
1

12

L P s s fn

s

= ( ) ( ) ( )∑∫ ln � , ( )υ ω υ
υ

11

P s P i l sn n

j

nt nt n n

i

Tn

l * *n , , , ( )υ υ( ) = =( )
∈=
∑∏

TL

TL
1

10

P i l s P i s P l int nt n n nt n n nt nt nTL TL TL=( ) = =( ) =( ), , , , ( )� � �υ υ υ 9

Not to scale

815 m 2 m76 m104 m

1st
off-ramp

2nd
off-ramp

lane 4

lane 3

lane 2

lane 1

Direction of travel

FIGURE 4 I-395 data collection site, Arlington, Virginia.



ESTIMATION RESULTS

The estimation results of the proposed lane-changing model are
presented in Table 1.

Target Lane Model

Target lane choices are affected by the attributes of the alternative
lanes, such as average speed and density, as well as variables related
to the path plan and the spatial relations between the subject vehicle
and the vehicles around it.
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The estimated values of the lane-specific constants imply that, with
everything else being equal, the rightmost lane is the most undesirable.
This may be the result of drivers’ preference to avoid the merging
and weaving activities that take place in that lane. In general, lanes
to the left are more desirable. However, Lanes 3 and 4 have similar
constants, which may indicate that the advantage of being away
from the slower right lanes is balanced by the disadvantage associ-
ated with being in lanes that are farther away from the off-ramp and
by the increased interaction with vehicles traveling at higher speeds.
As expected, the results also indicate that drivers are more likely to
choose lanes with higher average speeds and lower densities. The
relations between the subject vehicle and the vehicles in front of it
in the current and adjacent lanes in terms of spacing and relative
speeds also affect the target lane choice. The results show that lane
utilities increase with the relative front speed and the spacing between
the vehicles. The tailgating dummy variable, which captures the pres-
ence of a tailgating vehicle behind the subject in its current lane, was
important both in the magnitude of its contribution to the utility and
in its statistical significance. This variable thus captures drivers’ strong
preference to avoid being tailgated.

The values of the coefficients of the current lane dummy and the
number of lane changes required to go from the current lane to the
target lane capture the preference to stay in the current lane and the dis-
utility associated with the need to make lane-changing maneuvers
to get to other lanes. The path plan impact variables indicate that the
utility of a lane decreases with the number of lane changes from that
lane that the driver needs to perform to maintain his or her path. This
effect is magnified as the distance to the off-ramp decreases. This has
been captured by the negative power of the distance to the off-ramp
(θMLC = −0.371, where MLC is mandatory lane change). The disutility
associated with being in a wrong lane is larger when the driver needs
to take the next exit.

The heterogeneity coefficients, αlane 1, αlane 2, and αlane 3 capture the
effects of the individual-specific error term υn on the target lane choice.
All three estimated parameters are negative. Hence, υn can be inter-
preted as being correlated with aggressiveness because aggressive
drivers are less likely than more timid drivers to choose the right lanes
over the left ones.

In summary, the target lane utilities (UTL
int ) are given by

where

βi = lane i constant;
Dint and Sint = lane-specific densities and speeds, respec-

tively;
ΔX int

front and ΔS int
front = spacing and relative speed of the front vehicle

in lane i, respectively;
δ adj

int = indicator with a value of 1 if i is the current
or an adjacent (adj) lane and 0 otherwise; sim-
ilarly, δCL

int has a value of 1 if i is the current
lane (CL) and 0 otherwise;

δ nt
tailgate = indicator with a value of 1 if vehicle n is

being tailgated at time t and 0 otherwise;
ΔCLint = number of lane changes required to get from

the current lane to lane i;
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TABLE 1 Estimation Results of Lane-Changing Model

Parameter
Variable Value t-Statistic

Target lane model

Lane 1 constant −1.570 −3.030

Lane 2 constant −0.488 −1.552

Lane 3 constant 0.075 1.744

Lane density, vehicle/km −0.011 −0.988

Average speed in lane, m/s 0.119 1.560

Front vehicle spacing, m 0.022 2.879

Relative front vehicle speed, m/s 0.115 1.463

Tailgate dummy −2.783 −0.176

CL dummy 1.000 1.485

Number of lane changes from CL −2.633 −0.270

Path plan impact, 1 lane change required −2.559 −3.265

Path plan impact, 2 lane changes required −4.751 −3.584

Path plan impact, 3 lane changes required −6.996 −0.097

Next exit dummy, lane change(s) required −0.980 −0.377

θMLC −0.371 −2.608

θMLC

π1 0.001 −0.426

π2 0.069 −8.101

αlane 1 −1.371 −2.582

αlane 2 −0.985 −0.510

αlane 3 −0.691 −3.441

Lead critical gap

Constant 1.553 3.311

Max(ΔS lead
nt , 0), m/s −6.389 −3.793

Min(ΔS lead
nt , 0), m/s −0.140 −2.191

αlead −0.008 4.029

σlead 0.888 −1.229

Lag critical gap

Constant 1.429 6.611

Max(ΔS lead
nt , 0), m/s 0.471 4.907

αlag −0.234 0.469

σlag 0.742 4.802

Number of drivers = 442 L(0) = −1434.76

Number of observations = 15,632 L(β̂) = −876.69

Number of parameters = 29 −ρ 2 = 0.368

ρ–2 = goodness of fit; L(0) = likelihood function at a value of zero; L(�̂) = likelihood
function at the optimum.



β i
path = path plan impact coefficient for lane i;

d nt
exit = distance to the exit that driver n intends to

use;
δ nt

next exit = indicator with a value of 1 if the driver intends
to take the next exit and 0 otherwise; and

ΔExit i = number of lane changes required to get from
lane i to the exit lane.

Gap Acceptance Model

The lead and lag critical gaps depend on the relative speed between
the subject vehicle and the lead and lag vehicles. Surprisingly, neither
critical gap was significantly affected by the absolute speed of the sub-
ject. One possible reason may be that there is not enough variability
in speeds in the estimation data set to capture its effect.

The lead critical gap decreases with the relative lead speed;
i.e., it is larger when the subject vehicle is faster than the lead vehi-
cle. The effect of the relative speed is strongest when the lead vehi-
cle is faster than the subject. In this case, the lead critical gap quickly
diminishes as a function of the speed difference. This result suggests
that drivers perceive very little risk from the lead vehicle when it is
getting away from them.

The lag critical gap increases with the relative lag speed: the faster
the lag vehicle is relative to the subject, the larger the lag critical gap
is. In contrast to the lead critical gap, the lag gap does not diminish
when the subject is faster. A possible explanation is that drivers may
maintain a minimum critical lag gap as a safety buffer because their
perception of the lag gap is not as reliable as their perception of the
lead gap. Estimated coefficients of the unobserved driver character-
istics variable, υn, are negative for both the lead and the lag critical
gaps. Hence, it is consistent with the interpretation of υn as being
correlated with aggressive drivers, who require smaller gaps for lane
changing than timid drivers.

where ΔS nt
lead d and ΔSnt

lag d are the relative speeds of the lead and lag
vehicles in the direction of change, respectively; �lead

nt ∼ N(0,0.8882);
and � nt

lag ∼ N(0,0.7422).
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Model Selection

The lane-changing model with explicit target lane choice extends the
model with a myopic direction change choice proposed by Toledo
et al. (9). However, the myopic model cannot be viewed as nested
within the model with explicit target lane choice, and, therefore, classic
statistical tests cannot be applied to select between the two. Instead,
three statistics that are often used for model selection [details are
provided elsewhere (13)], ρ–2, the Akaike information criterion (AIC),
and the Bayesian information criterion (BIC), were calculated.
These statistics account for the larger number of parameters in the
model with the explicit target lane. The results are summarized in
Table 2. With all these statistics, the model with explicit target lane
choice has larger values, which indicates that it fits the data better
and therefore should be selected for use for prediction.

MODEL VALIDATION

The new lane-changing model was implemented in the microscopic
traffic simulation model MITSIMLab (2) and tested with data for a
section of I-80 in Berkeley, California. This section, which is shown
schematically in Figure 5, is about 6 km long, with four interchanges
and six lanes throughout the section. The left-most lane is an HOV
lane that can be accessed at any point in the section. The presence
of this unlimited-access HOV lane results in a high degree of dif-
ference in the level of service among different lanes and is therefore
useful for testing of the proposed lane-changing model. In addition
to traffic count and speed observations that were collected in five
sensor stations in the section, detailed trajectory data were available
for the area between Powell Street and Ashby Street, which is shaded
in Figure 5.

TABLE 2 Statistics for Model with Explicit Target Lane
and Change Direction Model

Target Lane Change Direction

Likelihood value −888.78 −876.69

Number of parameters (k) 26 29
−ρ 2 0.368 0.362

AIC −905.69 −914.78

BIC −937.50 −943.30

1040 m 2100 m 1300 m

Powell UniversityAshby Gilman

1600 m

Traffic direction

FIGURE 5 I-80 validation site, Berkeley, California.



The performance of the target lane model was compared with the
performance of the model with myopic change direction proposed
elsewhere (9). Both models were implemented in MITSIMLab. The
two versions were calibrated by using the available sensor data. The
model validation was based on a comparison of the simulated speeds
and lane distribution at a key location by using the two versions with
the observations in the data.

Traffic Speeds

A separate set of speed measurements from sensors (not used for
calibration) was used for validation purposes. The comparisons of
the goodness-of-fit measures are presented in Table 3. As with the
estimation results, the target lane model consistently performed better.

Lane Distributions

The distribution of vehicles across lanes was extracted from the tra-
jectory data and compared with the simulated lane distributions of
both models. The validation results are shown in Figure 6. Overall,
the model with explicit target lane choice matched the observations
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better, particularly with respect to the use of the HOV lane. The root
mean square error and root mean square percent error were 1.5%
and 9.3%, respectively, for the model with an explicit target lane and
2.3% and 13.4%, respectively, for the model with a choice of change
direction.

CONCLUSION

This paper presents a new lane-changing model that incorporates an
explicit choice of a target lane. This approach differs from those
used in existing models that assume that drivers evaluate the current
and adjacent lanes and choose a direction of change (or no change) on
the basis of the utilities of these lanes only. While the proposed model
is applicable to any freeway situation, it is most useful in cases in
which there are large differences in the level of service among the
lanes, such as in presence of exclusive lanes. The model structure
can also capture drivers’ preferences for specific lanes, such as in
the case in which travel lanes and passing lanes are defined.

The model consists of two choices: the selection of a target lane and
the selection of gap acceptance. A random utility approach is adopted
for both models. The model structure accounts for correlations among
the choices made by the same driver over choice dimensions and time
that are due to unobserved individual-specific characteristics by intro-
ducing a driver-specific random term, which is included in all model
components. Missing data due to limitations of the data collection
are also accounted for.

The parameters of all components of the model were estimated
jointly by using a maximum-likelihood estimator and detailed vehicle
trajectory data. Estimation results show that the target lane choice is
affected by lane-specific attributes, such as the average speed and
density, variables that relate to the path plan, and the vehicle’s spatial
relations with other vehicles surrounding it. Gap acceptance is mod-
eled by comparing the available space lead and lag gaps to the cor-
responding critical gaps. Critical gaps depend on the relative speed of
the subject vehicle with respect to those of the lead and lag vehicles.

Statistical model selection criteria established by use of the estima-
tion results showed that the proposed lane-changing model is superior
to a previous myopic change direction model. This result was further
strengthened by the validation case study, which compared the results
obtained from two versions of a microscopic traffic simulator that

TABLE 3 Goodness-of-Fit Statistics for Traffic Speed Comparison

Target Shift
Lane Direction
Model Model % Improvement

Root mean square 3.30 4.70 29.79
error, mph

Root mean square 12.67 14.63 13.41
error (%)

Mean error (mph) −0.90 1.59 42.96

Mean error (%) −2.74 5.17 47.01

U (Theil’s inequality 0.050 0.063 20.09
coefficient)

Um (bias proportion) 0.151 0.165 8.63

Us (variance proportion) 0.007 0.016 57.75
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FIGURE 6 Observed and simulated distributions of vehicles between lanes.



implements the two models. The simulator was applied to a multilane
freeway section that includes an HOV lane. The target lane model
provided significantly better prediction in terms of both traffic speeds
and the distributions of vehicles to lanes. While these results are
promising, further research with detailed trajectory data from sites with
various geometric and traffic characteristics is needed to develop
more robust models that will be more generally applicable to urban
freeway traffic. Unfortunately, only a few data sets that can sup-
port such research exist, and even fewer that are newer than the one
used in this study exist but may not well represent current vehicle
capabilities.
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