
in automating the data reduction task, it can be time-consuming and
laborious. In particular, under congested conditions, manual process-
ing may be required, since automated approaches fail to identify the
vehicles reliably. As a result, there may be measurement errors as
well as missing data points in the extracted data set.

A method is proposed here to perform the task of extracting
useful information from position data efficiently while the ability to
recover missing data points is retained. The method is based on
smoothing of the data by using locally weighted regression (1, 2, 3,
pp. 10–49).

PROBLEM DESCRIPTION

The raw data, usually collected through video technologies, includes
observations of the positions of vehicles at discrete points in time in
regular intervals. The raw data may contain measurement errors and
may also miss data points. For example, it is possible to have two
consecutive observations in which the position of a vehicle is decreas-
ing. In most cases this position is not possible and if ignored it will
lead to negative speeds. Missing observations are also common for
various reasons (such as processing errors or occlusions), and so the
position observations are not always consecutive.

The various applications discussed in the introduction, particularly
estimation of microscopic traffic behavior models, require knowledge
of not only the vehicles’ positions but also their speeds and acceler-
ations. For example, car-following models typically relate the instan-
taneous acceleration a vehicle applies at time t to a stimulus that
occurred at time instant t − τ, where τ is the reaction time of the asso-
ciated driver, assumed to be a continuous random variable with a
given distribution in the population of drivers. The stimulus is often
a function of the vehicle’s instantaneous speed and the spacing 
to the vehicle in front. Consequently, the applications of interest
require as input instantaneous speeds and accelerations. Further-
more, the incorporation of reaction times in the models necessitates
that the instantaneous positions, speeds, and accelerations be calcu-
lated at arbitrary points in time (and not only at the regular times when
position observations are available). Estimation of these variables
can be obtained by taking the derivatives of a continuous-in-time
position function. Hence, the time series of position data needs to be
processed to extract quantities of interest such as instantaneous speeds
and accelerations.

Despite its importance, the problem of trajectory data processing
has received little attention in previous applications. Speeds and accel-
erations are often directly extracted from the observations by sub-
traction of the position measurements in consecutive observations.
However, these represent average values, whereas as noted earlier,
most driving behavior models require instantaneous speeds and accel-
erations as dependent and independent variables. Furthermore, these
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Vehicle trajectory data are important for calibrating driver behavior
models (e.g., car following, acceleration, lane changing, and gap accep-
tance). The data are usually collected through imaging technologies,
such as video. Processing these data may require substantial effort, and
the resulting trajectories usually contain measurement and processing
errors while also missing data points. An approach is presented to the
processing of position data to develop vehicle trajectories and consequently
speed and acceleration profiles. The approach uses local regression, a
method well suited for mapping highly nonlinear functions. The proposed
methodology is applied to a set of position data. The results demonstrate
the value of the method to development of vehicle trajectories and speed
and acceleration profiles. The conducted sensitivity analysis also shows
that the method is rather robust regarding measurement errors and
missing values.

The study of driving behavior, such as acceleration and lane changing,
has important applications in microscopic traffic analysis as well as
in modeling of safety, emissions, and several other applications. Some
of the most important explanatory variables in driving behavior
models are the state of the subject vehicle (e.g., position, speed, accel-
eration, lane changes) and its relation with other vehicles (e.g., relative
speeds, time and space headways, lengths of gaps in traffic). Hence,
estimation of driving behavior models relies on acquiring data that
describe these variables.

Vehicle trajectory data, which consist of observations of the
positions of vehicles at discrete points in time and at high fidelity
(typically 1 s or less), provide useful information about these vari-
ables: speeds, accelerations, and lane changes may be inferred from
the time series of positions; relations between the subject and other
vehicles may be extracted from the data set of trajectories by simple
arithmetic operations.

A wide range of collection and sensing technologies—such as
aerial photography; video; laser, ultrasound, and microwave sen-
sors; the Global Positioning System (GPS); and cellular location
technologies—have been utilized to collect trajectory data. Regardless
of the collection method, the raw data first need to be reduced and
then processed to infer variables of interest. Despite recent advances
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numerical differentiation methods tend to amplify measurement errors
in the position data and so produce noisier speed and acceleration
profiles.

Smith (4) reports on a large-scale effort to collect vehicle trajectory
data. Position measurements were collected by using aerial photog-
raphy. These observations are reported without any correction even
though the report characterizes vehicle movements as jerky. Average
speed, which is directly inferred from the difference between two
consecutive position observations, is the only other variable reported.
Wei et al. (5) developed VEVID, a tool that automates the trajectory
data collection process. However, they did not perform any processing
of position measurements; average speeds and accelerations were
again calculated by simple subtraction. Ervin et al. (6, 7) used Kalman
filtering to smooth trajectory data collected by using video cameras
with the SAVME system. Punzo et al. (8) used a similar approach
with data collected by using GPS technology. The Kalman filter was
applied with average speeds that were derived from the raw data.
Thus, the result was smoothed average measurements rather than
instantaneous ones. Although the difference between the two types
of measurements may be negligible for the very short time intervals
(0.1 s) reported in their application, it is expected to be more signif-
icant for longer intervals. Furthermore, with the SAVME system, the
Kalman filter is based on a model of the vehicle dynamics. However,
the development of such model is, in most cases, the purpose of the
data collection effort.

METHODOLOGY

A standard approach to the problem of trajectory function estima-
tion would be to fit a global polynomial curve to the position obser-
vations and use the first and second derivatives of this function as
estimates of instantaneous speeds and accelerations, respectively.
However, under congested traffic conditions, vehicles frequently
stop, often for significant durations. Furthermore, the instances at
which a vehicle is stopped cannot be directly identified from the
observed trajectory, since measurement errors occur while the data
are collected and reduced. Therefore, a very high order polynomial
would be necessary to fit a curve to the trajectories of such vehicles.
This requirement gives rise to computational and numerical difficul-
ties since the Hessian of the objective function of such problems be-
comes nearly singular (for polynomials of time of order 10 or above,
the powers of time-independent variables vary from tens to billions).
A nearly singular Hessian makes the estimation process computa-
tionally intensive and time-consuming since the convergence rate
reduces significantly. It also invokes problems related to the preci-
sion of the computer. Furthermore, even a high-order polynomial may
not fit the data well during the instances when a vehicle is stopped.
Finally, high-order polynomials may fit the observations correctly,
but they may oscillate considerably between successive observations,
leading to unrealistic behavior.

Instead of fitting a global curve to the observations, a methodology is
proposed to smooth position measurements and estimate continuous
trajectory, speed, and acceleration profiles based on fitting a local
curve at the points of interest. The methodology consists of two steps,
which are repeated for each vehicle:

1. Estimation of a smooth time-continuous trajectory function
from the discrete position observations by using weighted local
regression and
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2. Estimation of instantaneous speeds and accelerations by 
differentiating the fitted trajectory function.

Step 1 consists of the application of local regression by using the
data in the neighborhood of the point of interest. Local regression,
which fits a local curve to each point of interest using the observations
around it, is designed to replace standard regression estimates when
one is dealing with data that require a flexible functional form.

Cleveland (1), Cleveland and Devlin (2), and Cleveland and Loader
(3, pp. 10–49) discuss the concept, properties, and computational algo-
rithms for local regression. Cleveland and Devlin (2) also report vari-
ous application areas of the method, such as support for exploratory
graphical data analysis, provision of additional regression diagnostics
for testing parametric models fitted to the data, and direct use of the
local regression functions in place of parametric functions.

Recently, the method has become popular in the machine-learning
community. It is used as a form of memory (or instance) based learn-
ing to learn continuous nonlinear mappings in applications such as
learning robot dynamics and process models (9). In the transporta-
tion literature, Sun et al. (10) applied local regression for short-term
traffic forecasting. They report that local regression was superior
when compared with nearest-neighborhood and kernel smoothing
methods.

In the context of the current application of estimating vehicle tra-
jectories, the local regression estimator is defined as follows: x(t), 
t = 1, . . . , T, denotes the time series of measurements of the position
of a given vehicle (the vehicle index is omitted for simplicity). At a point
t0, a local trajectory function is estimated by using only observations in
the neighborhood of t0. N denotes the number of observations in the
neighborhood (window) around t0 that are used in the estimation.

The trajectory function in the neighborhood of t0 is assumed to be a
function of time:

where

ft0
(t, �t0

) = fitted position at time t estimated by local regression
function centered at time t0,

�t0
= vector of parameters of fitted curve to be estimated, and

�t0,t
= normally distributed error terms.

Local regression then uses weighted least-squares estimation of
the parameters of the local function ft0

(t, �t0
) with the N observations

in the window around t0. The observation weights are usually based
on some measure of the time difference between the observation
and t0. Hence, the problem of applying local regression to position
data in order to develop a local trajectory function centered at t0 is
formulated as a minimization problem:

where

Xt0
= column vector of N position observations used to

estimate a trajectory function centered on t0,
ft0

(t, �t0
) = corresponding vector of fitted values, and

Wt0
= [N × N] diagonal matrix, with elements corresponding

to weights of observations used for local estimation.

In summary, the application of local regression requires selection
of three basic elements:

min
�

� �
t

tt t t t t tf f
0

0 0 0 0 0 0 0
X t, X t,− ( )⎡⎣ ⎤⎦

′ − ( )⎡W ⎣⎣ ⎤⎦ ( )2

x t f tt t t t( ) = ( ) +
0 0 0

1, ( ),� �



1. Function specification through selection of the form of ft0
(�),

which defines the shape of the locally fitted curves;
2. Window size, which determines the number of neighboring

points used in fitting each measurement; and
3. Weight assignment for each point within the local regression

window.

The use of a polynomial function to specify the local regression
curve is common in the literature. With polynomial fitting, the spec-
ification question becomes one of choosing the polynomial order.
The function specification and the window size, N, affect the bias
and variance of the estimated positions in opposite directions (11):
the bias increases with increasing window size and decreases with
the polynomial order. Inversely, the variance decreases with the win-
dow size and increases with the polynomial order. The mean squared
error of the estimates combines both these statistics and may be
minimized to obtain optimal window size and polynomial order
choices.

Various weight functions, w(u), where u is a function of the time
difference between the point of interest and the observation that is
used in the regression analysis, have been proposed in the literature.
Cleveland and Loader (3, pp. 10–49) point out that smooth weight
functions lead to smoother estimates. The chosen function should
also assign higher weights to observations that are closer to the point
of interest and so has to satisfy the following conditions:

Assuming that the foregoing requirements are met, the choice of
the exact functional form does not seem to have a significant impact
on the results (3, pp. 10–49). Cleveland et al. (11) recommend a tricube
weight function. According to this function, the weight assigned to
each observation t depends on the normalized time difference, u,
between t and the point of interest t0:

w u

w u u

w u

( ) ≥

( ) = ≥

( )

0

0 1for

is nonincreasing foor u ≥ 0 3( )
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where

w(t0, t) = weight assigned to the observation at time t in fitting a
curve centered at t0,

u(t0, t) = normalized measure of the time difference between t and
t0 given by

and

d = distance from t0 to the nearest point outside the window
of N points to be considered in fitting the curve.

The shape of the tricube weight function is shown in Figure 1. It
should be noted that w(t0, t) decreases as the time difference between
t and t0 increases and that w(t0, t0) = 1. For a symmetric window, N,
about t0, d = (N + 1)/2.

In the second step of the process, the fitted value at time t0 is used
as an estimate of the position at that time. The first and second
derivatives of the fitted polynomial are used as estimates to the
instantaneous speed and acceleration, respectively:

where x̂ (t0), v̂ (t0), and â(t0) are the estimated position, instanta-
neous speed, and acceleration at time t0, respectively, and �̂ t0 is the
parameter estimates of the local regression curve fitted around t0.
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APPLICATION

The locally weighted regression procedure was applied to a trajectory
data set collected by Hasan et al. (12) from a section of I-93 in Boston
(Figure 2).

Data were collected under heavily congested conditions. Vehicle
speeds ranged from 10.5 km/h to 54.3 km/h with a mean speed of
22.6 km/h and standard deviation of 7.7 km/h. Traffic density in the
section was 48.5 vehicles/km/lane [Level of Service F, on the basis
of Highway Capacity Manual criteria (13)]. The data set consists of
measurements of the positions of 653 vehicles at a 1-s resolution.
The total number of observations in the data set is 20,795 (average
of 31.8 observations per vehicle). These observations were obtained
from the analysis of video with the automatic and manual features
of the traffic image-processing software ViVAtraffic (14). This case
study is used to illustrate the potential benefits of the proposed
method and to examine the sensitivity of the local regression esti-
mates to the choices of window size and polynomial order. In addi-
tion, the consistency of the estimates and the ability of the proposed
method to recover missing observations and estimate data values for
these points is examined.

The locally fitted trajectory function is assumed to be a polynomial
function in time:

where

Z(t) = vector of independent variables corresponding to the
observation at time t, including the polynomial in time-
independent variables, Z(t) = [1 t t2 t3 . . . tM];

M = order of the polynomial to be estimated; and
�t0

= [βt0,0 βt0,1 βt0,2 . . . βt0 ,M] = vector of the M + 1 param-
eters of the polynomial function estimated around time t0.

As mentioned earlier, the local regression procedure serves not
only to smooth the data but also to estimate a continuous trajectory
function, which may be used subsequently to derive the subject’s
instantaneous speeds and accelerations at arbitrary points in time.
However, because of measurement errors, the observed position of a
vehicle at two successive time periods may be decreasing. Hence, a
curve fitted to these points may yield an unrealistic (negative) speed
or acceleration estimate, or both. In order to ensure that the estimated
speeds and accelerations are acceptable, suitable constraints may be
added to the weighted least-squares formulation (Equation 2). These
constraints include

f t tt t t t m

m

m

M

0 0 0 0
0

9, ( ),� � �( ) = ( ) = ( )
=

∑Z t
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1. Nonnegativity speed constraints,
2. Upper bounds on the speed, and
3. Upper (acceleration) and lower (deceleration) bounds on the

vehicle’s acceleration to reflect vehicle performance characteristics.

Choice of Window Size and Polynomial Order

The choice of the window size, N, and the polynomial order, M,
affect the bias and variance of the estimated trajectory. However, in
this application a closed-form solution for estimating the bias (or
variance) does not exist since the curve fit is constrained. Instead, a
sensitivity analysis can be conducted to evaluate the impact of the
window size and polynomial order on the quality of the results. In
addition, two other considerations should be taken into account for
the determination of the window size:

1. The window size should include an odd number of points to
ensure that it is symmetric about t0.

2. The minimum window size should be sufficient to adequately
estimate the derived speeds and accelerations. The window size N
bounds the order of the polynomial, M ≤ N − 1. In the case here, the
minimum polynomial degree is dictated by the interpretation of the
variables of interest. If, for example, the window size is equal to 5,
the order of the polynomial cannot exceed 4. As a result, the order
of the polynomial representing the acceleration profile would be 2,
since the second derivative of the trajectory function is the acceler-
ation function. This implies that the curvature of the acceleration
profile (its second derivative) is restricted to be a constant, which
may not be realistic. Therefore, in the discussion that follows, N = 7
was used as the minimum window size.

Different combinations of window size and polynomial order
were used to test the sensitivity of the quality of the results to these
factors. The differences between the original and estimated posi-
tions were quantified by using the mean absolute error (MAE) and
root-mean-squared error (RMSE) statistics:

where xl and x̂ l are the observed and estimated positions for 
observation l, and L is the number of observations in the data set.

The results for MAE and RMSE are summarized in Table 1. Given
that the measurement accuracy in the original data was estimated at
±1.4 m (12), the magnitude of errors is within a reasonable range. For
a given polynomial order, the deviation from the observed positions
increases with the window size. Similarly, for a given window size,
a larger polynomial order more closely matches the observations. The
combined effect of these impacts results in very small differences
among regression line estimates for the various window sizes when
the maximum possible polynomial size was used. For the larger
polynomial order, additional inaccuracies may be introduced as the
objective function Hessian approaches singularity. When a window
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FIGURE 2 I-93 data collection site.
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The observed and estimated positions of another vehicle (Figure 6)
demonstrate the ability of the locally weighted regression process to
recover from measurement errors. The observed positions in Time
Periods 15, 16, and 17 (90.47, 90.45, and 88.39 m, respectively)
suggest that the vehicle is moving backward; hence it has a negative
average speed. Given the nature of the location at which the data
were collected, this behavior is not possible. The application of local
regression, with estimated positions (89.73, 89.85, and 91.34 m,
respectively), eliminated the problem. The corresponding instanta-
neous speeds are estimated at 1.55, 0.35, and 3.88 m/s. A window of
Size 9 was used in this case.

Consistency of Fitted Values

Punzo et al. (8) raise the issue of consistency of the positions, speeds,
and accelerations estimated from the trajectory data. They point out
that the observations made over time should satisfy basic equations
of motion. In their application they examine the consistency of the
spacing between two vehicles and their speeds. However, in more
general settings, where more than two vehicles are present, and
considering that reaction time is an important factor in driving
models, it may be more useful to evaluate the internal consistency
of the trajectory of a vehicle:

Tables 2 and 3 present the MAE and RMSE, respectively, of con-
sistency errors for the vehicle position with respect to its speed and
for the vehicle speed with respect to its acceleration. The position
and speed consistency errors are calculated as the difference be-
tween the right-hand and the left-hand sides of Equations 12 and 13,

ˆ ˆ ( )v t v a s ds
t

( ) = ( ) + ( )∫0 13
0

ˆ ˆ ( )x t x v s ds
t

( ) = ( ) + ( )∫0 12
0

TABLE 1 MAE and RMSE for Different Window Sizes
and Polynomial Order Values

Window Size
Polynomial Order 7 9 11 13

6 0.033 0.284 0.339 0.370
0.190 0.403 0.475 0.517

8 — 0.037 0.273 0.327
0.196 0.388 0.461

10 — — 0.039 0.263
0.200 0.375

12 — — — 0.042
0.206

NOTE: Top row in each cell: MAE (m); bottom row: RMSE (m).
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FIGURE 3 Observed and estimated position profiles with different window sizes.

size is selected, it is also important to consider that the number of
observations for which the full window is available decreases with
the window size.

The estimated position, speed, and acceleration profiles were also
evaluated. Figure 3 compares the estimated positions for different
window sizes and the observed positions. The results illustrate a
good fit between the estimated and observed positions in all cases.
The estimated curves eliminate the negative change in position in
the observed data at Time Period 31. The vehicle was also stopped for
a few seconds (Time Period 10 to 15 approximately). The maximum
polynomial order was used for each window size.

Figures 4 and 5 show the corresponding estimated speed and
acceleration profiles, respectively. The results indicate that there is
only slightly more variability in the speed and acceleration profiles
for the different window sizes. Computational inaccuracies due to the
high-order polynomial may have also contributed to these differences.
For polynomials of order 14 and higher, near-singular Hessian func-
tions led to numerical inaccuracies, and therefore these estimates
were omitted from further analysis.



respectively. The results indicate absolute inconsistencies of up to
0.223 m in the positions and 0.345 m/s in the speeds. These values
are significantly smaller compared with the magnitude of the mea-
surement errors. The inconsistencies decrease with an increase in the
window size, which enables the fitted curve to better represent the
temporal evolution of the trajectory. However, the inconsistencies
generally increase with higher orders of the fitted polynomial, which
provide more flexibility for sharp changes in the fitted curve and for
discontinuities in the transitions from one local curve to the next. The
inconsistencies reported here are lower by one or two orders of mag-
nitude compared with those reported by Punzo et al. (8), who evalu-
ated the consistency of the spacing between two vehicles and their
speeds that were obtained with this method for another data set. In
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addition to differences in the characteristics of the raw data and in the
way the consistency was evaluated, two other factors may be con-
tributing to the difference in consistency results. First, the smoothed
instantaneous speeds and accelerations were incorrectly used as if
they were average values. Second, the consistency was evaluated
compared with positions estimated by another approach and not with
the values estimated with the local regression method.

Sensitivity to Missing Observations

As discussed in previous sections, a significant fraction of observations
may be missing from the data set. For example, some observations
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may be lost because of oversight in the, often manual, process of
reduction of video (or other) images. In some cases a vehicle may
not be visible—if, for example, it is obscured by another vehicle or
by elements of the infrastructure (e.g., an overpass)—and therefore
its position cannot be ascertained. Local regression has the potential
to be used to estimate values of variables of interest for points where
observations are missing.

To evaluate the ability of the method to recover missing observa-
tions, a reduced data set was created by eliminating a fraction of the
observations. Local regression was then applied to the incomplete
data set. Observations were eliminated in two ways: randomly and
deterministically. In random elimination, a prespecified fraction, f, of
the observations was removed in a random fashion. In the determin-
istic elimination, observations were removed in a systematic way:
one every 1/f observations, where f is the fraction of observations to
be eliminated. It should be noted that situations in which several
consecutive observations are missing may arise in data collection. The
approach used here, as well as by other local estimators, may not be
appropriate for such cases, which require larger window sizes.

The impact of the fraction of missing observations is quantified
by the deviation of the estimated positions in the reduced data set

Toledo, Koutsopoulos, and Ahmed 167

from the observed positions (raw data set) and from the estimates
obtained with the full data set. Figures 7 and 8 summarize the results
for various fractions of missing observations. A window of Size 9
was used with the maximum available polynomial order for each
observation.

The results indicate that the local regression procedure can success-
fully recover missing observations. The mean absolute deviation
from the raw data is 12 cm when the fraction of missing observations
is 10%. For the same fraction, the deviation from the estimates with the
full data set is less than 10 cm and about 45 cm with 50% missing
observations. These values are well within the ±1.4-m measurement
error associated with the data collection. Moreover, deviations from
both the raw and the estimated data are significantly lower when
observations are omitted systematically.

The results suggest another way in which the local regression pro-
cedure may be utilized. Extraction of position data from video images
is an expensive, time-consuming task and in many cases it limits the
amount of data that can be practically processed. However, through
the local regression procedure it is possible to still obtain reliable
data for various applications by processing only a fraction of the
available frames.
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FIGURE 6 Estimated position profile for observations with measurement errors.

TABLE 2 MAE and RMSE of Consistency for Different
Window Sizes and Polynomial Order Values

Window Size
Polynomial Order 7 9 11 13

6 0.223 0.074 0.035 0.023
0.345 0.201 0.139 0.116

8 — 0.178 0.073 0.034
0.306 0.198 0.137

10 — — 0.150 0.072
0.278 0.196

12 — — — 0.003
0.040

TABLE 3 RMSE and MAE of Inconsistency for Different
Window Sizes and Polynomial Order Values

Window Size
Polynomial Order 7 9 11 13

6 0.148 0.107 0.089 0.082
0.311 0.270 0.245 0.235

8 — 0.147 0.186 0.096
0.304 0.281 0.254

10 — — 0.147 0.126
0.297 0.285

12 — — — 0.094
0.262



CONCLUSION

Trajectory data, which consist of observations of the positions of
vehicles at discrete points in time, are useful to infer variables that may
explain driving behavior. A methodology to improve the quality of
trajectory data and to estimate instantaneous speeds and accelerations
was presented. The methodology is based on estimating a trajectory
function by using locally weighted regression. Local regression is
particularly useful to map highly nonlinear functions and allows for
estimating continuous position, speed, and acceleration profiles at
arbitrary points in time.
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The method was applied to a data set of second-by-second posi-
tion observations extracted from video. The results of the case study
demonstrate the usefulness of the method. Furthermore, it is robust
with respect to errors in the data and missing observations.
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