
Traffic simulation models support detailed analysis of the dynamics of
traffic phenomena and are important tools for analysis of transportation
systems. In order to evaluate correctly the impact of different traffic
management schemes, simulation models must be able to replicate real-
ity adequately. Model validation (i.e., the process of checking to what
extent the model replicates reality) is discussed. The role of validation is
defined within the scope of model development and calibration, and the
framework for performing the validation is discussed. A hierarchy of
statistical methods to validate different types of simulation outputs against
observed data is examined. Also, a validation method is proposed on the
basis of statistical tests on metamodels fitted to the observed and simulated
data. A case study illustrates the applicability of the various methods.

Intelligent transportation systems (ITS) applications, such as traffic
controls and route guidance, have emerged in recent years as tools
for traffic management. Traffic management methods and algo-
rithms need to be calibrated and tested. In most cases only limited,
if any, field tests are feasible because of prohibitively high costs and
lack of public acceptance. Furthermore, the usefulness of such field
studies is deterred by the inability to control fully the conditions under
which they are performed. Hence tools to perform such evaluations
in a laboratory are needed. Traffic simulation models support detailed
analysis of the dynamics of traffic phenomena and are important
tools for analysis of transportation systems, especially in the presence
of ITS technologies. In order to evaluate correctly the impact of dif-
ferent traffic management schemes, simulation models must be able
to replicate reality adequately.

Model validation (i.e., the process of checking to what extent the
model replicates reality) is an essential step in the development and
application of any traffic model. In this paper, the role of validation
is defined within the scope of model development and application,
and the framework for performing the validation is discussed. Statis-
tical methods to model validation based on different types of observed
data and simulation outputs are reviewed. Although some of these
methods have been previously used in traffic simulation studies,
others are adapted to the application domain from the broader sim-
ulation literature. In addition, a validation method is proposed, based
on performing statistical tests on metamodels fitted to the observed and
simulated data. Application of these methods is demonstrated with
a case study. While the applications presented in the paper center

around microscopic modeling, the methods are applicable to other
types of traffic simulation models as well.

PROBLEM DESCRIPTION

Validation and calibration of simulation models are related tasks and
ideally should take place before each new application. Calibration
and validation of traffic simulation models consist of two steps (1).
Initially, the individual models that comprise the simulator 
(e.g., driving behavior and route choice models) are estimated
using disaggregate data. Disaggregate data include detailed driver
behavior information such as vehicle trajectories. These individual
models may be tested independently, for example, by using a hold-
out sample. The disaggregate analysis is performed within statisti-
cal software and does not involve the use of a simulation model. The
level of effort required to collect and analyze trajectory data and the
limited access to modify the models implemented within traffic sim-
ulators dictate that this step is most often only performed by the model
developers. In the second step, the simulation model as a whole is cal-
ibrated and then validated using aggregate data (e.g., flows, speeds,
occupancies, time headways, travel times, queue lengths). Aggregate
calibration and validation are important both in the model develop-
ment and in its application. In model development they serve to
ensure that the interactions between the individual models within
the simulator are captured correctly. In an application they are used
to refine previously estimated parameter values for the specific site
being studied.

Despite the increasing popularity of traffic simulation models,
little attention has been given in the literature to model validation.
Two types of validation approaches may be performed: visual and
statistical (2). In visual validation, graphical representations of
the outputs from the real and the simulated systems are displayed
side by side to determine whether or not they can be differentiated.
The visualization may be based on the animation modules available
in most traffic simulation models. Alternatively, plots of different
outputs (e.g., flows, speeds) may be generated. Turing tests (3, 4)
may also be used. These tests involve presenting experts with two
sets of outputs: observed and simulated. The test result depends on
whether these experts are able to identify correctly the two sets apart.
In any case, the process remains an inherently subjective and heuris-
tic exercise. Statistical validation applies goodness-of-fit measures,
confidence intervals, and statistical tests to quantify the similarity
between the real and simulated systems.

Many published validation studies are based on visual compari-
son of outputs from the real and simulated systems or on compari-
son of simple descriptive statistics. For example, Abdulhai et al. (5)
plot the observed and simulated headway distributions, lane-usage
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breakdown, and flow-density curves and calculate the mean relative
percent error of total demands, link flows, and lane-usage breakdown.
Other examples are found in the literature (6–11). Furthermore, in
many cases the validation is limited to an isolated road section or a
traffic corridor, thus avoiding the more complex behaviors and inter-
actions associated with network applications. Jayakrishnan et al.
(12) note that networkwide validation is necessary to ensure that inter-
actions between different models within the simulation framework
are captured correctly. Also, the validation is often oriented at a spe-
cific model (often the acceleration model). For example, Benekohal
(13) focuses on the car-following model, and Fellendorf and Vor-
tisch (10) separately and independently validate car-following and
lane-changing models. Rao et al. (14) propose a multilevel approach,
which consists of conceptual and operational validation. Conceptual
validation focuses on the consistency of the simulation results with
the theoretical foundations. For operational validation, a two-level
evaluation of the simulated data against real-world observations
using statistical tests is proposed: comparison of the respective means
and comparison of the distributions. The application of the proposed
methods is demonstrated using platoon data collected from video
recordings.

VALIDATION FRAMEWORK

The main steps in developing an appropriate validation approach are:

• Generation of inputs for the simulation model,
• Choice of measures of performance (MOPs), and
• Choice of appropriate statistical tests for comparison of simulated

and observed MOPs.

Generation of Inputs

The purpose of aggregate validation is to determine the extent to
which the simulation model replicates the real system, with data
readily available from loop detectors and other sources. Ideally, the
validation should be based on comparing outputs that were gener-
ated by feeding the real and simulated systems with identical inputs.
Therefore, the real system should be observed not only for its out-
puts but also for its input variables, which are then used in the sim-
ulation study. This practice reduces the variance of the differences
between observed and simulated outputs and therefore increases the
efficiency of the comparison. Travel demand, most commonly given
in the form of dynamic origin–destination (O-D) matrices, is an impor-
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tant input in traffic simulation models. However, in most applica-
tions the O-D matrix is not observed, and so O-D flows must be
estimated. The resulting aggregate validation process is shown in
Figure 1. For the purposes of validation there is interest in O-D
reconstruction (i.e., the demand realization that is most likely to
have generated the observed traffic counts). See Hazelton (15) for
a discussion of the differences between O-D reconstruction and
estimation of mean O-D flows.

In many cases multiple sets of traffic data are available (e.g., data
from several days) and the question of using all of them arises. In
congested networks small changes in the demand may have a large
impact on the simulation output. Hence separate O-D matrices must
be estimated for each data set. Each one of these O-D matrices is
then applied to the simulation model, and the resulting outputs 
are compared with the observed data that were used to generate the
particular matrix. In contrast, using mean traffic counts to estimate
mean O-D flows may lead to biased estimation of the model perfor-
mance, because both the O-D estimator and the simulation model
itself are nonlinear functions. The magnitude of the bias depends
on the extent of nonlinearities and on the day-to-day variability in
demand.

Choice of Measures of Performance

Measures of performance are statistics produced as outputs (or post-
processed from the outputs) of the real and simulated systems. The
model validation is based on the similarity between the simulated
and real MOPs. The following criteria can assist in selecting MOPs
for validation.

Context of Application

MOPs should be statistics that are important in the intended study. For
example, point-to-point travel times are useful MOPs for validation
when a traveler information system is to be evaluated on the basis of
travel time savings. However, if a sensor-based incident detection sys-
tem is studied, MOPs extracted from the sensors (e.g., occupancies,
flows, speeds) may be more useful.

Independence

MOPs used for validation should be independent of any measure-
ments used for calibration or to estimate inputs to the simulated

Real
System

Simulated
System

Comparison
Estimation

Simulation
Input

Real
Input

Simulation
Output

Real
Output

FIGURE 1 Aggregate validation process.



system. O-D flows are commonly estimated by minimizing a measure
of the discrepancy between observed and simulated traffic counts.
Therefore, validation of the simulation model (only) against traffic
counts may lead to overestimating the realism of the model. For
example, Rakha et al. (6) observed that INTEGRATION simulated
flows match observations more closely than simulated speeds.

Error Sources

In traffic analysis the discrepancy between observed and simulated
outputs can be explained by the following sources of error (16 ):

• Travel demand (O-D flows),
• Route choice,
• Driving behavior, and
• Measurement errors in the observed outputs.

The first three sources contribute errors to the simulated out-
put. The last one represents errors in the observed output relative
to the “true” output. In most cases, the contributions of the three
simulation error sources are confounded and cannot be isolated in
the validation. The locations and types of MOPs to be collected
should be chosen to reflect errors from all these sources and reduce
the effect of measurement errors as much as possible. Measurement
locations should be chosen to provide spatial coverage of all parts
of the network. Moreover, measurements close to the network entry
points will mostly reveal errors in the O-D flows with little effect
of the route choice and driving behavior models. As many mea-
surement points as possible should be used in order to reduce the
effect of measurement errors, assuming that they are independent
for different locations.

Traffic Dynamics

MOPs and the level of temporal aggregation at which they are cal-
culated (e.g., 15 min, 30 min) should be chosen such that they facil-
itate testing whether or not the model correctly captures the traffic
dynamics. This is especially true in network applications in which
both the temporal and the spatial aspects of traffic are important.

Level of Effort Required for Data Collection

In many cases this is the most constraining factor in practice. Point
measurements (e.g., flows, speeds, and occupancies) are often read-
ily and cheaply available from the surveillance system. Other types
of measurements (e.g., travel times, queue lengths, and delays) are
more expensive to collect. It is also important to note that data def-
initions and processing are not standardized. For example, statistics
such as queue lengths may be defined in different ways, and sur-
veillance systems may apply various time-smoothing techniques. It
is therefore necessary to ensure that the simulated data are defined
and processed the same way as the observed data.

Most traffic simulation models are stochastic (Monte Carlo) simu-
lations. Hence MOPs should be calculated from a number of indepen-
dent replications. There are mainly two approaches to determine the
number of replications: sequential and two-step (17). In the sequential
approach, one replication at a time is run until a suitable stopping cri-
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terion is met. Assuming that the outputs, Yi, from different simulation
runs are normally distributed, Fishman (18) suggested the following
criterion:

where

R = number of replications performed,
Ri = minimum number of replications required to estimate the

mean of Yi with tolerance di,
sR(Yi) = sample standard deviation of Yi based on R replica-

tions, and
tα/2 = critical value of the t-distribution at significance level α.

In the two-step approach, first an estimate of the standard devia-
tion of Yi is obtained by performing R0 replications. Assuming that
this estimate does not change significantly as the number of repli-
cations increases, the minimum number of replications required to
achieve the allowable error di is given by

The required number of replications is calculated for all measures
of performance of interest. The most critical (highest) value of Ri

determines the number of replications required.

STATISTICAL VALIDATION

The general simulation literature includes a large number of
approaches for the statistical validation of simulation models.
These approaches include goodness-of-fit measures, confidence
intervals, and statistical tests of the underlying distributions and
processes. In many cases though, they may not be applicable because
both the real and the simulated traffic processes of interest are
nonstationary and autocorrelated. The choice of the appropriate
methods and their application to the validation of traffic simulation
models depends on the nature of the output data. The following
cases are considered:

• Single-valued MOPs (e.g., average delay, total throughput),
and

• Multivariate MOPs (e.g., time-dependent flow or speed 
measurements at different locations, travel times on different 
sections).

Single-valued MOPs are appropriate for small-scale applications
in which one statistic may summarize the performance of the sys-
tem. Multivariate MOPs capture the temporal and/or spatial distri-
bution of traffic characteristics and are therefore useful to describe
the dynamics at the network level. It may also be useful to examine
the joint distribution of two MOPs (e.g., flow and headway), as this
provides more information regarding the interrelationships among
MOPs. The types of statistical approaches that are discussed include:

• Goodness-of-fit measures,
• Hypothesis testing and confidence intervals, and
• Test of underlying structure.
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Goodness-of-Fit Measures

A number of goodness-of-fit measures can be used to evaluate the
overall performance of simulation models. Popular among them are
the root-mean-square error (RMSE ), the root-mean-square percent
error (RMSPE ), the mean error (ME ), and the mean percent error
(MPE ) statistics. These statistics quantify the overall error of the
simulator. Percent error measures provide information on the mag-
nitude of the errors relative to the average measurement directly.
RMSE and RMSPE penalize large errors at a higher rate relative to
small errors. The two measures are given by

where Y obs
n and Y sim

n are the averages of observed and simulated
measurements at space–time point n, respectively calculated from
all available data (i.e., several days of observations and multiple
simulation runs).

ME and MPE indicate the existence of systematic under- or
overprediction in the simulated measurements. These measures
are given by

These two statistics are most useful when applied separately to mea-
surements at each time–space point rather than to all measurements
jointly. This way they provide insight to the spatial and temporal
distribution of errors and help identify deficiencies in the model.

Another measure that provides information on the relative error
is Theil’s inequality coefficient, U (19)

where U is bounded, 0 ≤ U ≤ 1. U = 0 implies perfect fit between the
observed and simulated measurements. U = 1 implies the worst pos-
sible fit. Theil’s inequality coefficient may be decomposed to three
proportions of inequality: the bias (UM), variance (U S), and covariance
(UC) proportions, which are, respectively, given by
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where are the sample means and standard de-
viations of the average observed and simulated measurements, respec-
tively, and ρ is the correlation between the two sets of measurements.

The bias proportion reflects the systematic error. The variance
proportion indicates how well the simulation model replicates the
variability in observed data. These two proportions should be as
small as possible. The covariance proportion measures the remain-
ing error and therefore should be close to one. If the different mea-
surements are taken from nonstationary processes, the proportions
can be viewed only as indicators of the sources of error.

Hypothesis Testing and Confidence Intervals

Classic hypothesis tests (e.g., two-sample t-test, Mann-Whitney test,
and two-sample Kolmogorov–Smirnov test) and confidence inter-
vals may also be used. Law and Kelton (20) suggest the use of con-
fidence intervals, which provide richer information compared to
statistical tests, for the validation of complex simulation systems.

Two-sample tests assume that both sets of outputs are independent
draws from identical distributions (IID). Therefore, these tests should
be performed separately for each time–space measurement point. If
the number of observations at each time–space point is not sufficient
to obtain significant results, observations from appropriate time inter-
vals (such that the IID assumption holds, at least approximately) may
be grouped together. Furthermore, the standard two-sample t-test also
assumes that the two distributions (observed and simulated) are nor-
mal and share a common variance. These assumptions, in particular
the variance equality, may be unrealistic in the context of traffic sim-
ulation. Law and Kelton propose an approximate t-solution procedure
according to Scheffe (21), which relaxes the variance equality
assumption. To test for the equality of the mean of observed and sim-
ulated measurements, against at
the α significance level, reject H0 if

where are the sample standard deviations of the observed
and simulated measurements at time–space point n, respectively;

are the corresponding sample sizes; and f̂ is the modi-
fied number of degrees of freedom given by

ˆ ( )f

s
m

s
m

s

m m

s

m m

n

n

n

n

n

n n

n

n n

=
+





( )
( ) −( )

+
( )

( ) −( )

sim

sim

obs

obs

sim

sim sim

obs

obs obs

2

4

2

4

2
1 1

12

m mn n
obs sim and 

s sn n
obs sim and 

Y Y

s
m

s
m

tn n

n

n

n

n

f

sim obs

sim

sim

obs

obs

−

( )
+

( )
≥

2 2 2
11α , ˆ ( )

H Y Yn n1 � sim obs≠H Y Yn n0 � sim obs=

Y Y s s, , ,obs sim obs simand 

U
s s

N
Y Y

C

n n

n

N= −( )

−( )
=

∑
2 1

1
10

2

1

ρ sim obs

sim obs

( )

U
s s

N
Y Y

S

n n

n

N= −( )

−( )
=

∑

sim obs

sim obs

2

2

1

1
9( )



In the preceding discussion no assumption was made regarding
the nature of the input data. If the input data is known (trace-driven
simulation), Kleijnen (22, 27 ) proposes a regression procedure to
validate the simulation model using an F-test of the joint equality of
the means and variances of the real and simulated measurements.
Let us assume that there are N different input data sets (common to
the simulated and true system). For pairs of observations (yobs

n , ysim
n ),

n = 1, . . . , N the following regression is performed:

where β0 and β1 are parameters and �n is a random error term. The
hypothesis that the observed and simulated outputs are drawn from
identical distributions is tested with the null H0 : β0 = 0 and β1 = 0.

Test of Underlying Structure

We now propose another approach, particularly suited for the vali-
dation of traffic simulation models with limited data. The method is
based on developing metamodels that capture the underlying rela-
tions among important traffic variables of interest (e.g., speed–flow
relationships), time evolution of flows and statistically testing the
hypothesis that the metamodel parameters are equal in the simulated
and observed data.

The validation proceeds by using the outputs from the real and sim-
ulated systems to estimate two separate metamodels, which describe
the structure of these outputs. The choice of the appropriate meta-
model depends on the nature of the application and relationships
among variables established by the traffic flow theory. Statistical
tests for the equality of coefficients across the two metamodels are
then used to validate the simulation model. The equality of the
models is then tested with the null hypothesis H0 : βobs = βsim against
H1 : βobs ≠ βsim using an F-test. The test uses two models: restricted
and unrestricted. The restricted model, which forces the equality of
parameters of the two metamodels, is estimated with the combined
data set (both real and simulated observations). The unrestricted
model is the combination of two separate models: one estimated with
the real data and the other with the simulated data. The test statistic
is calculated:

where

ESSR and ESSUR = sums of squared residuals of the
restricted and the unrestricted mod-
els, respectively, calculated as ESSR

=ESScom and ESSUR =ESSobs + ESSsim;
ESScom, ESSobs, and ESSsim = statistics calculated from the models

estimated with the combined, the
real, and the simulated data, respec-
tively;

Nobs and Nsim = numbers of observations in the real
data and simulated data, respectively;
and

K = number of parameters in the model.
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The corresponding (1 − α) confidence interval is given by

The above approaches can be used for the analysis of individual
time–space points. However, the behavior of traffic networks in
many applications is autocorrelated and nonstationary as a result of
time-varying travel demands and traffic dynamics (i.e., congestion
buildup and dissipation). Therefore, measurements at different space–
time points cannot be considered as independent draws from iden-
tical distributions. In this case, the above methods cannot be used to
test the overall validity of the simulation, and joint hypothesis tests,
which better reflect the dynamics of the system, are more appropriate.
Kleijnen (22) recommends the application of Bonferroni’s inequality
to test multiple hypotheses jointly at a prescribed significance level α.
Let αn be the significance level at each individual time–space point n.
An upper bound for the simultaneous significance level α at the
network level is given by

where N is the number of measurement points (over time and space).
Equation 14 holds under very general conditions. In practice

the significance levels at each time–space point n are usually set to
αn = α/N. αn is then used as the level of significance independently
at each time–space location to perform hypothesis testing or develop
confidence intervals. Bonferroni’s inequality can similarly be used
to create composite tests and joint confidence intervals for multiple
single-valued MOPs.

In practice, this technique may only be applied to a small number
of measurement points N. For large N the corresponding signifi-
cance levels αn become small and the confidence intervals increase
to the point at which it is difficult to reject any model as invalid.
Another limitation of Bonferroni’s inequality is that it is too con-
servative, especially for highly correlated test statistics, hence result-
ing in a high probability of Type II errors (i.e., failure to reject false
null hypotheses). Holm’s test (23) is a more powerful version of
Bonferroni’s test and works better when the tests are correlated and
when several of the null hypotheses are false. Other methods that
improve the power of the test have also been proposed (24).

An alternative sequential test, adapted from Rao et al. (14), involves
a two-sample Kolmogorov–Smirnov (K-S) test for each one of the
measurements (i.e., time–space points or different MOPs) and record-
ing the corresponding p-values. A one-sided t-test is then conducted
to test whether the mean of these p-values is smaller than the desired
significance level (i.e., the model is invalid).

As previously discussed, two-sample tests, such as the K-S test,
can be used to test whether simulated and observed measurements
are drawn from the same distribution, and so, to examine the valid-
ity of the simulation. The application of the K-S test is straightfor-
ward for the case of a single MOP. Rao et al. (14) suggest the use of
a two-dimensional two-sample K-S test to validate a pair of MOPs
jointly. This test is useful, since MOPs are usually correlated (for
example, flow and headways). Although the test involves several
steps, it is simple to implement and apply. Details can be found in
Fasano and Franceschini (25) and Press et al. (26), which also provides
an approximate function for the test p-values.
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This method provides great flexibility in validating simulation
models and, in many cases, overcomes the difficulty of limited data.
In many traffic studies measurements may be available for only a
few days. This poses a problem for most of the methods discussed
above since limited data curbs the development of statistically sig-
nificant test statistics and goodness-of-fit measures. Moreover, dis-
aggregate data (e.g., observations of individual vehicles, 1-min sensor
reading) can be used when fitting the metamodel without having to
aggregate observations (e.g., to 5-min intervals) as would be required
if real and simulated outputs were directly compared. Another advan-
tage is the flexibility in choosing the functional form of the meta-
model to accommodate different modeling needs. For example, a
metamodel describing an MOP as a function of time (e.g., time-
dependent speeds) can be used to test whether or not the forma-
tion and dissipation of congestion are captured correctly. Another
metamodel can be formulated to test the realism of the underlying
fundamental diagram.

CASE STUDY

The application of the methods discussed above are demonstrated in
the validation of a microscopic simulation model by using 3-h a.m.
peak sensor data from a section of the M27 freeway in Southamp-
ton England, shown in Figure 2. The observed data include counts
and speeds for 5 days at 1-min intervals at the locations indicated in
the figure. The simulation outputs include similar measurements
from 10 runs. For the purpose of this paper the measurements at
Sensor 3 are considered.

First goodness-of-fit statistics for the sensor speed are calculated.
They are based on measurements at 1-min intervals. The results are
summarized in Table 1. The results indicate a reasonable overall

Toledo and Koutsopoulos 147

fit, with a small bias and good ability to replicate the variability in
the data.

The limitation of these statistics is that they do not evaluate the
ability of the simulation model to represent the dynamics of traffic
behavior. Next, two-sample tests focused on a specific time interval
are performed. Measurements were grouped in 15-min intervals
in order to have enough observations for the statistical tests. The
assumption is that within each interval observations are independent
draws from the same distribution. The tests were performed sepa-
rately for each interval. For example, Table 2 summarizes the test
results for the third time period. The null hypothesis H0 : Ysim = Yobs

is rejected at 95% confidence. The corresponding confidence inter-
val is −4.72 ≤ Ysim − Yobs ≤ −1.86. While the goodness-of-fit statistics
show good overall fit, the focused analysis of specific time intervals
reveals weaknesses of the simulation model in capturing traffic
dynamics. This result illustrates the need to use statistical methods
that are as detailed as possible.

Individual tests over all time periods may yield conflicting results,
and application of Bonferonni’s inequality may be too conservative.
Therefore, the validity of the model is tested with the application of
hypothesis testing on metamodels. First metamodels that describe
the fundamental diagrams underlying the two sets of data are devel-
oped. The functional form of the Pipes–Munjal model (28) was
selected.

where

V(t) and ρ(t) = traffic speed and density at time t, respectively;
Vf = free-flow speed;

ρjam = jam density; and
�(t) = an error term.

Vf , ρjam, and β are the underlying parameters of the model.

V t V
t

tf
( ) = −

( )











+ ( )1 17
ρ
ρ

β

jam

� ( )

1

0.7 km 1.3 km 0.7 km 1.6 km

2 43

Traffic direction

FIGURE 2 M27 freeway section in Southampton, England.

Statistic Value 
RMSPE (%) 5.08 
RMSE (km/hr) 5.09 
MPE (%)  -0.66 
ME (km/hr)  -0.83 
U (Theil's inequality coefficient) 0.024 

MU  (Bias proportion) 0.135 
SU  (Variance proportion) 0.023 
cU  (Covariance proportion) 0.842 

Observed Data Simulated Data 
Mean 108.77 105.49 
Variance 11.53 56.09 
Observations 75 150 
t-statistic 4.52 
T critical value 1.97 (95% confidence) 

TABLE 2 Two-Sample t-Test for Third Time
Interval

TABLE 1 Goodness-of-Fit Statistics 
for Southampton Network



The observed data and the simulated data used for estimation and
the corresponding estimated metamodel regression lines are shown
in Figure 3. In addition, for the purpose of statistical testing a third
metamodel was estimated with the combined data set including both
observed and simulated data. Estimation results for the three models
are presented in Table 3. The F-test described above may be used to
test the validity of the simulation output.

The critical value of the F-distribution with (3, 2694) df at the 95%
confidence level is 8.53, and so the hypothesis that the parameters
of the observed and simulated metamodels are equal can be rejected.

Further insight into the performance of the simulation model can
be derived by developing a piecewise linear metamodel describing
the temporal change in traffic speeds.

where

V(t) = traffic speed at time t;
V0, α, and β = parameters of the model;

V t V t t x t t x t

t x t t

i i i

N N N

( ) = + + −( ) ( ) + + −( ) ( )

+ + −( ) ( ) + ( )

− −

− −

0 1 2 1 1 1 1

1 1 19

α α β α β

α β

L

L � ( )

F3 2694

52034 3 47698 4 3

47698 4 1800 900 6
81 63 18,

( . . )/

. / ( )
. ( )= −

+ −
=
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α i = change in the slope of section i from the previous
section;

βi = boundary point between sections i and i + 1;
�(t) = an error term; and

Metamodels of this form were estimated for the real data, simu-
lated data, and the combined data set using the Gallant–Goebel esti-
mator for nonlinear least squares problems with time-series data
(29). The number of linear segments was set at three by maximizing
R
_

2 in the observed data nonparametrically. Estimation results are
shown in Table 4 and the regression lines in Figure 4.

For this representation of the data, an F-test for the equality of
coefficients in the data yields the statistic F6,2688 = 18.31. The criti-
cal value of the F-distribution at the 95% confidence level is 3.67,
and so the null hypothesis can be rejected (i.e., with respect to the
time–speed space, the simulation model is not a valid representation
of the real system). Similar tests assuming partial equality of the
parameters may also be conducted to better understand the sources
of the differences between the two data sets. For example, a test for

x t
t

i Ni
( ) =

≥



= −
1

0
1 1

1if 

otherwise.
. .

β
, . ,

(a) (b)

FIGURE 3 Observed and simulated speed–density data and fitted metamodels.

Parameter Observed Data Simulated Data Combined Data 

fV
 

116.400 124.813 121.609 

jamρ 149.797 162.915 158.065 

β 1.964 1.406 1.571 
2R  0.867 0.882 0.866 

ESS 19367.7 28330.7 52034.3 
Observations 900 1800 2700 

TABLE 3 Fundamental Diagram Metamodel Estimation Results

Parameter Observed Data Simulated Data Combined Data 

0V  
115.313 120.859 118.372 

1α  
-0.106 -0.190 -0.105 

2α  
-0.253 -0.394 -0.265 

3α  
0.706 0.807 0.656 

1β  
42.860 40.001 26.857 

2β  
104.011 79.976 96.121 

2R  0.404 0.411 0.384 
ESS 87024.4 99827.3 194490.8 
Observations 900 1800 2700 

TABLE 4 Time–Speed Metamodel Estimation Results



the equality of the boundaries of the linear pieces (H0 : βobs
1 = βsim

1 and
βobs

2 = βsim
2 ) will reveal whether or not the buildup and dissipation of

congestion occur at the same times in the two data sets.

CONCLUSION

This paper discusses issues in validation of microsimulation mod-
els and proposes relevant statistical tests of various types of MOPs
and underlying model structure. The tests cover a wide range of data
requirements and range from overall goodness-of-fit statistics to
hypothesis testing at various levels of detail. The authors propose
a method for validation by fitting metamodels to observed and sim-
ulated outputs and conducting statistical tests on the equality of
the parameters across these metamodels. This approach does not
require grouping of the data (e.g., by time interval) and therefore
may yield significant results even if only limited data are available
as shown in the case study. The case study results highlight an
important aspect of validation: results from different validation
methods and across different MOPs may be conflicting. There-
fore, comprehensive validation using multiple MOPs and their
theoretically expected relationships should be used.
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