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Standard static traffic assignment models do not take into account the direct effects of 
capacities on network flows. Separable link performance functions cannot represent 
bottleneck and intersection delays, and thus might load links with traffic volumes, which far 
exceed their capacity. This work focuses on the side-constrained traffic assignment problem 
(SCTAP), which incorporates explicit capacity constraints into the traffic assignment 
framework to create a model that deals with capacities and queues. Assigned volumes are 
bounded by capacities, and queues are formed when capacity is reached. Delay values at 
these queues are closely related to Lagrange multipliers values, which are readily found in 
the solution. The equilibrium state is defined by total path travel times, which combine link 
travel times and delays at bottlenecks and intersections for which explicit capacity 
constraints have been introduced.  
This paper presents a new solution procedure for the SCTAP based on the inner penalty 
function method combined with a path-based adaptation of the gradient projection algorithm. 
This procedure finds a solution at the path level as well as at the link level. All intermediate 
solutions produced by the algorithm are strictly feasible. The procedure used to ensure that 
side-constraints are not violated is efficient since it is only performed on constrained links 
that belong to the shortest path. 
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1. Introduction 

The static traffic assignment problem (TAP) deals with predicting traffic flows on the links of 
a transportation network, given the travel demand between origins and destinations. The 
effects of traffic flows on travel times are represented by link performance functions. User 
equilibrium (UE) traffic assignment is found by solving a mathematical minimization 
problem (Beckmann et al. 1956).  
The solution of the standard TAP formulation has been thoroughly investigated in the 
literature. The Frank-Wolfe (F-W) algorithm is widely used due to its simplicity and minimal 
computer memory requirements. However, the method suffers from slow convergence to the 
optimum, especially in the vicinity of the optimal solution. 
In recent years, considerable attention has been given to path-based solution algorithms for 
the TAP. Path-based algorithms were previously considered infeasible for large networks. 
However, Jayakrishnan et al. (1994) and Chen and Lee (1999) showed that large-scale 
problems could be efficiently solved using path-based algorithms with existing computing 
capabilities. Moreover, the path-based solution is useful in cases that require knowledge of 
used paths and path flows, such as ATMS\ATIS applications. In particular, two path-based 
solution algorithms were introduced in the literature: Larsson and Patriksson (1992) proposed 
the Disaggregate Simplicial Decomposition algorithm (DSD) and Jayakrishnan et al. (1994) 
used the Gradient Projection (GP) algorithm. Both algorithms were shown to be superior to 
the F-W algorithm in terms of convergence and computing time (Jayakrishnan et al. 1994, 
Tatineni et al. 1998). Chen and Lee (1999) compared DSD and GP on several realistic 
networks. They found that GP performed better in most aspects. 
A class of problems closely related to TAP is the side-constrained traffic assignment problem 
(SCTAP). A side-constrained problem is created when additional constraints are added to the 
TAP. These constraints may represent capacity limitations at bottlenecks and intersections or 
external constraints on the transportation system.  
The purpose of this paper is two-fold: first, we discuss the SCTAP formulation and highlight 
its advantages in terms of modeling realism compared to standard traffic assignment. 
Secondly, we present a new development of the GP algorithm to efficiently solve the SCTAP. 
The new algorithm exploits the characteristics of the GP algorithm to combine it with a 
penalty function method.  
The rest of the paper is structured as follows: The next section motivates the use of SCTAP. 
The extension of the TAP to include side-constraints and solution algorithms to the SCTAP 
are presented in section 3. A new path-based solution algorithm for the SCTAP and 
assignment results of the proposed algorithm are presented in section 4. A summary of the 
results is presented in section 5. 

2. Motivation 

Static traffic assignment has been the main tool for transportation network analysis within the 
four-step planning paradigm. Over the years, many deficiencies of TAP have been raised, 
pointing at the over-simplicity and unrealistic aspects of the results produced by this model. 
Research efforts in recent years have led to the development of dynamic assignment models 
that relax some of the simplifying assumptions made in static TAP. However, dynamic 
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assignment models are still far from being able to replace static models in practice. One 
important reason for that is the ability of TAP models to efficiently handle large-scale 
applications that may be beyond the capabilities of more complex and detailed models. 
Furthermore, given the long-term focus of some of the applications with the associated 
uncertainty in inputs and the data intensive and computation-heavy nature of dynamic models 
it is likely that static models will continue to be an important transportation modeling tool in 
the foreseeable future. Thus, efforts to improve the realism of static models are very 
important (FHWA 2002). As we will discuss next, the addition of side-constraints to the 
standard TAP model has a potential to significantly improve the realism of the solution, while 
making relatively simple modifications in the TAP that do not overly complicate the solution 
process.   
TAP solutions, especially in congested networks, often assign links with flows that exceed 
their capacity. For example, approximately 15% of the links in the ADVANCE network 
solution (Chen and Lee 1999) are over-saturated. Such assignment results cannot be used for 
realistic engineering analysis: Not only that traffic flows on over-saturated links are 
unrealistically high, but the assignment on the alternative paths is also distorted since these 
links will often be under-utilized. This behavior is typical to models that use link performance 
functions that do not provide an upper bound on flows and so tend to under-estimate queuing 
delays, such as the BPR function (BPR 1964). Daganzo (1977) proposed to use link 
performance functions that are asymptotic to the capacity, such as Davidson’s function 
(Davidson 1966) in order to restrict assigned flows. However, application of these functions 
produces very high travel times in saturated links (Boyce et al. 1981), and so does not 
improve the realism of the solution. The introduction of explicit capacity constraints to the 
TAP model is a simple and intuitive alternative to the use of asymptotic link performance 
functions to prohibit over-saturated links.  
Another shortcoming of standard static assignment is that separable link performance 
functions (in which the cost of a link is a function of the flow on that link only) cannot 
capture delays caused by the interaction between flows on two or more links. Non-separable 
cost functions, which may capture these interactions, require complicated and less efficient 
solution techniques (Patriksson 1994). Moreover, existence and uniqueness of equilibrium are 
not always ensured (Smith 1979, Sheffy 1985). Similar to capacities, it may be simpler to 
represent the limitations imposed by link interactions by introducing side-constraints in the 
problem formulation, rather than through the link performance functions. For example, in the 
next section we will discuss a simple constraint that can guarantee that the total flow entering 
a merging area is smaller or equal to the saturation flow of the merged link. However, it may 
be much more difficult to calibrate a link performance function that captures the merging 
effect.  

3. Side-constrained traffic assignment (SCTAP) 

3.1 Formulation 

We begin by briefly reviewing some of the basic definitions of the assignment model. Let 
G=(N, A) be a directed graph, where N and A are the sets of nodes and links, respectively. 
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Denote rsq  the demand for trips from origin r R∈  to destination s S∈ . R and S are subsets 
of N. A set, rsK , of paths that connect r to s is defined for each OD pair. The user equilibrium 
(UE) principle states that for each OD pair, all used paths have equal and minimal travel 
times: 

min

min

0       
        ,   

0      

rs rs rs
k k
rs rs rs

k k

f t t
k rs

f t t

⎧ > ⇒ =⎪ ∀ ∀⎨
= ⇒ ≥⎪⎩

 (1) 

rs
kf  is the flow on path rsk K∈ , rs

kt  and min
rst  are travel times on path k and on the shortest 

path from r to s, respectively. Path travel times are the sum of travel times on all the links that 
comprise the path.  
Assuming separable link performance functions, the solution of the following optimization 
problem, defined in the space of path flows variables, corresponds to the UE principle:  

( )
0

min  
aV

a
a

Z t w dw=∑∫  (2) 

Subject to: 

                     rs rs
k

k

f q rs= ∀∑  (3) 

0                              ,  rs
kf k rs≥ ∀ ∀  (4) 

          rs rs
a k ak

rs k

V f aδ= ∀∑∑
 (5) 

at  and aV  are travel time and flow on link a, respectively. rs
akδ  is an indicator variable, which 

takes a value of 1 if link a is on path k for OD pair rs and 0 otherwise. 
We consider the addition of explicit side-constraints to the TAP formulation in Equations (2)-
(5) to represent various conditions and control measures in the network. The extended 
formulation was first introduced in Thompson and Payne (1975), which considered capacity 
constraints and flow-independent link travel times. Smith (1987) proved their results. 
Patriksson (1994) extended them to flow-dependent travel times and general side-constraints. 
The theoretical development below considers a set of general side-constraints: 

( ) 0ig V i I≤ ∀ ∈  (6) 

( )ig V  is some function of the vector of link flows in the network, V. The subscript i denotes 
the constraint index within the set I. 
The optimal solution to the SCTAP is characterized by the Karush-Kuhn-Tucker (KKT) first 
order optimality conditions (see, for example, Ravindran et al. 1987):  
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( ) 0                                                       i ig V iλ = ∀  (14) 

iλ  and rsτ  are Lagrange multipliers associated with the side-constraints and trip demands, 
respectively. 
 
Equations (10), (11) and (14), and can be summarized jointly by: 

( )
( )

0      0                         

0      0                         
i i
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Assuming that side-constraints capture limited capacities of various road facilities, the above 
equations can be interpreted as defining the delays caused by these limitations. When flows 
are such that capacities are not reached, there are no delays associated with the corresponding 
constraint. When flows reach the capacity, queues form and drivers experience delays.  
From Equations (7), (9) and (13) we get: 
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This is a generalization of the UE principle stated in Equation (1). The network equilibration 
is defined over generalized path travel times that include link travel times and delays at 
queues. The delays are captured by the magnitude of the Lagrange multiplier of the side-
constraint: 

( )            ,   i
ai i

a

g V
d a i

V
λ

∂
= ∀ ∀

∂
 (17) 

aid  is the delay on link a caused by constraint m. 
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It is important to note that, unlike the link flows solution, the path flows and the Lagrange 
multipliers are generally not unique. An optimal solution to the SCTAP problem will yield 
one out of the possibly infinite such solutions. It is therefore important to use path flow 
solutions and interpret Lagrange multipliers with caution. Larsson and Patriksson (1999) 
discuss this issue in detail and provide sufficient conditions for uniqueness.  

3.2 Side-constraints 

Different facilities in the network may be represented in the assignment model through a 
simplification of the mechanism that operates them to a single (or set) of constraints. The 
most common side-constraints are link capacity constraints:  

j jV C≤  (18) 

jC  is the capacity of link j. The subscript j denotes links in the subset J A⊆  for which 
capacity constraints are defined. 
Capacity constraints represent link geometry and bottleneck capacities created by lane drops, 
lane closure, or road incidents. Facilities that limit usage time of links (e.g. fixed-time traffic 
signals, portals and ramp controls) can also be modeled with capacity constraints. Other 
constraints may also be used. Bell (1995) modeled the operations of traffic-actuated signals in 
which green proportions change according to the relative demands on all links approaching 
the intersection with the constraint: 

1j

j IN j

V W
S c∈

≤ −∑  (19) 

IN is the set of all links approaching the intersection. jS  is the saturation flow of link j 

approaching the intersection. c is the cycle time and W is the lost time. Thus, W
c

 is the 

proportion of lost time.  
In merging situations, the total flow entering the merging area is limited by the capacity of the 
common outgoing link. This can be represented by: 

j out
j IN

V C
∈

≤∑   (20) 

IN denotes the set of all links entering the merge. outC  is the capacity of the outgoing link. 
The above constraint assumes non-priority merging. However, it may also be used as an 
approximation for priority merges, such as an on-ramp merging into a freeway or two-way 
stop or yield controlled intersections. While in these situations the major stream is supposed 
to have absolute priority over the minor stream in the allocation of available capacity, there is 
ample empirical evidence (e.g. Bunker and Troutbeck 2003, Bonneson and Fitts 1999) that 
behaviors such as yielding, gap forcing and intersection blockages by minor stream vehicles 
result in capacity allocation that is more similar to that of a non-priority merge. To further 
simplify the constraints, the merging constraint can be replaced by simple capacity constraints 
for each merging link under the assumption that all the merging links are saturated in 
congested conditions. In this case the exit capacity from each one of the links entering the 
merge will be proportional to its saturation flow: 
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j
j j out

l
l IN

S
V C C

S
∈

≤ =
∑

  (21) 

jS  and lS  are the saturation flows of links j and l that enter the merge area, respectively.  

3.3 A simple example  

The following example illustrates the ability of the SCTAP model to produce more realistic 
assignment results compared to standard traffic assignment. Consider the network presented 
in Figure 1Figure1, which consists of a central intersection that may represent a city center 
surrounded by two ring roads. Travel times on each link are given by the BPR formula with 
parameters 0.15α =  and 4β = . The free-flow travel times ( 0t ) and capacities of the links in 
this network are presented inTable 1. Trip demands are for passing traffic (1→2, 2→1) and 
for trips to the center (1→7, 2→7). These demands are presented inTable 2. 

6

2

9

3

7
1

8

54

10

11

 
Figure1. Example network 

User equilibrium flows on this network were found using two models: the standard model 
and the side-constrained model. In the latter, constraints on intersection flows, given by 
Equation Fout! Verwijzingsbron niet gevonden., were imposed on intersections 3, 4, 5 and 
6. Both solutions are presented in Figure 2. The unconstrained solution shows high levels of 
traffic passing through the center and the inner ring. The outer ring is not used at all. As a 
result the flows on four links exceed capacities. The flows through intersections 3, 4, 5 and 6 
are more than double the capacity of these intersections. It is more realistic to assume that 
limited capacities and delays near the center will divert traffic to other paths bypassing the 
center. This is apparent in the SCTAP solution: only center-bounded traffic goes into the 
center. Passing traffic is diverted from the center to the two ring roads. The resulting link 
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flows are such that the flows through all intersections satisfy the capacity constraints of these 
facilities. This example shows that the introduction of side-constraints can significantly alter 
traffic assignment patterns and provide more realistic and plausible predictions. The impact 
on decision making may not only be in terms of the conclusions that will be drown from the 
assignment results, but also in terms of the fidelity decision-makers associate with the 
assignment results.  
 
Table 1. Link parameters 

Up 
Node 

Down 
Node t0  C Up 

Node 
Down 
Node t0  C 

1 3 20 3000 6 2 20 3000 
1 4 20 3000 6 3 15 3000 
1 8 30 4000 6 7 6 2000 
1 9 30 4000 6 10 20 4000 
2 5 20 3000 7 3 6 2000 
2 6 20 3000 7 4 6 2000 
2 10 30 4000 7 5 6 2000 
2 11 30 4000 7 6 6 2000 
3 1 20 3000 8 1 30 4000 
3 6 15 3000 8 4 20 4000 
3 7 6 2000 8 11 30 4000 
3 9 20 4000 9 1 30 4000 
4 1 20 3000 9 3 20 4000 
4 5 15 3000 9 10 30 4000 
4 7 6 2000 10 2 30 4000 
4 8 20 4000 10 6 20 4000 
5 2 20 3000 10 9 30 4000 
5 4 15 3000 11 2 30 4000 
5 7 6 2000 11 5 20 4000 
5 11 20 4000 11 8 30 4000 
 
Table 1 Trip demands  

Origin Destination Demand 
1 2 4000 
1 7 3000 
2 1 4000 
2 7 3000 
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Legend

V/C<0.5

0.5<V/C<1

1<V/C<1.5  
Figure 2. Equilibrium traffic flows with and without capacity constraints 

3.4 Solution algorithms 

Several solution algorithms for the SCTAP were proposed in the literature. Inouye (1986), for 
the case of capacity side-constraints, and Yang and Yagar (1994, 1995) for linear side-
constrains, used the inner penalty function method to generate a sequence of standard traffic 
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assignment sub-problems, with penalty terms added to the objective function for each side-
constraint. Penalty factors were decreased in consecutive iterations. The sequence of sub-
problem solutions approaches the optimal solution of the original problem. The F-W 
algorithm was used to solve assignment sub-problems. However, these methods exhibit the 
same slow convergence properties of the F-W algorithm. Larsson and Patriksson (1995) 
considered a simpler version of the problem with only simple capacity constraints. They used 
an augmented Lagrangean dual algorithm to solve the problem. The objective function is 
augmented to include a Lagrangean exterior penalty term expressing capacity constraints. At 
every iteration, a new solution is found and the Lagrange multipliers estimates are updated. 
The unconstrained dual problems are solved with the Disaggregated Simplicial 
Decomposition (DSD) method proposed by Larsson and Patriksson (1992). Lawphongpanich 
(2000) and Larsson et al. (2004) propose modified variants of the basic algorithm that 
improve convergence and stability. These methods are applicable to general side-constraints. 
Other Lagrangean dualization approaches were proposed by Inouye (1986) and Hearn and 
Lawphongpanich (1990).  

4. The GPCAP algorithm 

As discussed earlier the GP algorithm (Jayakrishnan et al. 1994) is an efficient method to 
solve the standard TAP problem. We propose a solution algorithm adapted from the GP 
algorithm for the SCTAP. The algorithm is a path-based penalization method. Our algorithm 
consists of two levels: an inner penalization step and a gradient projection step. In the former, 
the SCTAP is replaced with an unconstrained sub-problem. The sub-problem is similar in 
structure to TAP with an additional penalty term in the objective function for each side-
constraint. The sub-problem is solved using the GP algorithm. Next, a new sub-problem is 
generated with smaller penalty terms. The optimal solution of the previous sub-problem is 
used as an initial solution to the new one. The sequence of sub-problems solutions converges 
to the optimal solution of the original problem when the penalty terms approach zero. The 
algorithm is named GPCAP (Gradient Projection with CAPacity constraints). Its details are 
described next. 

4.1 Inner penalty function 

In the inner penalty function method, a penalty term for every side-constraint is added to the 
objective function. The penalty term is such that when the solution nears a feasibility border 
its value rises rapidly. This ensures feasibility of the solution at every iteration. The penalty 
term contains a parameter γ. This parameter is decreased in consecutive iterations through 
multiplication by a scaling factor σ(0<σ<1) thus creating the sequence of sub-problems to be 
solved. A suitable penalty function is (Yang and Yagar 1994): 

( ) ( )ln                    n in
i

i

g V
P V i

H
γ

−⎛ ⎞
= − ∀⎜ ⎟

⎝ ⎠
 (22) 

( )n
iP V  is the penalty term associated with side constraint i at iteration n of the inner penalty 

function. nγ  is the penalty parameter at iteration n. iH  is a scaling factor given by:    
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( )( )sup                        i i
V

H g V m= − ∀  (23) 

Hence, at the nth iteration, the sub-problem is given by: 

( )
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min
aV

nrs rs
a k ak i

a rs k i
t f dV P Vδ⎛ ⎞ +⎜ ⎟
⎝ ⎠

∑ ∑∑ ∑∫  (24) 

Subject to the constraints in Equations (3), (4) and(5). 
An important feature of this method is that the optimal values of Lagrange multipliers 
associated with the penalized constraints ( iλ ) are given by the derivative of the penalty 
function when 0γ → . Equation (17) relates iλ  to delays in the network. Hence, an explicit 
expression for delays is given by:  

0

( )                         ,   
( )

n

n
i

ai
i a

g Vd a i
g V V

γ

γ

+→

∂= ∀ ∀
− ∂

 (25) 

4.2 Gradient projection 

The sub-problems created through inner penalization are solved by the GP method. In this 
method, given a feasible solution, a gradient related search direction for the new solution is 
chosen. The step size in this direction can be determined in various ways. When the resulting 
new solution is not feasible (i.e. the step size was too large) a projection function transforms 
the solution into the feasible area.  
This method is very efficient for problems with many simple constraints. It allows the 
solution to advance along arcs defining the feasible area rather than along a straight line 
inside the feasible region as does the F-W algorithm. Feasibility borders do not slow down 
the progress of the solution, since the projection function will ensure feasibility. This allows 
for faster convergence, especially in cases (such as TAP) in which the optimal solution lays 
on the boundaries with many binding constraints.  
Adaptation of the GP algorithm to this problem is based on ensuring the validity of the 
demand constraints [Equation (3)]. Flow-carrying paths are separated in two groups: shortest 
paths at the current solution, one for each OD pair, and all other used paths, which are non-
optimal at the current solution. The problem is defined in terms of the non-optimal paths 
only. Flows on the shortest paths are calculated such that trip demands will be satisfied: 

                         rs rs rs
kk

k k
f q f rs

≠
= − ∀∑ %  (26) 

rs
kf  and rs

kf%  are the flows on the optimal and non-optimal paths, respectively. 
According to the UE principle, the optimal solution will be reached when travel times on all 
paths carrying flow will be equal, and not greater than the travel time on any unused path. In 
order to advance towards such a solution, flows are transferred from currently non-optimal 
paths to the shortest one for every OD pair. The gradient of the objective function in the space 
of non-optimal path flows is given by: 
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( )( ) ( ) ( ) 1( ) ( )
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n rs rsi
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Several choices of search direction and step size choices may be used. The simplest option is 
to use the gradient direction with a predetermined step size. The step size may also be based 
on exact or inexact (e.g. Armijo rule) line search. Bertsekas and Gallager (1982) and 
Jayakrishnan et al. (1994) found that for network problems, a variation of the GP algorithm 
that uses a diagonally scaled Newton’s search direction gives best results. The Hessian matrix 
is approximated by its diagonal elements only: 

2

2

( )rs
k rs

k

Z fH
f

∂
∂

⎡ ⎤
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⎣ ⎦

%
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The resulting GP iteration is given by: 

( )1,  1 , ,                          ,  
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The superscript m denotes the GP iteration counter.  
, rs m

kH
 
can be explicitly written as: 
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2
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2 2
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rs m na a i i
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(30) 

, rs m
kL  is the set of all links that belong to either path k or the shortest path k  but not to both.  

Validity of the non-negativity constraints [Equation Fout! Verwijzingsbron niet gevonden.] 
is ensured by a projection function: 

( ){ }1, 1 , , , , max 0,             ,  rs m rs m rs m rs m rs m
k k k k kf f H c c k rs

−+ ⎡ ⎤= − − ∀ ∀⎣ ⎦
% %

 (31) 

After performing the projection, flows on all non-optimal paths are smaller or equal to the 
previous iteration. Shortest paths flows are increased according to Equation (26). 

4.3 Overall structure 

The GPCAP algorithm requires efficient combination of the GP algorithm with the inner 
penalty function steps. In doing so, it is necessary to ensure that side-constraints are not 
violated when performing the GP iteration. Each iteration of the GP algorithm diverts flows 
from non-optimal paths to currently shortest paths. Therefore, only side-constraints that 
involve links that belong to the optimal path k  (and do not belong to some non-optimal path 
k) may be violated. To ensure that the new flows on these links do not violate constraints, the 
flow diverted in each iteration is bounded by the smallest slack in side-constraints: 
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( ) ( )
-1

, ( )inf ( ) -            ,  rs m rs rsi
k ak iaki ma a V

g Vf g V k rs
V

δ δ ω
⎡ ⎤∂∆ = − − ∀ ∀⎢ ⎥

∂⎢ ⎥⎣ ⎦
∑%  (32) 

, rs m
kf∆%  is an upper bound on the flow diverted from non-optimal path k to the shortest path 

k . ω  is a small positive constant that ensures a strictly feasible solution at each iteration.  
The number of checks required to perform this step is relatively small. For example, in the 
case of link capacity constraints [Equation (18)] it is at the most equal to the number of 
constrained links on the shortest path. The bound on the flow that can be diverted would in 
this case simplify to:  

( ), inf -            ,  rs m m
k j jj k

j k

f C V k rsω
∈
∉

∆ = − ∀ ∀%

 (33) 

The GP algorithm is easily adapted for these checks, hence allowing it to efficiently cope with 
side-constraints. The only modification required is the addition of a term to the projection 
function corresponding to Equation (32). The modified projection function is given by: 

( ){ }1, 1 , , , , , , max 0, ,   ,  rs m rs m rs m rs m rs m rs m rs m
k k k k k kkf f H c c f f k rs

−+ ⎡ ⎤= − − − ∆ ∀ ∀⎣ ⎦
% % % %

 (34) 

Given a feasible initial solution, the GPCAP algorithm is summarized in these steps: 

1. Initialization: Set σ and 0γ  values and iteration counters m:=0, n:=0. 
2. Inner penalty function iteration: Set n:=n+1, 1n nγ σγ −=  
3. GP iteration: 

• Update link traffic flows and costs. m:=m+1. 
• Calculate the shortest path for every OD pair. If it is a new path, add it to the path list. 
• Update path flows according to equations (34) and (26). 

4. GP convergence: If GP converged go to step 5. Otherwise, go to step 3. 
5. Overall convergence: If overall convergence holds calculate link flows and travel times, 

stop. Otherwise, set m:=0, go to step 2. 

Next, we present a procedure for finding a feasible initial solution based on a technique 
proposed by Daganzo (1977). The procedure is based on the GPCAP algorithm itself and 
retains the same structure. Given an infeasible solution, we define a temporary feasible area 
that contains this solution. Based on this feasibility area, a new solution is calculated by 
performing an iteration of the GPCAP algorithm. The procedure is repeated until the 
temporary feasibility area is contained in the original one. The feasible area is narrowed by 
temporarily changing the right-hand side of side-constraints to ˆ( )i ig V C≤ : 

0 ( ) 0ˆ
( )(1 ) ( ) 0

i
i

i i

g V
C

g V g Vε
<⎧

= ⎨ + ≥⎩  (35) 
ˆ

iC  is the temporary right-hand side value of constraint i. ε is a small positive constant.  
At each iteration constraints that are violated will have very high travel costs (due to the 
penalty value). This will cause flows on links associated with these constraints to be smaller 
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in the next iteration. The use of the inner penalty function in the procedure ensures that once a 
constraint is satisfied it cannot be violated again. The starting solution for this process can be 
an all-or-nothing (AON) assignment or an incremental assignment. 
Given an infeasible starting solution, the initializing algorithm proceeds as follows: 

1. Initialization: Set σ and 0γ  values and iteration counters m:=0, n:=0. 
2. Inner penalty function iteration: Set n:=n+1, 1n nγ σγ −= . 
3. GP iteration: 

• Update link flows. 
• If all side-constraints are satisfied, stop. Otherwise, calculate temporary right-hand 

side values according to equation (35) and costs. m:=m+1. 
• Calculate the shortest path for every OD pair. If it is a new path, add it to the path list. 
• Update path flows according to equations (34) and (26). 

4. GP convergence: If GP converged go to step 2. Otherwise, go to step 3. 

4.4 Numerical results 

The convergence of GPCAP algorithm was compared to Yang and Yagar’s algorithm. Their 
algorithm is based on the F-W algorithm. The two algorithms were tested on the Sioux Falls 
network (Leblanc 1973). This network contains 24 nodes, 76 links and 550 OD pairs. 
Capacity constraints were imposed on 12 links. The algorithm was run to achieve a very 
accurate solution. The progress of the algorithms was measured by the deviation from this 
solution. Convergence is measured by the maximum absolute percentage error (MAPE) 
between the optimal and current flows over all links: 

max
n opt

a a
opta A

a

V VMAPE
V∈

−=
 (36) 

opt
aV  and n

aV  are the flows on link a in the optimal and nth iteration solutions, respectively. 
Convergence results are presented in Figure . GPCAP iterations are more complex because of 
the need to calculate second derivatives of the objective function and perform path 
comparisons to identify common links. However, the additional information used allows the 
solution to converge after many fewer iterations. The GPCAP algorithm converged faster and 
in a more stable manner. The gap between the algorithms widens as they approach the 
optimum. Overall, Yang and Yagar’s algorithm took approximately 27%, 108% and 7820% 
time longer than GPCAP to get to levels of accuracy within 10%, 5% and 1% of the optimal 
solution, respectively. 
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Figure 3.  Convergence in Sioux-Falls network 

5. Summary 

This paper presented a model and solution algorithm for the static traffic assignment problem 
with side-constraints. The SCTAP is created by adding side-constraints to the standard static 
TAP. Side-constraints may be used to represent various bottlenecks in the network as well as 
external factors that affect traffic flow. Several such constraints were described. Queuing 
delays are created when side-constraints are satisfied as equalities, i.e., when traffic flows 
equal the capacity of the facilities the constraints represent. These delays are closely related to 
the optimal values of the corresponding Lagrange multipliers. The resulting UE state is 
defined by total path travel times comprised of link travel times and queuing delays.  
The SCTAP solution may significantly enhance the realism of the assignment, as the 
demonstrated by a simple example. This may not only improve the reliability of long-term 
planning decisions, but also allow assignment results to be used for short-term policy and 
operational analysis, such as evaluation of demand management and congestion pricing 
strategies, estimation of environmental impacts and design of traffic plans for special events.   
We introduced the GPCAP algorithm to solve the SCTAP. The algorithm is based on 
combining an internal penalty function method with a path-based adaptation of the GP 
algorithm. All intermediate solutions produced by the algorithm are strictly feasible. The 
procedure used to ensure that side-constraints are not violated is efficient since it is only 
performed on constrained links that belong to the shortest path. The algorithm was tested 
against Yang and Yagar’s algorithm with favorable convergence results.  
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The GPCAP algorithm provides a solution that includes path flows. These are useful for 
estimating turning flows and for route identification. While the path flow solution is not 
unique and therefore needs to be interpreted with caution, it is useful for practical analysis, as 
in the case of link of interest problems. 
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