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1. INTRODUCTION 

 

The integration of GPS and INS is aim at utilizing 

the advantages of each system and to compromise 

their weakness.  Four types of GPS/INS coupling 

architectures have been proposed: 1. uncoupled, 2. 

loosely coupled, 3. tightly coupled and 4. ultra-

tightly (deep) coupled.  

 

In the uncoupled integration architecture [1], the 

GPS estimated position and velocity are used to 

reseat the INS indicated position and velocity at 

regular intervals of time. Although, this approach 

involves minimal changes to either systems, it does 

not provide the opportunities for performance 

enhancement and jamming avoidance. In addition, 

when GPS is not available, system accuracy 

decreases rapidly. 

 

The loosely coupled integration approach [2] allows 

the GPS to function autonomously and 

simultaneously enables INS and GPS integrated 

solution. In the integrated solution, INS and GPS 

estimates of position and velocity are compared and 

the resulting differences form the measurement 

inputs to the estimation filter. The advantage of the 

loosely coupled approach lies in its redundancy 

since two navigation solutions are given to the user: 

1. a standalone GPS solution and 2. an integrated 

INS/GPS solution. In addition, this integration 

approach is suitable for any INS and GPS receiver, 

and can be used to retro-fit applications [1].  On the 

other hand, four GPS satellites are required to form 

a GPS solution. So, unless four or more satellites are 

available, the loosely coupled approach relies on the 

INS standalone solution which, regardless to its 

grade, will drift in time [3]. 

 

Another INS/GPS integration approach is the tightly 

coupled approach. In this approach, there is no 

separated GPS navigation solution. A single 

integration filter is employed to fuse INS and GPS 

measurements [4]. The raw pseudorange and 

pseudorate measurements from the GPS output and 

those constructed from the INS prediction are 

combined to form the measurement to the 

estimation filter. The filter directly accepts their 

differences to obtain the INS error estimates [5]. 
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This scheme provides a more accurate solution than 

the loose integration because the basic GPS 

observables (pseudorange and pseudorate) used in 

the blending process are not as correlated as the 

position and velocity solutions (used in loosely 

coupled approach) are [6]. 

  

The final INS/GPS integration approach is the ultra 

tight integration. This integration scheme combines 

GPS signal tracking and INS-GPS integration into a 

single estimation filter. Conceptually, in this 

approach INS is aiding the GPS while in the other 

integration schemes GPS is aiding the INS.  

Although this integration approach has several 

advantages such as: faster GPS signal reacquisition 

and multipath resistance is improvement [1], it can 

only be realized in a special hardware component 

and requires access to the firmware of the receiver 

[5]. 

 

The loosely coupled integration system has both 

advantages and disadvantages compared to the 

tightly coupled one [7], [8]. In the aspect of system 

implementation, the loosely coupled integration 

system has higher flexibility and modularity as well 

as less computation and complexity due to the 

independent operation and the smaller dimensions 

of the individual Kalman filter. In terms of system 

accuracy, the tightly coupled integration system 

provides a globally optimal estimation-accuracy, 

because all the states for the entire system are 

defined in one global state-vector with a 

corresponding global description of the process 

noise. In terms of system availability, the loosely 

coupled integration system requires at least four 

GPS satellites to provide GPS updates for INS 

corrections while the tightly coupled method can 

still operate with as few as one GPS satellite. For 

system robustness, the loosely coupled integration 

system has higher fault detection performance than 

the tightly coupled one because the independent 

filter solutions are available from two separate 

filters. 

 

In this paper we propose constructing artificial GPS 

measurements to facilitate GPS receiver position 

and velocity solutions in situations were less than 

four satellites are available, and thus enabling the 

implementation of the loosely coupled integration 

approach. The pseudo-GPS measurements are 

constructed in the following manner: from the last 

almanac message the location and velocity of all 

GPS satellites can be propagated by time and thus 

considered/become known. In addition, from the 

INS, the user position and velocity is estimated. 

Combining both INS position and velocity with the 

pseudo-GPS satellites position and velocity, the 

artificial pseudoranges and pseudorates can be 

calculated for satellites which are not viewed by the 

GPS receiver. These pseudoranges and pseudorates 

are used to calculate the GPS receiver position and 

velocity, which are introduced to the estimation 

process.  

Since pseudo-GPS measurements are used, any GPS 

satellite can be chosen from the GPS constellation. 

Therefore, extra pseudo-GPS measurements can be 

added to enhance the position and velocity solution. 

Additionally, appropriate satellites can be chosen to 

minimize the Dilution of Precision (DOP) of the 

satellites.  

We demonstrate the usefulness of the proposed 

method through several illustrative examples. In 

those examples we use MEMES INS data collected 

in field experiments. In all examples, the 

introduction of pseudo-GPS measurements greatly 

reduced the navigation errors obtained with the 

standalone INS. 

 

The paper is organized as follows: Section 2 

introduces the fundamental principles in which this 

paper is based upon.  Section 3 describes the 

concept of pseudo-GPS while in Section 4 some 

illustrative examples are presented. The conclusions 

of this research are discussed in section 5. 

2. GPS/INS LOOSELY COUPLED APPROACH 

2.1 INS ERROR EQUATIONS 

The following coordinate frames are used in this 

work: Inertial frame (i-frame), Earth Centered Earth 

Fixed (e-frame) frame, North-East-Down (NED) 

frame (n-frame) and Body frame (b-frame). The i-

frame origin is at the center of the Earth. The x-axis 

points towards the mean Vernal equinox, the z-axis 

is parallel to the Earth spin axis and the y-axis 

completes a right handed orthogonal frame. The e-

frame has its origin at the center of the Earth and 

rotates with the Earth spin. The x-axis points 

towards the Greenwich meridian, the z-axis is 

parallel to the Earth spin axis and the y-axis 

completes a right handed orthogonal frame. The n-

frame has its origin fixed on the earth surface at the 

initial latitude/longitude of the vehicle. The x-axis 

points towards the geodetic north, the z-axis is on 

the local vertical pointing down and the y-axis 

completes a right handed orthogonal frame. The b-

frame origin is at the vehicle center of mass. The x-

axis is parallel to the vehicle longitudinal symmetry 

axis pointing forward, the z-axis points down and 

the y-axis completes a right handed orthogonal 

frame.  

Raw measurements from accelerometers and gyros 

are measured along the b-frame. They are 
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transformed to the n-frame, where data integration is 

performed. The position in the n-frame is expressed 

by curvilinear coordinates  [ ]Tn
r hφ λ=  

where, φ  is the latitude, λ  is the longitude and h  

is the height above the Earth surface.  The equations 

of motion in the n-frame are given by [1]:  
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where  [ ]n

N E Dv v v v=  is the vehicle velocity, 

b nT →
 and 

n bT →
 are the transformation matrices 

from the b-frame to the n-frame and vice-versa, 

respectively. 
b

f  is the measured specific force, 
n

ieω  

is the Earth rate with respect to the i-frame, 
n

enω  is 

the turn rate of the n-frame with respect to the Earth, 

1

n
g  is local gravity vector, M and N are the radii of 

curvature in the meridian and prime vertical, 

respectively and 
b

nbΩ  is the skew-symmetric form of 

the body rate with respect to the n-frame given by: 

                                                

 ( )b b n b n n

nb ib ie enTω ω ω ω→= − +                    (3)                                              

 

The INS mechanization equations provide no 

information about errors in the system states (caused 

by measurement errors) as they process raw data 

from the Inertial Measurement Unit (IMU) to 

estimate navigation parameters. The IMU outputs 

contain additional errors that cannot be compensated 

for. These errors are due to uncertainties in the 

sensors such as spurious magnetic fields and 

temperature gradients. Thus, to improve the 

performance of the INS it is necessary to develop an 

error model which describes how the IMU sensor 

errors propagate through the equation of motion 

(Eq. (1)) into navigation errors. These navigation 

errors are then corrected for in order to obtain 

corrected navigation solution.  

 

Several models (e.g. [9], and [1]) were developed to 

describe the time-dependent behavior of these 

errors. A classic approach is the perturbation 

analysis, in which navigation parameters are 

perturbed with respect to the true n-frame. This is 

done by taking a first order Taylor series expansion 

of the states in Eq. (1). A complete derivation of this 

model can be found for example in [10], and [11]. 

The state-space model is given by: 
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where the state vector consists of position error, 

velocity and attitude errors and accelerometer and 

gyro bias/drift. A detailed description of the 

parameters in Eq. (4) is given in an appendix.  Eq. 

(4) defines the system dynamics for the linear 

Kalman filter, which is introduced in the next 

section.  

2.2. GPS POSITION AND VELOCITY 

CALCULATIONS 

The standard GPS positioning problem involves 

four unknown quantities: the receiver position 

vector in the e-frame p p px y z    and the 

receiver clock bias rt∆ . Those quantities can be 

obtained by solving the following measurement 

equation for four satellites 

 

( ) ( ) ( )
1

2 2 2 2

i i p i p i p r
X x Y y Z z c tρ  = − + − + − + ∆  

�   (7)                       

 

where 
i
ρ�  is the measured pseudorange of the i-th 

satellite,  [ ]i i iX Y Z  is the i-th satellite e-frame 
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position vector and c  is the speed of light.  Let, 
T

p p p rx x y z c t = ∆  then the objective of 

the solution will be to find the value of x  that 

minimizes the cost function [12] 

 

                            ( ) ˆˆ ˆ( )J x xρ ρ= − �                    (8)                                                              

 

where ρ�  is a set of at least four pseudorange 

measurements and ˆ ˆ( )xρ is the set of the computed 

pseudorange which are a function of the computed 

satellites position. The algorithm which finds the 

value of  x̂  that minimizes the cost function (8) is 

given by 
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The iteration of Eq. (9) is performed until 

( ) [ ]
1

ˆ ˆ( )T T
H H H xρ ρ

−
−�  had a magnitude less than 

a prespecified threshold.  

  

In the same manner the receiver velocity, v̂ , is being 

calculated. Let 
T

xp yp zp rv v v v c t = ∆ � , then 

[4]  
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where H  is defined in Eq. (10) and  
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2.3 LINEAR  KALMAN FILTER 

We incorporate the INS dynamics with the GPS 

position and velocity measurements in a linear 

Kalman filter. In general, a Kalman filter algorithm 

consists of two steps: prediction of the state based 

on the system model, and update of the state based 

on the measurements. The first step in the Kalman 

filter is prediction of the state and its associated 

covariance [13]: 

                                                                                                        

                    1
ˆ ˆ

k kx x
− +
+ = Φ ,

( )F t t
e

∆Φ =                    (15)                                  

                    

                    
1

T

k k kP P Q
− +
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where the superscripts – and + represent the 

predicted quantity (before measurement update) and 

the updated quantity (after measurement update). x 

and P  are the system state and the associated error 

covariance matrix, respectively. Φ  is the state 

transition matrix from time k to time k+1, ( )F t  is 

the system dynamics matrix and kQ  is the  process 

noise covariance matrix [14] given by:   
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T T T
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where, ( )G t  is the shaping matrix. t∆  is the time 

step. The second step is the measurement update: 

 

        ( ) 1
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T T
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            ( )1 1 1 1 1 1
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                    ( )1 1 1 1k k k kP I K H P
+ −
+ + + += −               (20)                      

 

where 
kK  is the Kalman gain, 

kH is the 

measurement matrix, 
kR is the measurement noise 

covariance  matrix and 
kz is the measurement.  
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Let  
T

n n n

KF a gx r v b bδ δ ε δ δ =    be the state 

vector, thus the system dynamics and shaping 

matrices are defined in Eqs. (4)-(6) which can be 

written in the following manner 

 

                             
KF KF

x Fx Gu= +�                        (21)                                         

 

In the loosely coupled integration approach position 

and velocity from the GPS are inserted as 

measurements to the Kalman filter which uses it to 

estimate the INS errors states. The measurement 

equation is given by 

 

                          
INS GPS
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INS GPS

r r
z

v v

− 
=  − 

                  (22)                                                 

 

where 
INSr and 

INSv are, respectively ,the INS 

position and velocity solution and 
GPSr and 

GPSv are 

the GPS position and velocity solution, respectively. 

The corresponding measurement matrix is given by 
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As noted in the introduction, the two main 

advantages of the loosely coupled integration 

approach are simplicity and redundancy. However, 

when less than four satellites are accessible, no GPS 

position and velocity solution is available, disabling 

usage of the loosely coupled approach. In the next 

section we introduce the pseudo-GPS approach 

which enables the usage of loosely coupled 

approach even with less than four accessible 

satellites.     

 

3. PSEUDO-GPS  

3. PSEUDO-GPS METHODOLOGY  

In order to obtain receiver position and velocity, 

four GPS satellites are required. In the loosely 

coupled approach, when less than four satellites are 

available, the navigation solution depends only on 

the standalone INS solution.  Therefore, the 

navigation solution will drift in time. The drift rate 

depends on the quality of the employed INS.  Yet, 

high quality INS is much expensive compared to 

MEMS INS.  In the pseudo-GPS methodology we 

propose creating pseudo-GPS satellites when less 

than four satellites are available based on the 

position and velocity obtained from a MEMS INS. 

The pseudo-GPS satellites are then taken together 

with the true satellites, viewed by the receiver, to 

form at least four satellites. This way, receiver GPS 

position and velocity can be obtained with even less 

than four actual satellites, enabling the usage of the 

loosely coupled approach. 

 

Let 4n <  satellites acquired by the receiver, then 

4m n= −  pseudo-GPS satellites are to be created. 

We create the pseudo-GPS satellites in the 

following manner: from the almanac, position and 

velocity of each GPS satellite can be calculated at 

the beginning of each week. Those position and 

velocity can be propagated by Kepler motion 

equations [15]: 

 

                 ( )3
,

r
r p r t

r

µ
+ =��                  (24)                              

 

where µ is the gravitational parameter and ( ),p r t  

denotes the perturbations acting upon the satellite. 

For simplicity we neglect all perturbations on the 

satellites orbit, including the perturbing acceleration 

due to the zonal harmonics 
2J  by 

setting ( ), 0p r t = . In that manner, we can produce 

GPS orbits which resembles to the true ones. The 

accuracy of the orbit depends on the employed 

integrator and the proximity to the almanac time of 

update.  In addition to the GPS satellite position and 

velocity obtained from Eq. (24), the INS position 

and velocity are known in each moment. Thus, we 

can calculate the pseudo-GPS pseudorange and rate 

by 

 ( ) ( ) ( )
1

2 2 2 2

P GPS i INS i INS i INS
X x Y y Z zρ

−
 = − + − + − 

�  (25)                        

                          

( ) ( ) ( ) ( ) ( ) ( )
P GPS

P GPS

i INS xi xINS i INS yi yINS i INS zi zINS
X x V v Y y V v Z z V v

ρ
ρ−

−

 − − + − − + − − =��
�

  (26) 

 

Once the pseudo-GPS pseudorange and rate are 

obtained from Eqs. (25)-(26), they are combined 

with the true measured pseudorange and rate and 

with the true and pseudo-GPS satellites positions 

and velocities and substituted into Eqs. (9)-(14) to 

obtain GPS position and velocity. Then, GPS 

position and velocity are introduced into Eq. (22) as 

aiding to the INS estimation process. This pseudo-

GPS methodology is presented in terms of a 

flowchart in Figure 1.   
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Figure 1: Pseudo-GPS Methodology 

 

4 ANALYSIS & DISCUSSION 

The pervious section demonstrated how pseudo-

GPS satellites can be created, while this section 

discusses which satellites to choose from the 

existing GPS constellation as pseudo-GPS satellites. 

In addition, the effect of the number of pseudo-GPS 

satellites employed on the navigation solution is 

examined.  

 

Firstly, since we construct the pseudo-GPS satellites 

any satellite from the existing GPS constellation can 

be chosen. More specifically, we examine three 

approaches: 1. Add arbitrary satellites from the GPS 

constellation to form at least four satellites (arbitrary 

satellites approach) 2.  Add arbitrary satellites from 

the GPS constellation to form more than four 

satellites (extra satellites approach) 3. Choose 

appropriate satellites from the GPS constellation in 

order to minimize the Dilution of Precision (DOP) 

of the viewed satellites (minimizing DOP 

approach).  The DOP is a quality measure for the 

geometry of the viewed GPS satellites, and is 

directly related to the accuracy of the GPS solution. 

Loosely speaking, an error in the GPS solution is 

estimated by the pseudorange error factor multiplied 

by the satellite geometry factor (DOP). The 

pseudorange error factor is the User Equivalent 

Range Error (UERE), which contains all error 

sources (Ionosphere, multipath, etc.).  

  

The lowest value of the DOP is one, representing 

ideal conditions, while the highest value of the DOP 

is 50 representing poor conditions. It was shown 

[16] that the configuration to yield minimum DOP is 

tetrahedron with an equilateral triangle as its base. 

That is, one satellite at the zenith of the user and 

other satellites equally spaced in a plane 

perpendicular to the user link to the satellite zenith. 

Therefore, when less than four satellites are in view, 

we can calculate which pseudo-satellites to create to 

minimize the DOP.   

 

Let 4n <  satellites be acquired by the receiver, 

then at least 4m n= −  pseudo-GPS satellites are to 

be created in order to obtain GPS position and 

velocity solution. Thus, for each of the above 

mentioned approaches we have 

 

1. Arbitrary Satellites:  a set of m satellites are 

chosen from the GPS constellation and their 

corresponding pseudorange and rate are 

constructed.  

2. Extra Satellites:  a set of 
*

m m>   satellites 

are chosen from the GPS constellation and 

their corresponding pseudorange and rate 

are constructed. 

3. Minimizing DOP: a set of m appropriate 

satellites which together with the viewed 

satellites yield the minimum DOP are 

chosen from the GPS constellation and their 

corresponding pseudorange and rate are 

constructed.  

 

 

To demonstrate the usefulness of the proposed 

pseudo-GPS approaches, an example featuring data 

collected using MEMS INS while driving in an 

urban environment is presented. For the nominal 

trajectory we used the GPS solution of the 

corresponding INS trajectory. The nominal 

trajectory has a height variation of about 15 meters 

and includes left/right turning. The car velocity was 

changing in this scenario but did not exceed 70 

km/h. Raw data was collected over 60 seconds. One 

hundred Monte-Carlo trials were made to examine if 

the choice of the arbitrary satellites has any 

influence on the navigation solution. At the start of 

each individual trial an arbitrary set of pseudo-GPS 

satellites was chosen. The appropriate satellites to 

yield the best DOP were found at the beginning of 

each trial and were used throughout. Even though it 

is possible to perform this calculation in each time-

step or after a desired period, in this work we chose 

performing it only at the starting point of the case-

study.    

 

To evaluate the contribution of the pseudo-GPS 

approach, the following error measure is utilized: 

                                                     

              ( ) ( ) ( )x aiding nominalt x t x tε = −                 (27)                                    

 

where ( )x tε is the error for state x , ( )aidingx t is the 

state history obtained from the pseudo-GPS aiding 

and ( )nominalx t is the nominal state history.  
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First, to evaluate the proposed method we nullify all 

GPS related noises (i.e., measurement noise clock 

bias, etc.) and assume the pseudo-GPS orbits are 

known precisely. Therefore, the only noise included 

in the pseudorange and pseudorate calculations 

(Eqs. (25)-(26)), is hidden in the INS position and 

velocity. The results for this case study are shown in 

Figures 2-7. 
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Figure 2: Position error for arbitrary satellites 

 

Figures 2-3 address the case of adding an arbitrary 

set of satellites from the GPS constellation to 

complete for four true and pseudo satellites. As can 

be seen in Figure 2, all position vector components 

error received poor results compared with the 

standalone INS. However, each of the errors in the 

velocity components was reduced by ~50% 

compared to the standalone INS, but the velocity 

components still drift with time. 
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Figure 3: Velocity error for arbitrary satellites 

 

The performance of the arbitrary satellites approach 

can be improved by replacing the arbitrary set of 

satellites with an appropriate set which minimizes 

the DOP. Results of this approach are presented in 

Figures 4-5.  
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Figure 4: Position error for minimizing DOP 

satellites 
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Figure 5: Velocity error for minimizing DOP 

satellites 

 

As Figure 4 shows, using this approach the error in 

the position is lower than the standalone INS 

solution; however it still drifts with time. Figure 5 

shows however that the error in the velocity 

components is bounded for the studied period. 

Additionally, errors at the end of the experiment 

were reduced by an order-of-magnitude compared to 

the standalone INS. This result is obtained 

regardless to the number of viewed GPS satellites: 

one, two or three. 

 

Figures 6-7 show a comparison between the three 

pseudo-GPS approaches for the position and 

velocity error.  
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Figure 6: Comparison between the three pseudo-

GPS approaches for the position error 
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Figure 7: Comparison between the three pseudo-

GPS approaches for the velocity error 

 

As can be seen from Figures 6-7, adding an arbitrary 

set of extra satellites improved the performance of 

completing to four satellites but error was much 

higher compared to the DOP minimization driven 

approach. Therefore, adding pseudo-satellites to 

complete for four satellites showed less 

improvement relative to the standalone INS while 

choosing appropriate DOP satellites had mange to 

bound all three velocity components error.  

 

To further evaluate the proposed method, GPS 

related noises (i.e., measurement noise clock bias, 

etc.) are inserted to the GPS measurements and a 

drift error is introduced to the pseudo-GPS orbits. 

The results for this case study are shown in Figures 

8-9.  As can be seen, an introduction of noises did 

not influence the overall results. When comparing 

the position error, the arbitrary satellites approach 

had poorer results compared to the standalone INS. 

Although the minimizing DOP approach had 

improved the standalone INS error, its error is not 

bounded. On the other hand, all three approaches, 

regardless to the number of pseudo satellites used 

show great improvement relative to the standalone 

INS when comparing the velocity errors.   
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Figure 8: Comparison between the three pseudo-

GPS approaches for the position error with noises 
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Figure 9: Comparison between the three pseudo-

GPS approaches for the velocity error with noises 

 

 

5. CONCLUSIONS  

This paper proposed constructing pseudo GPS 

measurements in order to facilitate GPS receiver 

position and velocity solutions in situations where 

less than four satellites are available and thus 

enabling the implementation of the loosely coupled 

integration approach. We demonstrated three 

approaches for the pseudo-GPS method: 1. adding 

an arbitrary set satellites from the GPS constellation 

to form at least four satellites 2.  adding an extra set 

of arbitrary satellites from the GPS constellation to 

form more than four satellites 3. choosing satellites 

from the GPS constellation for minimizing the DOP. 

 

Results show that all three approaches and 

regardless to the number of pseudo-GPS satellites 
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used, greatly improved the standalone INS 

performance when comparing the error in the 

velocity components. In particular minimizing DOP 

approach yielded bounded error in the velocity 

components. The analysis shows that pseudo-GPS 

method performance is degraded over time since the 

INS position and velocity drifts with time, but this 

could be compensated for by using a better-grade 

INS.   

 

The proposed model requires no hardware change, 

and only the addition of the pseudo-GPS algorithm 

to the software. With this small modification the 

loosely coupled approach can be implemented even 

with one available satellite.  
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7. APPENDIX 

The following matrixes are associated with the INS 

state space error model Eq. (4)  
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  (A.1) 

 

( )

( ) ( )

1
0 0

1
0 0

cos

0 0 1

rv

M h

F
N h φ

 
 +
 
 

=  + 
 −
 
 

       (A.2) 

            

( )
( ) ( ) ( )

( )
( )

( ) ( )( ) ( ) ( ) ( )
( )

( )

( )
( ) ( ) ( )

22

2 22

2 22

22

tan
2 cos 0

cos

tan
2 cos sin 0

cos

2
2 sin 0

EN DE
E e

E NE N N D
vr e N D

NE
E e

VV VV
V

N h M h N h

V VV V V V
F V V

N h N h N h

VV
V

N h M h R h

φ
ω φ

φ

φ
ω φ φ

φ

γ
ω φ

 −
− − + 

+ + + 
 − = − + −
 + + +
 
 

+ − + + +  

(A.3) 

 



  10

            

( )
( ) ( )

( ) ( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )

2 tan
2 sin

tan tan 2
2 sin 2 cos

2 2
2 cos 0

E ND
e

E D N E
vv e e

N E
e

V VV

M h N h M h

V V V V
F

N h N h N h

V V

M h N h

φ
ω φ

φ φ
ω φ ω φ

ω φ

 
− − + + + 

 +
 = + +

+ + + 
 
 − − −
 + + 

 

(A.4) 

 

   
( )

( )

( )

( )
( ) ( )

( )
( )

2

2

22

sin 0

0 0

tan
cos 0

cos

E
e

N
r

EE
e

V

N h

V
F

M h

VV

N h N h

ε

ω φ

φ
ω φ

φ

 −
 −

+ 
 
 =
 +
 
 
− − + +  

 (A.5) 

 

          

( )

( )
( )

( )

1
0 0

1
0 0

tan
0 0

v

N h

F
M h

N h

ε

φ

 
 

+ 
 
 = −

+ 
 − 
 + 

       (A.6)          

( ) ( )
( ) ( )

( ) ( )
( )

( )
( )

( )
( ) ( )

( )
( )2

tan
0 sin

tan
sin 0 cos

cos cos 0
cos

E N
e

E E
e e

E E
e e

V V

N h M h

V V
F

N h N h

V V

N h N h

εε

φ
ω φ

φ
ω φ ω φ

ω φ ω φ
φ

 
+ + + 

 
 = − − − −

+ + 
 
 − − +
 + + 

 

(A.7) 

 

where [ ]
Tn

N E Dv v v v�  is the velocity vector in 

the n-frame and the rest of the parameters were 

defined in the text. 

 


