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Abstract—This paper presents a general solution scheme for 

the problem of off-line estimation of dynamic Origin-Destination 

(OD) demand matrices using traffic counts on some of the 

network links and historical demand information. The proposed 

method uses linear approximations of the assignment matrix, 

which maps the OD demand to link traffic counts. Several 

iterative algorithms that are based on this scheme are developed. 

The various algorithms are implemented in a tool that uses the 

mesoscopic traffic simulation model Mezzo to conduct network 

loadings. A case study network in Stockholm Sweden is used to 

test the proposed algorithms and to compare their performance to 

current state-of-the-art methods. The results demonstrate the 

applicability of the proposed methodology to efficiently obtain 

dynamic OD demand estimates for large and complex networks 

and that, computationally, this methodology outperforms existing 

methods.  

Index Terms—Dynamic traffic assignment, Origin-Destination 

matrix estimation, Assignment matrix 

 

I. INTRODUCTION 

In recent years, there have been significant advances in the 

development of Dynamic Traffic Assignment (DTA) and 

traffic simulation models, which predict time-dependent traffic 

conditions on a road network. An important input to these 

models is the demand for travel, which is commonly 

represented by Origin-Destination (OD) demand matrices. 

Collecting OD information directly by conducting surveys is 

time consuming and cost expensive. Moreover, the 

measurements may quickly become outdated. Therefore, OD 

demand matrices are commonly estimated using traffic counts, 

collected from the links of the network and effectively 

combined with available OD information (e.g., derived from 
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direct measurements or from previous estimates).  

OD estimation methods for the static problem (e.g. [1]-[5]) 

predict trip rates over a long period of time (such as a peak 

period), within which conditions on the network are assumed 

to be stationary. Dynamic OD Estimation (DODE) models 

(e.g. [6]-[9]) relax the assumptions of stationary demand, 

represent traffic dynamics and incorporate stochasticity in 

these elements. The estimated OD matrices are therefore more 

suitable as inputs to DTA and traffic simulation models. While 

the problem formulation has been well-established in the 

literature, there is still a need for efficient algorithms for its 

solution in large-scale congested networks. This is 

demonstrated, for example, in recent work by Cipriani et al. 

[10]. The authors present a modification to the Stochastic 

Perturbation Simultaneous Approximation (SPSA) algorithm, 

a state-of-the-art solution approach to the DODE problem. 

Their algorithm required 15 hours to estimate an OD demand 

with four time slices for the Calgary network (734 links, 221 

nodes and 77 centroids).  

This paper presents a general solution scheme for the 

DODE problem. A critical construct in DODE is an 

assignment matrix, which maps OD demand flows to traffic 

counts at sensor locations. In congested networks, the 

assignment proportions depend on the unknown time-

dependent OD demands. The methods proposed in this paper 

are based on use of linear approximations of the assignment 

matrix in the optimization iterations. Several iterative 

algorithms, based on this scheme, that differ in the search 

direction they use are developed. The algorithms are tested 

using the mesoscopic traffic simulation model Mezzo [11] on a 

network in the Stockholm area. The case study demonstrates 

the computational efficiency of these algorithms compared to 

current state-of-the-art approaches for large-scale networks.  

The rest of this paper is organized as follows. In the next 

section, the DODE estimation problem is formulated 

mathematically. Algorithms for the solution of this problem 

that have been proposed in the literature are presented in 

section III. The solution scheme proposed in this work is 

presented in section IV. The details of this algorithm and its 

implementation are presented in sections V and VI, 

respectively. A case study demonstrating the proposed 

algorithms is presented in section VII. Finally, conclusions are 

presented in Section VIII. 

Estimation of dynamic origin-destination 

matrices using linear assignment matrix 

approximations 
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II. PROBLEM FORMULATION 

Consider a transportation network represented by a directed 

graph ( ),G C L , where C  is a set of nodes and L  is a set of 

links. 'L L⊆  is a subset of links equipped with sensors. The 

OD matrix { }nr
X x=  defines the demand for travel for each 

OD pair n N∈  in each departure time period r R∈ . N  and 

R  are the number of OD pairs and departure time periods, 

respectively. The data available for the demand estimation 

includes both direct and indirect information. A-priori 

information on the OD matrix (e.g., from direct measurements, 

previous studies or application of other, possibly static, traffic 

assignment models) is captured by a target (historic) OD 

matrix, { }H H

nrX x= . The indirect measurements include link 

flow observations, { }lt
Y y=� �  on a subset of link in the network 

'l L∈  during time interval t T∈ . It is assumed that T  and 

R  describe the same period of interest, but their 

decompositions to time intervals may be different. It is also 

assumed that X , H
X  and Y�

 
are arranged as column vectors. 

Reference [6] formulated the DODE problem as a 

constrained optimization problem. The objective function for 

this problem ( )Z X  includes two parts. The first part measures 

the distance between the estimated OD matrix and the historic 

OD matrix. The second part measures the distance between the 

observed link flows and those predicted by the model when the 

estimated OD demand flows are assigned to the network. This 

formulation is given by:  

( ) ( ) ( )( )1 1 2 2
0

min , ,H

X
Z X w F X X w F Y X Y

≥
= + �  (1) 

 

1
F  and 

2
F  are distance functions. 

1
w  and 

2
w  are weighting 

factors that reflect the relative uncertainty in the information 

contained in H
X  and Y� , respectively. This uncertainty may 

result from sensor measurement errors and from modeling 

errors. Given multiple measurements of the traffic counts and 

demands, the weight factors could be estimated by the inverse 

of the standard deviations of these measurements. 

( ) { }lt
Y X y=  are the link flows predicted by an assignment 

(or loading) of the demand to the network. The assignment 

model may be an optimization problem in itself. In this case, 

the overall formulation becomes a bi-level optimization 

problem.  

The mapping of the demand to the traffic counts, ( )Y X
’ 

may be expressed as a proportion of the OD demand that 

passes through a count location:   

( )Y A X X=  (2) 

 

{ },nr ltA a=  is the assignment matrix. 
,nr lt

a  is the fraction of 

the OD demand 
nr

x  that passes link l  during observation 

period t . These fractions depend on the route choices and on 

the travel times from the origins to counting points. In turn, 

these depend on the congestion in the network, which depend 

on the demand for travel. Thus, the assignment matrix depends 

on the demand to take into account the effect of congestion. 

The functional form of 
1

F  and 
2

F  depends on the 

assumptions made regarding the structure of the errors in the 

traffic counts and travel demands. See [6] and [12] for 

alternative formulations. Assuming that errors are 

independently and identically normally distributed, and 

incorporating (2), the DODE problem becomes:   

( ) ( )
22

0

1
min

2 2

H

X

w
Z X X X A X X Y

≥
= − + − �  (3)  

 
1

2

w

w
w =

 
is a weighting factor that captures the relative 

variability in the information contained in the historic OD 

matrix compared to that in the traffic counts. Note that the 

optimal solution is insensitive to scalar multiplications, and so 

is not affected by the division by 
2

w  or by a factor of two, 

which simplify the notation and the derivative expressions that 

will follow.      

 

III. SOLUTION ALGORITHMS 

Several methods to solve the DODE problem in (3) have 

been proposed. Assuming that the assignment matrix is fixed 

and exogenously known, [6] and [13] solved the DODE 

problem as a quadratic optimization problem using standard 

gradient methods. However, in most cases assignment matrices 

are not a-priori known and are not fixed, due to the effects of 

congestion that depends on the travel demand. In congested 

network, changes in the demand affect travel times. In turn, 

travel times affect the route choices and travel times from 

origins to counting points that determine the assignment 

fractions. Several authors (e.g. [7], [8], [14]-[17]) applied 

algorithms that iterate between two basic steps: (i) An 

assignment step, in which a given demand matrix (the solution 

of the previous iteration) is assigned to the network to yield an 

assignment matrix, and (ii) an optimization step, in which an 

auxiliary OD demand solution is obtained through the 

optimization of a quadratic objective function. This quadratic 

sub-problem results from fixing the assignment matrix in (3) to 

its value in the current iteration. The new OD matrix is 

obtained by moving from the current solution in a search 

direction, which is defined by the difference between the 

auxiliary solution and that of the previous iteration. The step 

size in this search direction may be pre-defined by simple 

functional iterations, the method of successive averages 

(MSA) and similar weighing methods. Alternatively, exact or 

approximate line search methods that minimize the value of 

the objective function along the descent direction may be used.   

Lundgren et al. [18] pointed out that the assumption of a 

constant proportional assignment may not correctly capture the 
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marginal effect of a change in the OD matrix on traffic counts, 

which may reduce the efficiency of the iterations. They 

propose an estimation method that relaxes this assumption in 

the step size calculation using an adaptation of the approach 

proposed in [5] and [19] for the deterministic and stochastic 

static cases, respectively. In their method, the auxiliary 

solution is computed, as before, under the assumption that the 

assignment matrix is fixed at its current values. The auxiliary 

demand is then assigned to the network to obtain the link 

counts at measurement locations. The two sets of demands and 

corresponding counts (from the current and auxiliary demand 

solutions) are then used to derive linear approximations of the 

link flows as functions of the OD demands. Substituting these 

approximations in the objective function, they obtain a 

modified form of the objective that accounts for the local 

dependence of the assignment matrix on the demand. The new 

iteration solution is obtained by a steepest descent algorithm. 

The search direction is defined, as usual, by the difference 

between the current and auxiliary solutions. The optimal step 

size is calculated as a closed form expression derived from the 

modified objective function. This algorithm overcomes the 

difficulty associated with assuming a constant assignment 

matrix. However, it requires an additional assignment (of the 

auxiliary solution) in every iteration. This additional 

assignment reduces its attractiveness for large-scale problems 

where the assignment step is computationally expensive. In 

section VI modified version of this algorithm that avoids the 

additional assignment step is presented as a special case of the 

solution strategy proposed here.  

Several authors proposed meta-heuristic approaches that do 

not rely on the assignment matrix at all. These methods include 

evolutionary algorithms ([20]-[24]) and simulated annealing 

[25]. Genetic algorithms use a population of candidate 

solutions in each generation (iteration). New candidate 

solutions are generated by functions that mimic biological 

processes of reproduction and survival. Simulated annealing is 

a stochastic optimization method that probabilistically 

advances from a current solution to a randomly generated 

neighboring one. An important advantage of these methods is 

that they are generally able to find global and not only local 

optima. However, they usually require a large number of 

objective evaluations (and there assignments), which in the 

context of DODE can be computationally expensive.  

The most studied assignment matrix-free method is the 

Simultaneous Perturbation Stochastic Approximation (SPSA) 

method ([26]-[31], [10]). This algorithm has a similar structure 

to the steepest descent method in that it calculates a negative 

gradient search direction and then determines the step size in 

this direction.  
( ) ( )1 ( ) ( )k kk kX X dθ+ = +  (4)  

 
( )k

X  is the OD demand in iteration k . ( )kθ  and ( )k
d  are 

the step size and search direction in iteration k , respectively.  

In finite differences, the gradient is approximated by 

perturbing each element in the OD demand, one at a time. For 

central differences, this requires 2NR  objective function 

evaluations. In SPSA the search direction is found by 

perturbing all elements in ( )k
X  simultaneously instead of one-

at-a-time. Thus, the elements of the search direction are 

calculated as:  

( )
( )( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )

2

k kk k k k

k

i k k

i

Z X c Z X c
d

c δ

+ ∆ − − ∆
=  (5)  

 
( )k

i
d  is the ith element of the search direction d  in iteration 

k . 
( )k

c  is a small positive perturbation constant. 

( ) ( ) ( ){ }( ) , , , ,
k k kk

i i i
δ δ δ∆ = … …  is a random perturbation vector.   

This way, only two assignments are required in order to 

compute the search direction in each iteration regardless of the 

problem dimension. The original algorithm uses pre-defined 

step sizes, but line search minimization methods have also 

been used. While the algorithm simplicity is appealing, it 

requires two assignments in each iteration compared to only 

one for most algorithms described above. Furthermore, the 

performance of the algorithm depends on the values of several 

parameters that control the perturbation constant and the step 

size. However, useful parameter values are problem-specific 

and may be difficult to find [27].  

 

IV. PROPOSED SOLUTION STRATEGY 

The work presented in this paper relies on linear 

approximation of the assignment matrix in every iteration, 

which relaxes the assumption of constant assignment 

proportions and explicitly accounts for congestion effects. 

Unlike [18] the linear assignment approximation is used not 

only in the step size calculation, but also to obtain the descent 

directions. Using the first order Taylor expansion around the 

current solution, the elements of the linear assignment function 

in iteration k  are defined by: 

( ) ( )( ) ( )( ) ( )( )
( ) ( )

, , ' '

, ,

' ' ' '

, , , ' '

k k knr lt n r

nr lt nr lt

n r n r

k k

nr lt nr lt n r

a
a X a X X X X

x

Xγ α

∂
= + −

∂

′= +

∑
 (6) 

 
( )

,

k

nr lt
γ  is a constant assignment proportion at the current 

solution. 
( )

, , ' '

k

nr lt n r
α  is a vector whose entries capture the 

marginal effect of 
' 'n r

x  on the assignment proportion 
,nr lt

a  at 

the current solution. The re-writing of the linear approximation 

using α  and γ  will be useful later, when these parameters 

will be estimated via regression.  

The linear approximation above involves 1NR + parameters 

for each entry in the assignment matrix. The total of 

( )( )1NR LT NR⋅ +  parameters in the assignment matrix is too 

large to realistically be estimated. However, by neglecting the 

effect of changes in the demand in other OD pairs on the 
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assignment fractions of OD pair nr , the number of parameters 

is reduced to ( )2 NR LT⋅ . This is equivalent to relaxing the 

standard assumption of constant assignment fractions only for 

the effect of the demand on the same OD pair, which can be 

expected to have the largest marginal effect on the assignment 

fractions. This assumption also makes the assignment 

functions separable in the OD demands, which will be useful 

in estimating their parameters. Under this assumption, the 

assignment function is given by:    

( ) ( ) ( )
, , , ,

k k

nr lt nr lt nr lt nr nr
a X xγ β= +  (7) 

 

and in matrix form: 

( ) ( )A X diag X= Γ +Β  (8)  

 

{ },nr ltγΓ =  is the matrix of assignment proportion 

constants. { }, , ,nr lt nr lt nrβ αΒ = ≡  is a matrix that has the same 

dimensions as the assignment matrix. ( )diag X  is a diagonal 

matrix, with entries corresponding to the elements of X . 

By substituting (8) in the objective function (3) it is 

approximated, in each iteration, by:   

( ) ( )( )
22

0

1
min

2 2

H

X

w
Z X X X diag X X Y

≥
= − + Γ +Β − �  (9)  

 

A generic scheme based on iterative solution of the 

approximated problem above is shown in   

Fig. 1 and defined by the following steps:  

Step 0. Initialization: Set an initial estimate of the OD 

matrix (0)
X . Set the iteration counter 0k = .  

Step 1. Assignment: Load ( )k
X  to the network to obtain 

( )k
Y  and ( )k

A . 

Step 2. Assignment matrix approximation: Estimate the 

parameters ( )kΓ and ( )kΒ . 

Step 3. Search direction: Use the approximated objective 

function (9) to calculate a search direction ( )k
d .  

Step 4. Step size: Use the approximated objective function 

(9) to compute a step size ( )kθ in the search direction.   

Step 5. Update: Calculate the new OD matrix estimate 
( 1) ( ) ( ) ( )k k k k

X X dθ+ = + . 

Step 6. Convergence test: If the termination criteria holds 

then stop. Otherwise, set : 1k k= +  and go back to step 1.  

 

  
Fig. 1.  Generic algorithm based on the proposed solution 

strategy 

 

V. ALGORITHMIC DETAILS  

The solution scheme proposed above, based on the linear 

assignment approximation, may be implemented using a wide 

range of algorithms that would differ in the specifics of the 

search direction and step sizes. The various steps of the 

solution algorithm are detailed next.  

 

A. Assignment matrix approximation 

The assignment matrix is approximated with the linear 

function in (8), which requires the estimation of the unknown 

parameter matrices Γ  and Β . As noted above, this system of 

equations is separable in the OD demands. Therefore, given 

the assignments of the demands from p previous iterations, for 

each element in the assignment matrix, the pair 
( )

,

k

nr lt
γ  and 

( )

,

k

nr lt
β  

may be obtained separately solving the following systems: 
( ) ( ) ( ) ( ) ( )

, , , ,
0,1,..., 1

k p k k k p k p

nr lt nr lt nr lt nr nr lt
a x p Pγ β ε− − −= + + ∀ = −  (10)  

 
( )

,

k p

nr lt
ε −

 is an error term. P  is the number of iterations that 

are used to estimate the assignment matrix.  
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These systems of equations may be solved in the least 

squares sense for 2P ≥  by minimizing the following objective 

function:  

( )

( )

( ) ( )
, ,

1
2

( )

,
0

1
2

( ) ( ) ( ) ( )

, , ,

0

min

,

k k
nr lt nr lt

P
k p

p

P
k p k k k p

nr lt nr lt nr lt nr

p

a x nr lt

γ β
ε

γ β

−
−

=

−
− −

=

= − − ∀

∑

∑
 (11)  

 

The closed-form solution to this problem is given by: 

( )

( ) ( ) ( ) ( )

, ,

( )

, 2

2
( ) ( )

,

k p k p k p k p

nr lt nr nr lt nr

p p pk

nr lt

k p k p

nr nr

p p

P a x a x

nr lt

P x x

β

− − − −

− −

−

=
 

∀

−  
 

∑ ∑ ∑

∑ ∑
 (12)  

( ) ( ) ( ) ( )

, , ,
,

1k k p k k p

nr lt nr lt nr lt nr

p pP
r tx n laγ β− − 

= − 


∀


∑ ∑  (13)  

 

The expressions above cannot be used in the first iteration. 

In this iteration, a constant assignment matrix may be 

estimated by assigning the initial OD matrix to the network. 

Alternatively, the available historic OD matrix H
X , which is 

used as the initial demand estimate (0)
X , may be modified 

(e.g. multiplied by a scalar) to obtain an additional solution 
(1)

X . The assignment of this solution to the network will 

enable the assignment matrix approximation according to (12) 

and (13). It should also be noted that the assignment fractions 

used in the approximation are obtained as the results of a DTA 

or traffic simulation model. These models may be stochastic, 

in which case, multiple replications will be needed for more 

accurate estimates.   

 

B. Search direction 

Various methods may be used to define a search direction 

for the approximated problem defined in (9). These methods 

would typically involve the use of the gradient and Hessian of 

the objective function at the current solution. The elements of 

the gradient and the Hessian are given by:  

( )

( ) ( ), ' ' , ' ' ' ' ' ' , ,

' '

2

H

nr nr

nr

lt n r lt n r n r n r lt lt nr lt nr nr

lt n r

Z
w x x

x

x x y xγ β γ β

∂
= −

∂

  
+ + − +  

  
∑ ∑

 (14)  

( )

( )

2

2

, , ' ' , ' ' ' ' ' '

' '

2

, ,

2

2

nr

lt nr lt n r lt n r n r n r lt

n r

lt

lt nr lt nr nr

Z
w

x

x x y

x

β γ β

γ β

∂
=

∂

  
+ −  

 +  
  + + 

∑
∑

 (15)  

( )( )
2

, , , ' ' , ' ' ' '

' '

2 2lt nr lt nr nr lt n r lt n r n r

ltnr n r

Z
x x

x x
γ β γ β

∂
= + +

∂ ∂ ∑  (16)  

 

Or in matrix form: 

( )
( )( ) ( )( )( )2 '

H
Z w X X

diag X diag X X Y

∇ = −

+ Γ + Β Γ +Β − �
 (17)  

( )( )( )( )
( )( ) ( )( )

2 '

2 '

H wI diag diag X X Y

diag X diag X

= + Β Γ +Β −

+ Γ + Β Γ +Β

�

 (18)  

 

C. Step size 

After the search direction has been determined, a step size 

in this direction needs to be calculated. Using the linear 

approximation to the assignment matrix, an optimal step size 

may be calculated as the solution of a one-dimensional 

minimization problem:  

( )

( )( )

( ) ( ) ( )

22
( ) ( )

arg min

1

2 2

k k k

H k k

Z X X d

w
X X diag X X Y

θ
θ θ= = +

= − + Γ + Β − �
 (19)  

 
( )kθ  and ( )k

d  are the step size and search direction in 

iteration k , respectively.  

The line search problem above may be solved exactly by 

finding the root of the derivative of the objective function, 

which is a cubic function of θ . Inexact solutions may also be 

calculated, for example using the Armijo rule. 

 

VI. IMPLEMENTATION  

The proposed algorithm was implemented in MATLAB, 

and using the Mezzo model [11] for traffic assignment. Mezzo 

is a mesoscopic event-based traffic simulation model. It 

models vehicles individually, but does not represent their 

movement in detail. The travel demand in Mezzo is 

represented by a time-sliced OD matrix. Vehicle generation is 

done for each OD pair separately with inter-arrival times that 

follow a negative exponential distribution. The model 

incorporates an iterative dynamic traffic assignment procedure, 

which updates the set of routes, and the travel times after each 

loading. Mezzo is an open-source model, which facilitated its 

use within the DODE framework. However, clearly, the 

solution algorithms are independent of any specific traffic 

simulation model.  

The structure of the DODE implementation using MATLAB 

and Mezzo is shown in Fig. 2. MATLAB serves as the DODE 

engine, which reads and writes Mezzo files, converts formats, 

performs all the estimation steps and calls Mezzo as a 

subroutine. Thus, other DTA models may also be used with 

changes only to the reading, writing and DTA calling 

functions.  

Several specific algorithms were implemented within this 

framework. As discussed above they differ only in the search 

direction they utilize.  
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Fig. 2.  Structure of the MATLAB-Mezzo DODE 

implementation 

 

A. Gradient and relative gradient methods  

These algorithms are based on the steepest descent method, 

which uses the gradient as the search direction:   

( )( ) ( )k k
d Z X= −∇

 
(20)  

 

( )( )k
Z X∇  is given by (14) or (17).  

The relative gradient variant is adapted from the algorithm 

proposed by Spiess [32] for the static OD estimation problem. 

It avoids drastic changes in the demand and has been found to 

work well in practice (e.g. [33]). In this method, the gradient 

direction is modified through entry-wise (Hadamard) 

multiplication by the current solution to capture the relative 

change in the demand:   

( )( ) ( ) ( )k k k
d X Z X= − ∇�

 
(21)  

 

B. Modified Lundgren et al.’s method 

This algorithm is based on the one proposed in [18], but 

with changed assumptions regarding the assignment matrix. 

The search direction is that of Newton’s method, but using a 

diagonal approximation of the Hessian in order to simplify its 

inversion:  

( ) ( )( ) 1 ( ) ( )ˆk k k
d H X Z X

−= − ∇
 

(22)  

 

( )1 ( )ˆ k
H X

−
 is the inverse of the diagonal approximation of 

the Hessian with the second order derivatives 
2

2

nr

Z

x

∂

∂
 at the 

current solution, as given in (15).  

Note that this modified algorithm requires only one 

simulation evaluation in each iteration, compared to two 

evaluations in the original algorithm.  

 

C. Quasi-Newton methods 

In these methods, an approximation of the inverse of the 

Hessian is used with Newton's direction:  

( )( ) ( ) ( )k k k
d B Z X= − ∇

 
(23)  

 
( )k

B  is a positive definite matrix that approximates the 

inverse of the Hessian. It is adjusted in every iteration, for 

example, with the BFGS update:  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( 1)

( ) ( ) ( ) ( ) ( ) ( )

' ' '

' ' '

k k k k k k
k k

k k k k k k

P Q Q P P P
B I B I

Q P Q P Q P

−   
= − − +   

     
(24)  

 
( ) ( ) ( 1)k k k

P X X
−= −  and ( ) ( )( ) ( ) ( 1)k k k

Q Z X Z X
−= ∇ −∇   

As with the steepest descent method, a relative variant 

following [33] may also be used:  

( )( ) ( ) ( ) ( )k k k k
d X B Z X= − ∇�

 
(25)  

 

VII. CASE STUDY  

The proposed solution algorithms were applied in a case 

study using the Mezzo model of the Sodermalm network in 

Stockholm, Sweden. The network is shown in Fig. 3. It 

consists of 577 nodes and 1101 links. The OD matrix contains 

347 OD pairs with travel demand specified for four 15-minute 

departure time intervals (1388 demand values in total) during 

the morning peak between 7AM and 8AM. The overall 

demand in the network in this 1 hour period is 69,008 vehicle 

trips. There are 55 link count locations (yielding 220 15-

minutes counts in total) on this network. Thus, 

577, 1101, 347, 4, ' 55C L N R T L= = = = = = . 

 

 

Fig. 3.  Sodermalm network in Mezzo 
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An estimate of the OD matrix for this network was available 

from previous studies. This matrix was used as the “true” OD 

matrix. The corresponding traffic counts were unknown. They 

were obtained by assignment of the "true" demand using 

Mezzo. The historic (seed) OD demand matrix was then 

obtained by multiplication of the “true” OD matrix by a factor 

of 0.6. The DODE problem was solved for four values of the 

weighting factor { }0.001,0.01,0.1,1w = . Within assignment 

steps, three Mezzo replications were conducted. The solutions 

of three previous iterations ( 3P = ) were used in the 

assignment matrix approximation step.     

Fig. 4 through Fig. 7 show the progress of the objective 

function values through the iterations for 

0.001,0.01,0.1,1w = , respectively. The results are presented 

for three algorithms that implement the proposed scheme: 

based on the relative gradient method (21), a modified 

Lundgren et al.'s method (22) and a quasi-Newton method (23)

, and, for comparison, two current state-of-the-art algorithms 

that were described above: Lundgren et al. [18] and SPSA 

[28]. The results indicate that the algorithms that use the linear 

approximation of the assignment matrix significantly 

outperform the SPSA and Lundgren et al.’s algorithms 

throughout the iterations. Within the algorithms based on the 

linear approximation, the ones that use the relative gradient 

and the quasi Newton search directions have the best 

performance. It may be that the approximation of the Hessian 

matrix with its diagonal elements within the modified 

Lundgren et al.'s algorithm does not yield good search 

directions. Furthermore, the numbers of iterations needed in 

order to achieve convergence are significantly lower with the 

algorithms based on the linear assignment matrix 

approximation, as shown in Fig. 8. For the purpose of this 

figure, convergence was defined as reaching an objective 

function value that is twice the lowest value obtained (by any 

of the algorithms) within 250 iterations. Note that the SPSA 

method did not reach convergence within 250 iterations in any 

of the cases, which seems to indicate that the search directions 

that the algorithm produces are increasingly inefficient as the 

algorithm progresses. Lundgren et al.'s algorithm did not 

converge in two of the four cases. Fig. 9 shows run times to 

convergence in minutes. The algorithms based on the linear 

approximation of the assignment matrix require one Mezzo 

simulation evaluation in each iteration, compared to two 

simulation evaluations in each iteration for the SPSA and 

Lundgren et al.'s algorithms. As a result, the gain in terms of 

run times obtained by the use of the linear assignment matrix 

approximation is even larger compared to the gain in terms of 

numbers of iterations. Furthermore, this gain is expected to 

increase for larger and more complex networks as the 

proportion of the overall computational effort taken up by the 

simulation evaluations should also increase.   

 

 

Fig. 4.  Performance of various algorithms for 0.001w =  
 

 

Fig. 5.  Performance of various algorithms for 0.01w =  

 

 

Fig. 6.  Performance of various algorithms for 0.1w =  
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Fig. 7.  Performance of various algorithms for 1w =  
 

 

Fig. 8.  The number of iterations to convergence for the 

various algorithms and values of the weight factor w  

 

 

Fig. 9.  The run time to convergence for the various 

algorithms and values of the weight factor w  

 

VIII. CONCLUSIONS 

This paper presented a general solution scheme and specific 

algorithms for the DODE problem. A critical construct in 

DODE is an assignment matrix, which maps OD demand flows 

to link sensor counts. In congested networks, the assignment 

proportions depend on the unknown time-dependent OD 

demands. The methods presented in this paper are based on 

use of linear approximations of the assignment matrix in the 

optimization iterations. Several specific solution algorithms 

that differ in the search direction they use were proposed. A 

case study demonstrated the applicability of the developed 

algorithms to large-scale complex networks and their 

computational efficiency compared to current state-of-the-art 

approaches.   

The work presented in this paper may be extended and 

strengthened in several ways. First, additional case studies, 

with seed OD matrices that were generated in different ways 

(e.g. with random rather than uniform perturbation of the 

“true” demand), different network layouts, congestion levels 

and DTA or traffic simulation models are needed in order to 

strengthen the findings regarding the performance of these 

methods. Furthermore, it may be possible to improve the 

assignment matrix approximation in various ways, such as 

using higher order polynomials or by appropriate selection of 

setup parameters (e.g. the number and selection method of 

previous solutions) used in the approximation. Finally, in this 

work historic OD demands and link traffic counts were used 

exclusively in the estimation process. The possibility to 

accommodate other types of measurements (e.g. speeds, travel 

times, GPS and cellular tracking information) within the 

proposed approach may be investigated.   
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