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Abstract 

Aided INS systems are commonly implemented in land vehicles for a variety of 

applications. Several methods have been reported in the literature for evaluating 

aided INS performance. Yet, the INS error-state-model dependency on time and 

trajectory implies that no closed-form solutions exist for such evaluation. In this 

paper, we derive analytical solutions to evaluate the fusion performance. We show 

that the derived analytical solutions mange to predict the error covariance behavior 

of the full aided INS error model. These solutions bring insight into the effect of the 

various parameters involved in the fusion of the INS and an aiding. 

 

Keywords: Aided Inertial Navigation Systems, Algebraic Riccati Equation 
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1. Introduction 

Low cost continuous and accurate navigation solution is imperative for a variety of 

applications, e.g., emergency services, intelligent transportation systems, and 

services or military applications. Therefore, in-vehicle navigation solutions for real-

time accurate location of vehicles, have been receiving growing attention, seeing also 

rapid commercial market growth. Typically, to meet the requirements of low-cost 

continuous and accurate navigation Inertial Navigation Systems (INSs) are fused 

with other sensors [1]. Such systems contain Inertial Measurement Units (IMU) 

which measures the platforms acceleration and angular velocities, thus making the 

INS a self-contained system, which is not affected by jamming or blockage. While 

INSs are characterized by high bandwidth rate and insensitivity to the working 

environment (urban, underground, underwater, and indoor), their accuracy degrades 

with time due to measurement noise, which permeates into the navigation equations 

and drifts the navigation solution. 

To circumvent the drift, INS measurements are regularly fused with other sensors or 

data, e.g., GPS [2], odometers [3], magnetic sensors [4], or vehicle constraints [5]. 

Fusion is carried out, in large, by comparing one or more of the INS outputs against 

measured quantities derived from the aiding sensor during the Kalman filter 

estimation process. The performance of such fusion (between INS and other sensors) 

is evaluated during the early stages of design and system specification, aiming to 

examine and verify the ability of the navigation system to meet its accuracy level. 

Such evolution is carried out using such methods as the Monte-Carlo simulation [6] 

and covariance analysis [7]. Nonetheless, due to the INS error-state model 
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dependency on time and vehicle dynamics, no closed-form solution exists to evaluate 

the aided INS navigation performance. 

The aim of our research is to find means for gaining analytical insight into the 

parameters involved in a typical land vehicle aided INS scenario. To that end, we 

derive two simplified time-invariant INS error models. For those models, we solve 

analytically the corresponding Algebraic Riccati Equations (ARE) to obtain closed 

form solutions to the continuous steady-state error covariance matrix.  

In that manner, the number of parameters involved in an aided INS scenario was 

reduced to contain only two (for position aiding) or three (for position and velocity 

aiding) parameters enabling direct and immediate insight to the fusion scenario. 

We evaluate the proposed approach in small fraction of the Schuler period (up to 8 

minutes [9]), in which the Schuler feedback has relatively little effect on the growth 

of the navigation errors. We verify the driven analytic solution against data collected 

in field experiments, and show that the analytical solution of the ARE of the 

simplified time-invariant error models are equivalent to those obtained solving 

numerically the classical time-variant 15 error state model [8].  

The rest of the paper is organized as follows: Section II introduces the fundamental 

principles of INS error model and Kalman filtering; Section III presents the 

derivation of the simplified aided INS error models; Section IV demonstrates the 

application of the proposed models with analysis; and Section V presents conclusions 

of this research. 

2. Problem Formulation  

The INS motion equations can be expressed in any reference frame. We employ here 

the navigation frame (n-frame) which has its origin fixed at the earth surface at the 

initial latitude/longitude position of the vehicle, x-axis points towards the geodetic 
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north, z-axis is on the local vertical pointing down and y-axis completes a right-

handed orthogonal frame. Thus the motion equations are given by [1]:  
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where, [ ]Tnr hφ λ= is the vehicle position, φ  is the latitude, λ  is the longitude 

and h  is the height above the Earth surface, [ ]Tn

N E Dv v v v=  is the vehicle 

velocity; 
b n

T
→

 and 
n b

T
→

 are the transformation matrices from the b-frame to the n-

frame and vice-versa, respectively; b
f is the measured specific force vector; 

n

ieω  is 

the Earth turn rate vector expressed in the n-frame; 
n

enω  is the turn rate vector of the 

n-frame with respect to the Earth; 1

n
g  is the local gravity vector, M and N are the 

radii of curvature in the meridian and prime vertical respectively; and 
b

nbΩ  is the 

skew-symmetric form of the body rate vector with respect to the n-frame given by: 

( )b b n b n n

nb ib ie enTω ω ω ω→= − +
 (3) 

The motion equations (Eq. (1)), aka the INS mechanization equations, doesn't 

provide a direct connection to the errors in the system states caused by the noisy 

IMU measurements. Therefore, solving them directly, with noisy measurements, 

leads to an erroneous solution. Several models (e.g. [1], [9]) were developed to link 

the error-states and the measurements noise. Among them is the classical 
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perturbation analysis, in which navigation parameters are perturbed with respect to 

their actual values. Perturbation is implemented via a first-order Taylor series 

expansion of the states in Eq. (1). A complete derivation of this model can be found 

in [11]. The error state vector
T

n n n

a g
x r v b bδ δ δ ε δ δ =   , 15

Rx∈δ  consists of 

position error, velocity and attitude errors, and accelerometer and gyro bias/drift. A 

detailed description of the parameters of the corresponding state-space model can be 

found in [8]. The error model is used in the navigation filter for the fusion process 

between the INS and the aiding sensor. To demonstrate the proposed approach we 

use here the continuous Kalman filter (detailed in Appendix A). Of particular 

relevance in our study is the steady-state solution of the covariance, P , which is the 

solution for the ARE  

01 =−ΓΓ++ −
PHRHPQFPPF

TTT   (4) 

where F is the system dynamics matrix defined by the type of error model 

employed, Γ  is the noise coefficient matrix, Q  is the process noise covariance 

matrix, H  is the measurement matrix, and R is the measurement covariance matrix. 

3. Simplified Aided INS Models 

We derive two simplified time-invariant aided INS error-models, which are based on 

the full time-variant 15 state-space error model. For each model, we derive closed 

form expressions of the steady state estimation error covariance enabling the 

evaluation of the aided INS performance. Two types of aidings are considered, i) 

position measurement aiding, and ii) position and velocity measurements aiding. As 

the ARE solution exist only when the system-dynamics-matrix is time-invariant, both 

simplified error-models consist of a constant dynamics matrix. The first error-model 

considers a single accelerometer in each axis, and can be regarded as the simplest 
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model with a constant dynamics matrix. The second error-model relates to a single 

channel, consisting of a single accelerometer and gyro in each axis, and corresponds 

to the most comprehensive model with a constant dynamics matrix. 

As the ARE solution of the single channel model is cumbersome, no insight into the 

core structure of solution is gained. Therefore, we derive a link between the single 

channel and single accelerometer models. 

3.1. Aided Single Accelerometer Error Model  

We derive closed form expressions for the covariance and gain of the single 

accelerometer (SA) error model for the position and position-and-velocity aiding 

types. Prior to that, the actual SA error-model equations are derived. 

1) Error Model Equations: Motion equations which are based on the 

acceleration of the system have the following form  

)()(

)()(

tatv

tvtp

=

=

�

�
 (5) 

where ( )p t , ( )v t , and ( )a t  are the actual position, velocity, and acceleration, 

respectively. Considering a biased accelerometer, the acceleration measurement 

becomes 

)()()(~ tbtatu +=  (6) 

where ( )b t  is a random walk process, described by the following differential 

equation 

)()( twtb b=�  (7) 

where
bw , is a white Gaussian noise with a known spectral density 2

b
Q

ω
σ=   

[(m/sec
3
)
2
/Hz]. The navigation equations are 
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where the hat symbol stands for the estimated value of a variable (e.g., x̂  for x), and 

the tilde for its measured value (e.g., x~ for x). The dynamics equations for the error 

states, ppp ˆ−=δ  and vvv ˆ−=δ , can be written as: 

SASASA wxFx Γ+= δδ�  (9)  
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pδ  is the position error [m], vδ  is velocity error [m/sec], bδ  is the accelerometer 

bias [m/sec
2
], and 

SAw  represents the accelerometer measurement error [m/sec
3
]. The 

state space model in Eq. (9) can be described by the block-diagram (Fig. 1), where 

oo vp δδ ,  and 
obδ  are the initial position, velocity, and accelerometer measurement 

errors, respectively. Notice that the SA INS error model matrices (Eq.(10) ), are 

identical to the constant acceleration (CA) three-state target-tracking problem model 

[12], where, position, velocity, and acceleration of the tracked target were used as the 

state vector, and the target acceleration was modeled as a random walk process [13]. 

 

 

 

 

 

Fig. 1: Three state single axis accelerometer flow chart 
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2) Position Aiding: The SA error-model (Eq. (9)) with position aiding is given 

by: 

PP

SASASA

vxHz

wxFx

+=

Γ+=

δδ
δδ�

 (11) 

where [ ]1 0 0pH = , and p
v  is the position measurement noise [m].  

The measurement- and process-noise- covariances are given by 
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where q , is the spectral density of the acceleration’s random walk [(m/sec
3
)
2
/Hz]; 

and 0r , is the spectral density of the position measurement noise [m
2
/Hz] 

As the model in Eq. (11) is similar to that of [13] for target tracking purposes (only 

with different state vectors), the corresponding ARE solution is identical, thus: 
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 (13) 

and the corresponding gains are: 

2 3

0 0 0
2 2

T

SA PM
K ω ω ω−  =    (14) 

Notice that the covariance and gain depend on two parameters only – the IMU 

quality ( q ), and the position aiding variance (
0r ). Thus, the problem of aiding the 

full 15 state error-model with position measurement, which inherently involves many 

parameters, has been reduced into a two parameter problem that can be evaluated 

analytically (Eqs. (13)-(14) ). 
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3) Position and Velocity Aiding: The SA error-model (Eq. (11)) with position 

and velocity aiding is given by: 

PVPV
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and
Pv  and 

Vv  are the position [m] and velocity [m/sec] measurement noise, 

respectively. The measurement noise covariance is given by 
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where, r0 is the spectral density of the position measurement noise [m
2
/Hz], and rd, is 

the spectral density of the velocity measurement noise [(m/sec)
2
/Hz]. 

We directly solve the ARE (Eq. (4)) by substituting the appropriate matrices in Eq. 

(15) to obtain six nonlinear equations whose parameters are that of the covariance 

matrix, P . The solution for the set of six nonlinear algebraic equations is derived in 

[14] and given, in terms of the normalized covariances elements, by:  
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where 
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Their relation to the un-normalized elements is given in appendix B. 

The normalized steady-state gain matrix may be easily obtained substituting Eq. (18) 

into Eq. (A.4), leading to: 

1123321331

22221221

12121111

Π=Π=ΓΠ=Γ

Π=ΓΠ=Γ

Π=ΓΠ=Γ

  (22) 

The covariance and gain depend only on three parameters representing the IMU 

quality ( q ) and the position and velocity aiding noise (
0r ,

dr ). Thus, the full 15 state 

error-model aided by position and velocity measurements has been reduced into a 

three parameter problem that can be evaluated analytically using Eqs. (18) & (22). 

3.2. Aided Single Channel Error Model 

The aided single channel (SC) is the second error model addressed here. Following 

the derivation of the error model equations, the solution to the aided SC model is 

derived by linking it to the aided SA model.  

1) Error Model Equations: A simplified INS single channel error dynamics is 

given by [8]:  
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where pδ  is the position error [m], vδ  is velocity error [m/sec], δε  is the attitude 

error [rad], and g
w  the gyro measurement error [rad/sec]. 

We use a first-order Gauss-Markov (GM) process (as in the full 15 state error model) 

to model the INS error propagation due to accelerometer and gyro noise 

( ) ( ) ( )1

c

b t b t w t
τ

= − +�   (24) 

where ( )b t  is the random process, cτ  is the correlation time, and ( )w t  is the process 

white noise. The SC model is obtained by augmenting the accelerometer and gyro 

biases in their GM process representation (Eq. 24) with the INS error model (Eq. 

(23)) 
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where 
aτ  is the accelerometer correlation time [sec], gτ  is the gyro correlation time 

[sec], 
aw  is the driving noise for the accelerometer bias [m/sec

3
] with spectral 

density of 2

WaAW σ=  [(m/sec
3
)
2
/Hz], and g

w  is the driving noise for the gyro bias 

[rad/sec] with spectral density of 2

WgGW σ=  [(rad/sec)
2
/Hz].  

 

2) A Semi-Analytical Solution for The Aided Error Model: The explicit closed 

form solution of the aided SC INS error model either with position-and-velocity 
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measurements or with position measurements only is cumbersome and does not 

enable gaining an insight into the heart of the solution.  

As the system matrix for both models is time invariant (Eqs. (9) & (25)), we can 

adopt the following approach: using the aided SA INS error-model covariance 

solution, denoted
SAP , as a core solution and present the aided SC INS error model 

solution, denoted SCP , in the following layout 

[ ] [ ]2 , , 1,2,3.
SC ij SAij ij

P P i jκ= =  (26) 

where [ ]
ik

P is the covariance matrix Eq. (34), and 2

ijκ  are correction factors.  

The correction factors of Eq. (18), linking between the SA and SC models, are a 

function of the error state covariances. Thus, they depend on the IMU quality, aiding 

type (position or position-and-velocity), and their measurement noise level only. 

Consequently, the correction factors should be evaluated only once for a certain 

IMU. 

4. Analysis and Results  

The closed form analytical solution of the simplified INS error models are evaluated 

here using data collected from three field experiments. We elaborate on the analysis 

of one trajectory, and then apply it to the other two. The actual covariances, for the 

collected data, of the full 15 error-state model have been numerically calculated and 

are compared to the analytically derived SA and SC covariances. Data were collected 

with MEMS INS/GPS while driving in an urban environment. The vehicle was 

equipped with a Microbotics MIDG II [15] INS/GPS system.  

In the examined trajectory (Fig. 2), the stationary vehicle accelerated 

to [ ]60 /v km h= , and then kept the velocity in the range between 60 and 80 [km/h]. 
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In the examined experiment the height variations was about ~15 [m] along the 

trajectory. 

 

Fig. 2: Examined Trajectory 1 

4.1. Aided Single Accelerometer Error Model  

The SA INS error model with position and velocity aiding is addressed first. The 

evaluation results are presented in Fig. 3, comparing the analytical and computed 

square-root of the error covariances. Computed values are derived numerically from 

the error covariances of the full 15-state model while the analytical values are 

obtained from Eq. (18). As Fig. 3 shows, the analytical position components match 

the numerical ones. The analytical expression also manages to predict the altitude 

velocity component but not the actual north and east velocity components. This 

behavior can be explained by the coupling of the north and east channels in the full 

15 state model, which is not compensated for in the SA model. The altitude channel 

covariance is evaluated correctly by the closed form expressions as it is weakly 

affected by the other two channels and acts similarly to the SA in the full 15 state 

model. 
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Fig. 3: Position (LLH) and velocity (NED) components of the single accelerometer error model 

with position and velocity aiding. Red (straight lines) and blue lines represents the analytical 

and computed square root of the error covariance, respectively 
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Fig. 4: Position (LLH) and velocity (NED) components of the single accelerometer error model 

with position aiding. Red (straight lines) and blue lines represents the analytical and computed 

square root of the error covariance, respectively 

 

Compared to the position and velocity aiding, the covariance values for the position 

aiding only (Fig. 4), matches the approximation of the vertical channel covariances 

of the complete model, while the north and east channel covariances are not 

predicted correctly due to the coupling between the channels. 

Evaluating the two aidings (position and position-and-velocity) for the SA model, it 

is can be seen that the addition of a velocity measurement enables an exact analytical 

prediction of the position components of the full 15 state model by only three 

parameters. Additionally, with both aiding types the analytical evaluation of the 

position and velocity components’ height channel was similar to the full 15 state 

error model. This result is attributed to the fact that in the complete 15 state model 

the altitude channel performs like the SA model and that even use of the position 

aiding is sufficient for observing the altitude position and velocity states.  

4.2. Aided Single Channel Error Model  

We then evaluate the SC error model covariances. Covariance values are obtained by 

multiplying the SA analytical expressions for the square-root error covariance (Eq. 

(18)) by the correction factors which link the SA and SC models (Eq. (26)). 

The correction factors are a function of the IMU, the aiding type (position or 

position-and-velocity), and the corresponding measurement noise level. As the IMU 

and aiding type can be assumed constant per a given system/scenario, we calculate 

the correction factors required for the specific IMU used in our field experiments as a 

function of the measurement noise level of the aiding sensor only.  
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We use the analytical SA (Eq. (18)) and the numerical aided SC (Eq. (25)) error 

model expressions and insert them into Eq. (26) in order to obtain the correction 

factors. Fig. 5 presents the correction factors for the SA error model with position-

and-velocity aiding. They are plotted against the position-measurement-noise-level 

and for various velocity noise-level magnitudes. posκ , which is equivalent to 11
κ  in 

Eq. (26), is the correction factor for the position error state and vel
κ , which is 

equivalent to 22
κ  in Eq. (26), is the correction factor for the velocity error state. 

 

Fig. 5: Single accelerometer error model correction factors for position and velocity 

measurements aiding 

When the velocity aiding measurement noise is smaller than 0.1[m/s], the correction 

factors for both velocity and position are constant regardless of the amount of the 

position measurement noise. For higher velocity-measurement-noise values, both 

correction factors (position and velocity) converge to a constant value. That is, the 

correction factors can be considered constants regardless of the measurement noise 

and used incessantly with the SA error-model. This is an expected result as the filter 

gives lower weight to the measurement due to the amount of high measurement 

noise. 

Fig. 6 presents the position aiding correction factors as a function of the position 

measurement noise (computed in a similar fashion as for Fig. 5). The velocity 



17 

correction factors increase as the amount of measurement noise increases, while the 

position-correction-factor convergences to a constant value. 

 

Fig. 6: Single accelerometer error model correction factors for position measurement aiding 

Following the computation of the correction factors, results for position and velocity 

aiding are presented in Fig. 7. There, the position and velocity components of the 

square-root of the error covariance of the full 15-state model (which was calculated 

numerically) match exactly the SC analytical expressions for the square-root of the 

error covariance (Eq. (26)). This result was achieved, although the SC model has 

constant time dynamics and no coupling between its three orthogonal axes, in 

contrast to the full error model. Thus, we evaluate the results of the 15 error state 

aided INS model covariances by the semi-analytical expressions, making the 

numerical evaluation unnecessary. 

The covariance values for the position aiding are presented in Fig. 8. The position 

and velocity components of the square root of the error covariance of the full aided 

INS 15 error state model, which was calculated numerically, match exactly, again, 

the SC semi-analytical expressions for the square-root of the error covariance. Thus, 

in the aided SC model, position measurement is sufficient to predict the position and 

velocity states despite of the fact that it has constant time dynamics and no coupling 

between its three orthogonal axes. Consequently, using only four variables of the 
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INS quality, aiding value, and position and velocity correction factors, the 

covariances are evaluated. 

Comparing the SC and SA aided models performance, shows that the SC model 

outperforms the SA model in predicting the full aided INS 15 error state model. This 

result was anticipated as the SC model is more accurate (because of the gyro and GM 

error-states) relative to the full-model rather than the SA model. 
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Fig. 7: Position (LLH) and velocity (NED) components of the single channel error model with 

position and velocity aiding. Red (straight lines) and blue lines represents the analytical and 

computed square root of the error covariance, respectively 
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Fig. 8: Position (LLH) and velocity (NED) components of the single channel error model with 

position aiding. Red (straight lines) and blue lines represents the analytical and computed 

square root of the error covariance, respectively 

4.3. Application to Additional Trajectories  

Application of the model to two additional trajectories with different characteristics 

shows the same prediction ability as with the analyzed trajectory. In this trajectory, 

the stationary vehicle accelerated to [ ]60 /v km h= , and then kept a velocity in the 

range of 60-80 [km/h]. The vehicle climbed along this trajectory ~100 [m] in 

elevation. In the second trajectory, the stationary vehicle accelerated to [ ]40 /km h , 

and then kept a velocity in the range of 40-60 [km/h].  

 

In order to evaluate the proposed approach in different noise levels, we used for the 

second trajectory a noise-measurement-covariance which was five times bigger than 

the one used in trajectory 1, for both aidings and aided INS simplified error models. 
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Yet we present here only the results for position and velocity aiding. As can be 

observed in Figs. 9-10, for both SA and SC error models and both aiding types, a 

similar behavior to the first trajectory was obtained even with the different 

measurement noise level. That is, with the SA model and for both aiding types, the 

analytical evaluation of the height channel’s position and velocity components was 

similar to the full 15 state error model, while the addition of velocity measurement 

enabled to evaluated analytically the complete position vector. With the SC model, 

the position aiding was sufficient to predict the position and velocity states of the full 

15 state model.  
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Fig. 9: Position (LLH) and velocity (NED) components of the single accelerometer error model 

with position and velocity aiding. Red (straight lines) and blue lines represents the analytical 

and computed square root of the error covariance, respectively 
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Fig. 10: Position (LLH) and velocity (NED) components of the single channel error model with 

position and velocity aiding. Red (straight lines) and blue lines represents the analytical and 

computed square root of the error covariance, respectively 

 

In order to evaluate the proposed approach in different noise levels, we used a one 

hundred times bigger process noise covariance for the GM states for the third 

trajectory. This was conducted for both aidings and both aided INS simplified error 

models. However we present here only the results for position and velocity aiding 

Results are presented in the Figs. 11-12. As can be observed, the same performance 

as with the previous trajectories was obtained even with the different measurement 

noise level. With the SA model and for both aiding types the analytical evaluation of 

the height channel’s position and velocity components’ was similar to the full error 

model, while the addition of velocity measurement enabled to evaluated analytically 
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the whole position vector. With the SC model, both aidings enabled prediction of the 

position and velocity states of the full 15 state model.  
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Fig. 11: Position (LLH) and velocity (NED) components of the single accelerometer error model 

with position and velocity aiding. Red (straight lines) and blue lines represents the analytical 

and computed square root of the error covariance, respectively 
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Fig. 12: Position (LLH) and velocity (NED) components of the single channel error model with 

position and velocity aiding. Red (straight lines) and blue lines represents the analytical and 

computed square root of the error covariance, respectively 

 

5. Conclusions 

Land navigation with aided-INS is needed for a variety of applications. Evaluation of 

the navigation system in early stages of design and system implementation enables 

examining the navigation system performance relative to desired navigation 

accuracy. In this paper, an analytical insight into the parameters involved in the 

fusion between INS and an aiding sensor was gained.  To that end, two simplified 

time-invariant aided-INS error models were employed. Using both models, closed 

form solutions in terms of the continuous steady-state estimation error covariance 

matrix, were derived for evaluating the fusion performance. The closed from 

expressions of the simplified error models were compared to numerical results 

obtained from data collected in a field experiment, using the full 15 state error 
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model. Results show that the derived closed form expressions managed to predict the 

error covariance behavior of the full error model. Even though, these closed-from 

expressions are valid only for small fractions of the Schuler period, they bring insight 

into the effect of the various parameters involved in the fusion between the INS and 

an aiding sensor. They may help the navigation system designer to better evaluate 

and understand the connection of the parameters concerned in the fusion process. 

Future work will examine the effect of Schuler feedback loop when evaluating the 

closed form expressions in medium and long term time periods. Additionally, since 

GPS is the main aiding sensor for the INS derivation of closed form expressions for 

the non-linear tightly coupled approach is another potential expansion of the 

presented models.  

 

6. Appendix A 

 

We consider here the linear stochastic system 

( ) ( ) ( ) ( ) ( ) ( )
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δδ
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 (A.1) 

where ( )txδ  is the error state vector; ( )tzδ  is the measurement residual; w(t) and v(t) 

are the white Gaussian stochastic processes representing the system driving noise and 

the measurement noise, respectively; ( )
0txδ  is a Gaussian random vector, and 
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All vectors and matrices are of appropriate dimensions. The Kalman filter is [7]: 
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The steady-state solution of the covariance, P , is the solution of the ARE  

.0 1
PHRHPQFPPF

TTT −−ΓΓ++=   (A.6) 

With the steady-state solution obtained from Eq. (9), we have the explicit solution 

[10] 
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7. Appendix B 

The connection between the normalized and non-normalized steady-state error 

covariance terms is given by: 
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 (B.1) 

The connection between the normalized and non-normalized steady-state gain terms 

is given by: 
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