
1 

Vehicle Constraints Enhancement for Supporting INS 

Navigation in Urban Environments  

Itzik Klein, Sagi Filin, Tomer Toledo
 

 

Faculty of Civil and Environmental Engineering 

Technion – Israel Institute of Technology, Haifa 3200, Israel 

Corresponding Author: iklein@technion.ac.il Phone: 972-4-8293080 Fax: 972-4-8295708 

Published in Navigation 58(1), pp. 7-15, 2011 

Abstract 

The complementary nature of INS and GPS can be used advantageously in navigation systems design as long as 

GPS measurements are available.  However, circumstances of complete GPS denial may occur in urban 

environments or in signal blockage scenarios. In such cases, the INS navigation solution drifts over time due to its 

inherent bias. To circumvent the INS drift, it is usually fused with external sensors. Nonetheless, use of external 

sensors increase the overall system cost. To reduce the need for external sensors, incorporation of vehicle constrains 

into the estimation process has been recently proposed. In order to improve the effect of these constraints, we 

propose implementing vehicle constrains both into the system and measurement models thereby enhancing the 

estimator performance. The paper demonstrates the contribution of the proposed approach via several field 

experiments. In all experiments, introducing system dynamics constraints reduced the navigation errors, compared 

to using only measurement constraints. 
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INTRODUCTION 

Fusion of GPS and INS is a common practice in modern navigation systems [1]. Such integration 

aims at utilizing the advantages of the both systems and compensating their weaknesses. In order 

to achieve this goal, several GPS/INS coupling architectures have been proposed [2], where 

some require a minimum of four GPS satellites (loosely coupling, [3]) while others apply when 

as few as one satellite is in view (tight coupling, [4]). However, in cases of GPS outage, which 

may occur in urban environments or in cases of signal blockage, the navigation solution is likely 

to rely on the INS standalone solution, which drifts in time, regardless of its grade.  

To mitigate the navigation drift, fusion of the INS measurements with external sensors has been 

proposed using a variety of sensors, e.g., odometers [5], or magnetic sensors [6]. In general, the 

difference between the external sensor measurements and their INS counterparts is introduced 

into the INS error state filter as a means to estimate INS errors. Nonetheless, use of external 

sensors requires space and power and increases the cost of the overall system.  

Incorporation of vehicle constraints into the estimation process has been recently proposed as a 

means to avoid the use of external sensors. These constraints translate a priori system knowledge 

into measurements, which are then incorporated into the estimator. This concept was first 

implemented for target tracking problems by Tahk and Speyer [7], and later Koifman and Bar-

Itzhack [8] discussed aiding of INS with aircraft dynamics equations. In ground navigation, 

Brandt et al. [9] and Dissanayake et al. [10] utilized the fact that, normally, vehicles do not slip 

or jump off the ground as a pseudo-measurement of vehicle velocity, and recently, Shin [11], 

Godha [12], and Klein et al. [13] demonstrated the use a velocity pseudo-measurement as aiding 

to a linear INS error model by perturbing the velocity governing equation. Constraining the 
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height was used by Lachapelle et al. [14] and by Godha and Cannon [12] for pedestrian and 

vehicular navigation. This constraint utilizes the fact that in urban environments vehicles usually 

maintain a constant height. Klein et al. [13] introduced ground vehicle dynamics related 

constraints. These are based on the fact that vehicles only accelerate forward or backward and 

only change their yaw angle (heading). In all of these cases, implementation of these vehicle 

constraints into the navigation estimation process was carried out by their translation into 

pseudo-measurements and taking the difference between them and their INS counterparts. The 

subtraction results were introduced into the INS error state filter, as "real" measurements from 

external sensors to estimate INS errors. In that process, the designer had to define in advance the 

amount of measurement noise that would compensate for possible discrepancies between the 

actual driving conditions and the underlying constraints related assumptions.   

In this paper we propose means to enhance vehicle constraints performance in the estimation of 

the INS error states. We argue that since vehicle constraints represent the actual physical 

behavior of a vehicle on a surface, these constraints can be enforced regardless of the IMU 

measurements in the modeling of the system dynamics of the INS error state model. The vehicle 

constraints enforcement on the IMU measurements is safely applied since the focus here is on 

short time periods and on situations where a vehicle is travelling in an urban environment and 

experiences low-dynamics. As an example, consider the body velocity constraint that assumes 

zero velocity in the z-axis of vehicle body frame and thus zero acceleration in this direction. In 

the classical implementation, the zero velocity constraint is inserted only into the measurement 

model; yet in the proposed methodology, in addition to the measurement model, zero 

acceleration in the z-axis is inserted into the system model despite any different reading of the 

IMU in that direction. Such insertion contributes to an improved performance and a decrease of 
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the INS navigation error. The proposed methodology is tested in several urban road experiments 

with a MEMS INS showing improvement of the classical vehicle constraints implantation. 

Whereas, cases of partial GPS availability may occur and be used in urban environments [15], 

total GPS denial is the case addressed here for all the experiments and the aim is to mitigate the 

INS drift until GPS becomes available once again. Additionally, as odometers are fused with the 

INS in many applications, we show that the proposed methodology improves performance 

compared to previous means to exploit vehicle constraints. 

The rest of the paper is organized as follows: Section 2 provides background on INS error 

equations. Section 3 describes the application of vehicle constraints in the standard form and in 

the newly proposed form. Section 4 analyzes the proposed method via a set of experiments and 

presents some illustrative examples, and Section 5 provides conclusions of this research. 

INS ERROR EQUATIONS 

The navigation frame is defined as the one where the x-axis points towards the geodetic north, 

the z-axis is on the local vertical pointing down, and the y-axis completes a right-handed 

orthogonal frame. Position in the navigation frame is expressed by curvilinear coordinates 

[ ]Tn
r hφ λ=  where, φ  is the latitude, λ  is the longitude and h  is the height above the Earth 

surface. Motion equations in the n-frame are given by [1]:  

 

( )

1

1 2

nn

n b n b n n n n

ie en

b n b n b

nb

D vr

v T f g v

T T

ω ω

−

→

→ →

  
  

= + − + ×  
   Ω    

�

�

�

     (1)  



5 

( )

( ) ( )
1

1
0 0

1
0 0

cos

0 0 1

M h

D
N h φ

−

 
 
 +
 
 
 =
 + 
 − 
   

     (2) 

where [ ]n

N E Dv v v v=  is the vehicle velocity; b nT →  and n bT →  are the transformation matrices 

from the body frame (The x-axis is parallel to the vehicle longitudinal axis of symmetry, pointing 

forward, the z-axis points down and the y-axis completes a right-handed orthogonal frame) to the 

n-frame and vice-versa, respectively; bf is the measured specific force; n

ieω  is the Earth turn rate 

expressed in the n-frame; n

enω  is the turn rate of the n-frame with respect to the Earth; 1

ng  is the 

local gravity vector, M and N are the radii of curvature in the meridian and prime vertical 

respectively; and b

nbΩ  is the skew-symmetric form of the body rate with respect to the n-frame 

given by: 

( )b b n b n n

nb ib ie enTω ω ω ω→= − +     (3)  

The INS mechanization equations provide no information about errors in the system states 

(caused by measurement errors) as they process raw data from the Inertial Measurement Unit 

(IMU) to estimate navigation parameters. Linking the IMU measurement errors and INS states is 

established through an error model which is derived using perturbations, implemented via a first-

order Taylor series expansion of the states in Eq. (1). A complete derivation of this model can be 

found in Britting [16] and Shin [11]. The state-space model is given by: 
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where the state vector consists of position error, velocity and attitude errors, and accelerometer 

and gyro bias/drift. A detailed description of the parameters in Eq. (4) is given in the appendix. 

We incorporate the INS error dynamics with pseudo-measurements aiding via a Kalman filter 

(see Appendix B). To that end, we define  
T

n n n

KF a g
x r v b bδ δ ε δ δ =    as the error state vector 

while the system dynamics and shaping matrices are defined in Eqs. (4)-(5).  

VEHICLE CONSTRAINTS  

Vehicle constraints, aka non-holomonic constraints, take advantage of knowledge of the vehicle's 

dynamics and the physical conditions the vehicle experiences. This knowledge is utilized as 

measurements in the vehicle state-estimation process. Three types of constraints are addressed in 

this presentation, including: i) body-velocity, ii) constant-height, and iii) body angular velocity 

(denoted VC, HC, and AVC, respectively). As these measurements are continuously available, 

their update rate is set to the INS operating sampling rate. 
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BODY VELOCITY CONSTRAINT 

A body velocity constraint utilizes the fact that vehicles travel on the ground and do not slide. 

Therefore, velocities in the body frame along the By  and Bz  directions can be assumed to be 

almost zero [11], namely 0
yB

v ≅  and 0
zB

v ≅ , and the computed velocity in the body frame can 

be expressed as 

( )T
b b n nv T v→=

     (6)  

Perturbing Eq. (6) and rearranging it, leads to 

( )b n b n n b n nv T v T vδ δ δε→ →= − ×
     (7)  

where ( )nv ×  is the skew symmetric form of the velocity vector. From the second and third rows 

of the vector in Eq. (7), the measurement equations have the form: 
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        (9) 

where 
y

η  and 
z

η  are the measurement noise value for compensating possible discrepancies in 

the assumptions made on the zero body velocity. Eqs. (8) and (9) are used as inputs to the 

Kalman filter Eqs. (B.4)-(B.6). 
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For the added constraint, we begin by identifying the required changes in the system matrix F  

(Eq. (4)) when implementing the body velocity constraint.  Assuming that 0
yB

v ≅  and 0
zB

v ≅ , 

the corresponding body-accelerations, 
yBa  and 

zBa , must also equal to zero  

0 0
y zB B

a a= =     (10) 

The measured body acceleration vector is expressed in its skew-symmetric matrix form, nF , in 

the system matrix (Eq. (5)). Thus, nF  should be modified to include the body velocity 

constraint. Let, bf�  be the IMU acceleration measurement vector 
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where, 
x y zB B B

a a a 
   is the actual vehicle acceleration vector in the b-frame and 

acc x acc y acc z
υ υ υ− − −    represents measurement noise. Introducing the body velocity constraint 

(Eq. (10)) into Eq. (11) yields  
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Eq. (12) stands for the IMU readings when the body velocity constraint is valid during the 

measurement, yet it consists of IMU noise which under those circumstances should have been 

zero. In order to remove the IMU measurement noise in the y and z axes to fulfill the body 

velocity constraint, we replace the IMU measurements in those directions with 
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as the measured body acceleration. The corresponding accelerations in the n-frame, are given by 
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Eq. (14), in its skew-symmetric from replaces the full-IMU readings sub-matrix F
n
  in the system 

matrix F  (Eq. (5)). This way, the body velocity constraint is modeled inside the system matrix. 

HEIGHT CONSTRAINT 

The height constraint assumes that elevation remains almost constant for short time periods. 

Assuming ch h= , and consequently 0Dv h= − =� , the measurement equations can be constructed 

as:  
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where 
h

η  and 
vd

η  are the measurement noise value for compensating possible discrepancies in 

the assumptions made on the constant height and zero velocity in the down direction. 

Prior to describing the added height constraint, notice that 0Dv = , and thus 0
D

v =� . In order to 

model the height constraint in the system matrix, we rewrite the second vector equation in Eq. 

(1)  
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Focusing on short periods, the last term in Eq. (17) can be neglected (its value is also small in 

practice). The down-axis equation from Eq. (16) is thus reduced to 
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Modeling the height constraint 0
D

v =�  we have from Eq. (18) Df g= − , thus the measured 

down-axis acceleration in the n-frame equals to the gravity magnitude in negative sign. Namely, 

the measured accelerations in the n-frame Eq. (17), which are required for the calculation of the 

system matrix F in Eq. (4), are given by 
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ANGULAR VELOCITY CONSTRAINT  

Finally, among the three body angular velocities [ ]Tib p q rω = , only change in the heading 

angle (having 0p q= = ) is likely, as vehicles travel on the ground. Thus: 

[ ]
0

0ib INS
z

r

ω
 
 = −  
  

      (20) 
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The first two rows of Eq. (11) can be used as pseudo-measurements. However, the body angular 

velocity is not modeled as a state in the system dynamics, only its bias (Eq. (2)). Body angular 

velocity is, therefore, added as a state measurement in Eq. (20) when converted to a pseudo-

measurement on the body-angular velocity bias. Namely, the assumption on the biases is that 

0
xg yg

b bδ δ= = , as no angular velocity in these two directions should exist. The measurement 

equations are: 

xg INS xg xg

AVC

yg INS yg yg

b
z

b
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δ υ η
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where 
xg

υ  and 
yg

υ  are the expected known biases of the gyros which depend on their quality, 

and 
xg

η  and 
yg

η are measurements noise, inserted to compensate for the inherent gyros drift.  

Contrary to the previous two constraints, the angular velocity is neither part of the state-vector 

nor used directly in the estimator system dynamics model. On the other hand, the angular 

velocity product builds the transformation matrix from the b-frame to the n-frame, and is part of 

the dynamics model. Therefore, in the proposed approach, it can be altered to comprise the prior 

knowledge on the angular velocity. Since vehicles can only turn on the surface (ignoring 

irregular road conditions such as ice) they experience angular velocity only in the z-axis 

direction, and so reduce Eq. (3) to   

( )0 0
T

b b n b n n

nb ib z ie enTω ω ω ω→
− = − +     (22) 

Replacing Eq. (3) with Eq. (22) we from a modified skew-symmetric form of the body rate with 

respect to the n-frame b

nbΩ  which is used in Eq. (1) to yield a new transformation matrix n bT → . 

This transformation matrix is inserted into F  and G  in Eq. (4). In that manner, the angular body 
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velocity constraint is modeled in the system and shape matrices through the transformation 

matrix. 

Table 1 summarizes and presents the implemented constraints in the enhanced vehicle constraint 

(EVC) approach.  

Table 1: Constraints applied to the EVC approach 

Vehicle Constraint 

type 

EVC approach 

VC 0
yBv =  , 0

zBv = & Eq. (14) 

HC ch h= , 0Dv =  & Df g= − ,  

AVC 0gxbδ = , 0gybδ =  & 0p = , 0q =  

  

ANALYSIS & DISCUSSION 

To demonstrate the contribution of the proposed EVC approach, experiments featuring data 

collected using a MEMS INS while driving in an urban environment are presented. The vehicle 

was equipped with a Microbotics MIDG II [17] INS/GPS system. Noise densities of the 

acceleration and angular rate were 150 /g Hzµ  and ( )0.05 deg/ sec / Hz  respectively. Raw 

data from five trajectories with various vehicle dynamics and traffic conditions, including: 

varying topography, varying velocity and acceleration distributions, left/right turning, and 

roundabouts, were collected. The duration of each trajectory was 90 seconds. Those trajectories 

and the vehicle dynamics while traveling on them are summarized in Table 2. All tests but #5 

were carried out on paved roads and included left or right turns. The average height change along 
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trajectory 1 was about 9 meters while in the rest of the trajectories it was less than 2 meters. 

Trajectories 1 and 5 where specifically chosen so that the underlying assumptions behind the 

vehicle constraints are violated. In a typical urban environment, trajectory 1 (featuring significant 

elevation change) and trajectory 5 (unpaved road) are not likely to be encountered but they are 

mentioned here to evaluate the EVC approach.  

Table 2: Trajectories topography and vehicle dynamics 

 

Average 

Velocity [m/s] 

Average Height 

Change [m] 

Turning Road Type 

Trajectory 1 14 9 Left/right Paved 

Trajectory 2 9 0.5 

Straight line with 

roundabouts 

Paved 

Trajectory 3 11 2 Left/right Paved 

Trajectory 4 15 2 U  turn Paved 

Trajectory 5 12 0.5 Straight Line Unpaved 

 

The combined GPS/INS solution (GPS measurements were available throughout the 

experiments, and a GPS solution, contrary to a differential one) was used as the nominal solution 

in this analysis. Raw data from the IMU sensors were combined with both implementations of 

the vehicle constraints offline, without using the GPS measurements for this analysis. The 15 

error-state filter, given in Eqs. (4)-(6), was implemented for the computation,.  

To evaluate the contribution of the proposed approach, position and velocity error measures are 

examined. To that end, the following error measure is utilized: 
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( ) ( ) ( )
q aiding nominal

t q t q tε = −      (23)  

where ( )
q

tε is the error for state q , ( )
aiding

q t is the state history obtained from the aiding of 

vehicle constraints and ( )
nominal

q t is the nominal state history. The position and velocity errors are 

obtained from 

( ) ( ) ( )
22 2

pos lat long h
ε ε ε ε= + +     (24) 

2 2 2( ) ( ) ( ) ( )vel vn ve vdt t t tε ε ε ε= + +     (25) 

where ( )h tε , ( )lat tε  and ( )long tε  are the height, latitude and the longitude errors respectively and 

( )vn tε , ( )ve tε  and ( )vd tε  are the north, east and down velocity errors, respectively. Once the 

position and velocity errors along a single trajectory were calculated, an average position and 

velocity value was obtained for each trajectory. The mean error, obtained from the five 

trajectories, is listed in the following tables that compare the standalone INS performance to the 

proposed methodology via several vehicle constraints as aiding.  

EVC EVALUATION 

Four types of vehicle constraints were applied as aiding to the INS, including the: i) VC, ii) 

VC+AVC, iii) VC+HC, and iv) VC+HC+AVC. The performance of the standalone HC and 

AVC vehicle constraints, as well as their combination (HC +AVC), was poorer and is therefore 

not detailed here. The reason for their limited performance lies in the observability of the system 

when fused with these constraints. When applying, e.g., the HC constraint, only the attitude and 

downward velocity component are affected, improving their estimation but having little 
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influence on the other position and velocity components. As our interest is in improving the 

estimation of the complete position and velocity vectors, the overall HC contribution becomes 

limited. In contrast, the application of the VC directly contributes to both velocity and attitude 

states estimation, and therefore improves the position estimates. To further improve the VC 

performance, it is fused with the HC (improving altitude and downrange velocity) and the AVC 

(improving attitude), increasing the observability of the system and thus, theoretically, the 

estimation performance. 

Evaluating the enhanced vehicle constraints for all the five trajectories, Table 3 lists the mean 

position error for the EVC approach for durations of 30, 60 and 90 seconds. In addition, 

improvement rate relative to the INS navigation solution is given for each case. 

Table 3: Mean position error obtained from five trajectories [m] 

Time INS VC VC+AVC VC+ HC VC+ HC+AVC 

30 [sec] 19 9.0 (48.1%) 8.9 (48.9%) 8.9 (48.3%) 9.2 (47.2%) 

60 [sec] 133 79.7 (42.9%) 76.1 (45.1%) 82.7 (42.1%) 77.5 (43.4%) 

90 [sec] 302 185.8 (40.6%) 180.6 (41.7%) 184.9 (43.1%) 175.7 (40.8%) 

Table 3 shows that as time progresses, the EVC performance decreases. Yet in all cases, at least 

a 40% level of improvement is achieved relative to the standalone INS. Two observations can be 

drawn from Table 3: i) the standalone VC did not obtain the best performance regardless of the 

addressed time-period, and ii) the VC+AVC obtained best performance after 30 and 60 seconds, 

while after 90 seconds VC+HC constraint did. As expected from the observability analysis, the 
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VC is the major contributor to the improvement of the standalone INS. The HC managed 

improving the altitude channel by more than 70% in all examined trajectories (data not shown). 

Additionally, the AVC managed obtaining similar performance as the standalone VC in the 

velocity vector, yet failed to improve significantly the position vector.  

Table 4 presents the mean velocity error for the EVC approach for 30, 60 and 90 seconds. In 

addition, the rate of improvement relative to the standalone INS is provided for each case. 

Similar to the mean position error, a 40% improvement rate is achieved, with a slight decrease as 

time progresses from ~43% at 30 sec. to 37%, or more, rate of improvement relative to the 

standalone INS.  

Table 4: Mean velocity error obtained from five trajectories [m/s] 

Time INS VC VC+AVC VC+ HC VC+HC+AVC 

30 [sec] 2.41 1.43 (42.2%) 1.43 (42.2%) 1.37 (43.5%) 1.35 (44.1%) 

60 [sec] 6.73 4.30 (37.5%) 4.14 (39.1%) 4.31 (37.2%) 4.08 (39.3%) 

90 [sec] 10.6 6.84 (37.0%) 6.81 (36.9%) 6.85 (37.1%) 6.16 (39.7%) 

Considering the fact that both position and velocity errors were obtained from the five 

trajectories, it is clear that the EVC improves the standalone INS. The combined VC+AVC 

vehicle constraint obtained the overall best performance.  

Next, we focus on trajectories 2, 3, and 4 which feature typical urban environment trajectories. 

We evaluate the level of improvement when incorporating the vehicle constraints in the EVC 

approach relative to the standalone INS and the regular integration approach. The results of the 
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position and velocity errors and amount of improvements are summarized in Tables 5, and 6. In 

all the cases described in Table 5, the mean INS position error improved by more than 48% 

regardless of the duration. In addition, the newly proposed approach outperformed the classical 

one in all vehicle-constraint implementations and at all durations. This result reflects the 

improvement in modeling the dynamics in the EVC approach relative to the regular approach. As 

the underlying vehicle constraints assumptions in the examined trajectories were valid in most 

parts of the trajectories, the EVC implementation removed the corresponding IMU measurement 

noise form the system matrix, matching the filter to the actual physical behavior of the vehicle.   

The greatest improvement relative to the standalone INS and the classical approach was at the 30 

seconds period for all vehicle constraints, as expected. There the VC+AVC and VC+HC+AVC 

constraints obtained the best performance, improving the classical approach by 12.8%. For the 

velocity errors, the same behavior was observed where the EVC approach improved the 

standalone INS by more than 42% for all vehicle constraints at all time periods. 

Table 5: Mean position error and improvements obtained from three trajectories  

Time Measure VC VC+AVC HC+VC HC+VC+AVC 

30 

[sec] 

Error [m] 8.4 7.9 9.3 9.0 

Improvement relative to 

the standalone INS [%] 

54.5 57.1 50.3 51.8 

Improvement relative to 

the classical impl. [%] 

10 12.8 7.7 12.8 
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60 

[sec] 

Error 63.5 62.2 65.6 66.4 

Improvement relative to 

the standalone INS [%] 

50.1 51.3 48 47.6 

Improvement relative to 

the classical impl. [%] 

7.0 8.4 6.9 7.4 

90 

[sec] 

Error 144.6 145.6 144.5 144.5 

Improvement relative to 

the standalone INS [%] 

48.8 48.4 48.7 48.7 

Improvement relative to 

the classical impl. [%] 

5.2 4.4 6.8 6.8 

 

Table 6: Mean velocity error and improvements obtained from three trajectories  

Time Measure VC VC+AVC HC+VC HC+VC+AVC 

30 

[sec] 

Error [m/s] 1.33 1.32 1.35 1.33 

Improvement relative to 

the standalone INS [%] 

45.8 46.2 44.3 45.8 

Improvement relative to 6.1 4.0 9.3 15.1 
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the classical impl. [%] 

60 

[sec] 

Error [m/s] 3.36 3.41 3.40 3.45 

Improvement relative to 

the standalone INS [%] 

46.3 45.4 45.8 44.3 

Improvement relative to 

the classical impl. [%] 

4.1 1.5 6.1 3.8 

90 

[sec] 

Error [m/s] 5.40 5.56 5.53 5.34 

Improvement relative to 

the standalone INS [%] 

43.9 42.1 43.1 44.4 

Improvement relative to 

the classical impl. [%] 

4.0 0.0 6.51 7.5 

 

EVC EVALUATION WITH AN ODOMETER  

To further improve the INS aiding and utilize a fusion strategy which is common in many 

applications (e.g., [5]), an odometer was fused with the vehicle constraints. Trajectories 2, 3 and 

4 are used for the comparison. Improvement rates relative to the standalone INS readings and the 

classical implementation are summarized in Tables 7 and 8. 

The following observations regarding the fusion of the odometer with VC in the EVC approach 

can be drawn: 1) the EVC and odometer fusion greatly improved (more than 52%) the 



20 

standalone INS performance for both position and velocity errors; 2) the odometer addition 

improved the performance of VC as a single aiding  for both position and velocity errors; and 3) 

the proposed method obtained better performance compared to the classical approach, improving 

by more than 16% in position error and by more than 10% in the velocity error after 30 seconds. 

As can also be seen in both tables, for 90 seconds periods the contribution relative to the classical 

approach decreased, becoming almost negligible. 

Generally, the fusion of odometer with the body vehicle constraint enables measurement of the 

whole velocity vector, thereby greatly improving the performance. In particular, in the EVC 

implementation, the corresponding IMU measurement noise was removed from the system 

matrix, matching the filter to the actual physical behavior of the vehicle and so improving 

performance of the regular implementation. 

Table 7: Mean position error and improvements obtained from three trajectories  

Time Measure VC VC + Odometer 

30 

[sec] 

INS Improvement [%] 54.5 81.1 

Classical Implementation 

Improvement [%] 

10.0 16.1 

60 

[sec] 

INS Improvement [%] 50.1 67.3 

Classical Implementation 

Improvement [%] 

7.0 18.2 
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90 

[sec] 

INS Improvement [%] 48.8 59.7 

Classical Implementation 

Improvement [%] 

5.2 1.1 

 

Table 8: velocity error and improvements obtained from three trajectories 

Time Measure VC VC + Odometer 

30 

[sec] 

INS Improvement [%] 45.8 64.4 

Classical Implementation 

Improvement [%] 

6.1 10.6 

60 

[sec] 

INS Improvement [%] 46.3 63.9 

Classical Implementation 

Improvement [%] 

4.1 13.9 

90 

[sec] 

INS Improvement [%] 43.9 52.1 

Classical Implementation 

Improvement [%] 

4.0 0.3 

CONCLUSIONS  

This paper presented a methodology for enhancing vehicle constraints performance as aiding for 

MEMS INS over short periods of GPS outage (up to 90-seconds). The proposed approach was 
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examined through five field experiments. Introduction of the vehicle constraints in the newly 

proposed approach outperformed the classical approach and reduced the navigation position and 

velocity errors.  

The proposed implementation of the vehicle constraints requires no hardware change, yet only 

the addition of the proposed algorithm to the software is necessary. 
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APPENDIX - A 

The following matrixes are associated with the INS state space error model Eq. (4)  
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where [ ]
Tn

N E Dv v v v�  is the velocity vector in the n-frame and the rest of the parameters 

were defined in the text. 

 

APPENDIX – B 

In general, a Kalman filter algorithm involves two steps: i) prediction of the state based on the 

system model, and ii) update of the state based on the measurements. The covariance associated 

with the prediction step is given by [18]: 

1
ˆ ˆ

k kx x
− +
+ = Φ , ( )F t t

e
∆Φ =      (B.1)  

1

T

k k kP P Q
− +
+ = Φ Φ +

      (B.2) 

where the superscripts – and + represent the predicted and updated quantities (before and after 

the measurement update, respectively); x and P  are the system state and the associated error 

covariance matrices respectively; Φ  is the state transition matrix from time k to time k+1; ( )F t  

is the system dynamics matrix; and kQ  is the process-noise covariance-matrix [19] given by:  

( ) ( ) ( ) ( ) ( ) ( )1

2

T T T

k k k k k k k k kQ G t Q t G t G t Q t G t t ≈ Φ + Φ ∆    (B.3)  

where, ( )G t  is the shaping matrix. t∆  is the time step. The second step is the measurement 

update: 

( ) 1

1 1 1 1 1 1 1

T T

k k k k k k kK P H H P H R
−− −

+ + + + + + += +      (B.4)  
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( )1 1 1 1 1 1
ˆ ˆ ˆ

k k k k k kx x K z H x+ − −
+ + + + + += + −       (B.5)  

( )1 1 1 1k k k kP I K H P
+ −
+ + + += −

      (B.6)  

where kK  is the Kalman gain, kH  is the measurement matrix, kR  is the measurement noise 

covariance matrix, and kz is the measurement.  

 

 

 


