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Abstract 

MITSIMLab (MIcroscopic Traffic SIMulation Laboratory) is a microscopic 

traffic simulation model that evaluates the impacts of alternative traffic 

management system designs at the operational level and assists in their 

subsequent refinement. MITSIM models the travel and driving behavior of 

individual cars, the detailed movement of buses, and the various control 

and information provision strategies through a generic controller. A cali-

bration methodology for important parameters and inputs was also de-

veloped. The model has also been extended to address the special driving 

behavior in urban networks. 

6.1 Introduction  

MITSIMLab (MIcroscopic Traffic SIMulation Laboratory) is a microscopic 

traffic simulation model that evaluates the impacts of alternative traffic 

management system designs, traveler information systems, public 

transport operations, and various ITS strategies, at the operational level 

and assists in their subsequent refinement. MITSIMLab can evaluate sys-

tems such as advanced traffic management systems (ATMS) and route 

guidance systems.  

MITSIMLab was developed by MIT’s Intelligent Transportation Systems 

(ITS) Program (Yang, 1997, Yang and Koutsopoulos, 1996, Yang et. al., 
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2000). The model was used to evaluate several aspects of the traffic man-

agement system for the Central Artery/Tunnel (CA/T), by simulating its 

operations. The CA/T network consists of approximately 110 lane-miles 

equipped with 1600 sensors and is used by 300,000 vehicles per day. It 

features an extensive traffic control system, including Lane Control Signals 

(LCS), incident detection, tunnel closing, electronic toll collection (ETC), 

and Variable Message Signs (VMS) for route guidance. MITSIMLab was 

used to evaluate various operating strategies associated with these traffic 

management functions, and make recommendations for improvements, 

including ITS design, ramp configuration, and construction staging. For the 

CA/T application, MITSIMLab was calibrated with behavior data of Boston 

drivers.  

MITSIMLab serves as a laboratory for the evaluation of ITS and other traf-

fic and transit strategies and systems. The model’s application framework 

for these evaluations is outlined in Figure 6.1. Based on the objectives of 

the evaluated system, scenarios are generated to test the design. Appro-

priate measures of performance are generated from the simulations, 

used to evaluate the system performance, and may lead to subsequent 

design refinements. 

MITSIMLab supports: 

• Objective and independent evaluations. 

• Thorough representations of all relevant interactions in the 

transportation system, including vehicles, traffic control devices, 

algorithms and other elements of the traffic management center (e.g. 

surveillance system).  

• Assessment of the technical aspects of the algorithms, the 

performance and impact of interfaces and communication channels, 

sensitivity to errors, robustness, and ability to recover from 

malfunctions.  

MITSIMLab represents the related functions of the traffic management 

system at a fine level of detail, including the important aspects of the traf-

fic management center, the surveillance system, the guidance and control 
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logic, and algorithms, in order to evaluate a wide range of design aspects 

of ATIS/ATMS. Researchers have used MITSIMLab for practical applica-

tions in the USA, UK, Sweden, Italy, Switzerland, Japan, Korea, Malaysia 

and elsewhere. It was the main tool used to test and demonstrate the 

various driving behavior models developed within the NGSIM (Next Gen-

eration SIMulation) project, which facilitated the advancement of traffic 

simulation models by improving realism in the driving behavior models 

they incorporate. In 2004, an open-source version of MITSIMLab was re-

leased. It is available at the MIT ITS Program website 

(http://mit.edu/its/mitsimlab.html).  The structure and models in 

MITSIMLab also formed the basis for the development of the traffic simu-

lation software TransModeler 

(www.caliper.com/transmodeler/default.htm).   

 

  

Fig. 6.1. Evaluation framework 

This chapter describes the structure and main characteristics of MITSIM-

Lab, the methodology used for model calibration and validation, followed 

by several application examples. 
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6.2 Model Building Principles in MITSIMLab 

In order to allow maximum flexibility in defining the evaluated systems, 

travelers’ behavior in the presence of these systems, and the dynamic in-

teractions between the management system and travelers, MITSIMLab is 

implemented as three separate modules, which exchange information as 

shown in Figure 6.2. 

Within the traffic simulator module (TS), the movements of individual ve-

hicles (cars and transit vehicles) are represented by detailed travel and 

driving behavior models. Traffic flow characteristics emerge from these 

individual behaviors. Vehicles traveling in the network activate surveil-

lance devices (e.g. loop detectors, communication beacons, video sen-

sors). The data gathered by the surveillance system are transferred to the 

traffic management simulator (TMS), which mimics the traffic control and 

routing strategy or transit strategy under evaluation. The control and 

routing strategies generated by the TMS determine the states of traffic 

control and route guidance devices. These settings are transferred to the 

TS. The simulated drivers respond to the various traffic controls and guid-

ance, while interacting with each other. The TMS is a virtual transporta-

tion system operations control center, processing performance data from 

the sensor network and generating a strategy. The TMS also simulates a 

wide range of transit operations control strategies (e.g. transit signal pri-

ority, holding for service restoration, etc) defined by the user. The simula-

tion output can be obtained as numerical data tables and via the graph-

ical user interface (GUI), which visualizes traffic impacts through vehicle 

animation. MITSIMLab generates various output reports with measures of 

effectiveness that may be used to evaluate the performance of potential 

ITS strategies. 
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Fig. 6.2. MITSIMLab structure 

Travel demand is represented by time-dependent origin to destination 

(OD) trip tables, which show expected conditions or are defined as part of 

a scenario for evaluation. Based on these tables, individual vehicles are 

generated. The generated vehicles are assigned driver characteristics (e.g. 

aggressiveness, planning capability, look-ahead distance, level of compli-

ance with various signs and regulations) and vehicle attributes (e.g. accel-

eration and speed capabilities and the impact of grade on these capabili-

ties) based on pre-determined distributions. Route choices are based on a 

probabilistic model that captures the impact of travel times and biases 

towards routes that use freeways over urban streets. The impact of real-

time information on routing decisions is captured by a route switching 

model in which informed drivers re-evaluate their pre-trip route choices 

based on the traffic conditions observed en-route. MITSIMLab is a time-

based simulation model with time steps that may differ for various func-

tions from 0.1 to 1.0 seconds. It also incorporates event-based approach-

es for situations such as crash avoidance and responses to changes in traf-

fic controls and information settings.  

6.3 Fundamental Core Models  

The core of MITSIMLab consists of travel and driving behavior models. 

The travel behavior models capture the driver’s pre-trip and en-route 

route choices. The driving behavior models deal with tactical and opera-
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tional driving decisions, mainly acceleration and lane changing. The mod-

els that capture these choices in MITSIMLab are probabilistic, based on 

the theories of random utility maximization.  

6.3.1 Driving Behavior 

Driving behavior decisions are modeled as a series of interdependent 

choices that are based on a specific plan/tactic. For example, drivers se-

lect a target lane and adapt their acceleration and lane changing actions 

to facilitate arriving at the chosen lane. The evolving circumstances (i.e. 

behavior of other drivers, traffic control) can cause changes to the plan. 

For example, drivers may initially plan to merge into mainline traffic 

through normal gap acceptance. But as they approach the end of the 

merging lane and are unable to find acceptable gaps, they may force 

merge. Drivers’ plans are generally unobservable in the real-world (only 

drivers’ actions are observed). Therefore, MITSIMLab captures this behav-

ior using an integrated modeling framework based on latent plans.  

The general framework of these models is shown in Figure 6.3. At any in-

stant, drivers choose a plan based on the state they are faced with. Their 

actions depend on the chosen plan. These actions, the actions of the oth-

er drivers and changes in the state of the control system (e.g. traffic light 

indications) may lead drivers to change their plans.  
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Fig. 6.3. General decision structure 

The plan drivers choose may depend on their previous plan choices and 

be affected by anticipated future conditions. The models that capture the 

plan choice and the action choice, conditional on this plan, are based on 

the utility maximization theory. The interdependencies and causal rela-

tionships between various decisions over time and across choice dimen-

sions result in serial correlation and state-dependence among the obser-

vations. Driver specific random terms are incorporated in the models in 

order to capture heterogeneity in drivers’ behavior that stems from dif-

ferences in aggressiveness, planning capabilities, etc. A Hidden Markov 

Model is used to capture the effect of previously chosen plans on the 

choice of the current one. Effects of anticipated future circumstances are 

captured using predicted conditions based on current information in the 

decision-making. For a complete description of the latent plan model 

structure see Choudhury (2007).  

The main driving behavior models in the latent plan structure are lane 

changing and acceleration. In MITSIMLab, they are modeled using an in-

tegrated framework as shown in Figure 6.4. The figure shows the decision 
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process for a driver currently in lane 3 of a 4-lane road. Chosen (latent) 

plans are shown as ovals and the resulting actions as rectangles. 

 

 

Fig. 6.4. Structure of the driving behavior model 

Drivers select the target lane as the lane they perceive to be the best 

among all available lanes (lanes 1, 2, 3, and 4 in this case).  

The target lane model uses a multinomial logit (MNL) structure. Im-

portant variables that affect lane choices include the distance to the point 

where the driver must be in specific lanes in order to follow the path, the 

number of lane changes required to be in these lanes, the attributes of 

the various lanes (e.g. average speed and density of the lane, lane 

cost/toll), and variables that capture the conditions in the immediate vi-

cinity of the vehicle such as the relative speeds and spacing from lead ve-

hicles, the presence of heavy vehicles and characteristics of the driver 

(e.g. aggressiveness, network familiarity). If the target lane is different 

from the current lane, a lane change is required. Drivers then search for 

an acceptable gap to complete the lane change.  

The gap acceptance model in MITSIMLab is probabilistic, where the avail-

able gaps are compared against the critical gaps. The model defines the 

lead and lag gaps as the clear spacing between the subject vehicle and the 

lead and lag vehicles in the adjacent lane, respectively. A gap is accepta-
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ble only if the lead and lag gaps are acceptable (i.e. available gap ≥ critical 

gap). Critical gaps are assumed to be log-normally distributed, where the 

mean is a function of explanatory variables, which include the relative 

speeds of the lead and lag vehicles.  

The drivers that cannot change lanes immediately select a short-term 

plan to perform the desired lane change. Short-term plans are defined by 

the various traffic gaps in the target lane. The target gap choice probabili-

ties are modeled with an MNL structure where the trade-offs among dif-

ferent attributes of the gap (e.g. gap size, distance to the gap etc.) are ac-

counted for.  

Drivers adapt their acceleration behavior to facilitate their short term 

plans (i.e. target lane and gap). Different accelerations are applied de-

pending on the current plan the driver implements: stay-in-the-lane, lane 

changing or target various gaps for lane changing. The stimulus-sensitivity 

framework proposed within the GM model (Gazis et al. 1961) is adapted 

for these acceleration models. The response (acceleration or decelera-

tion) the driver applies to a stimulus is lagged to account for reaction time 

as follows: 

( ) ( ) ( )n n n nresponse t sensitivity t stimulus t τ= × −    (6.1) 

where, t is the time of observation and 
n

τ  is the reaction time for driver n. 

The driver reacts to different stimuli depending on the chosen plan and 

constraints imposed. Within each one of the acceleration behaviors, the 

driver is assumed to be either in a constrained or unconstrained regime. A 

constrained regime applies when the driver is close to the lead vehicle 

(the headway is smaller than the threshold) and affected by its behavior. 

For stay-in-lane and target gap accelerations, the lead vehicle is the front 

vehicle in the current lane. For lane-changing acceleration, the lead vehi-

cle is the front vehicle in the lane the driver is changing to. In the con-

strained regime, the stimulus is the relative speed of the lead vehicle and 

has different parameters for acceleration and deceleration. In the uncon-

strained regime, for the stay-in-the-lane and lane-changing cases, free-
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flow acceleration is applied. For target gap cases, the stimulus is deter-

mined by a desired position that would facilitate completion of the lane 

change. The reaction time and time headway threshold distributions ac-

count for the heterogeneity among drivers and are common to all com-

ponents of the acceleration model. See Ahmed (1999) and Toledo (2008) 

for details of the target gap choice and acceleration models.  

One of the main factors affecting lane choices is the need to follow the 

travel path. The implementation of path awareness (i.e., when do drivers 

become aware and begin to respond to path-following constraints) im-

pacts the simulation results. The path awareness model in MITSIMLab as-

sumes that drivers are aware of the path-plan up to a certain distance 

downstream of their current position. They will react to any path-

following constraints that arise within this “look-ahead” distance and ig-

nore those that are further downstream. The look-ahead distances are 

characteristics of the driver and are assumed to be randomly distributed 

in the driver population. This approach overcomes the excess weaving 

and merging maneuvers arising from late lane changes that occur when 

the awareness is based on the network structure (i.e. drivers are only 

aware of the next link(s) on their path), particularly in urban networks 

that are characterized by short links and paths that may require frequent 

turning movements.  

6.3.2 Travel Behavior 

The travel behavior models include both pre-trip and en-route path 

choices. Drivers in MITSIMLab may have either predefined paths or com-

pute them dynamically. Depending on whether alternative paths were 

predefined, a path-based route choice model or a link-based route gener-

ation model may be used. 

In the path-based route choice model, a list of predefined paths is used as 

input. Each path is defined by the list of links it consists of. The choice 

among these lanes is modeled with the path-size model (Ben-Akiva and 

Bierlaire, 2003), which accounts for the similarity among paths that over-
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lap in parts. With this model, the probability that a driver will choose 

route i from the path choice set C is given by: 

( )
( )

exp ln
( )

exp ln

i i

i i

j C

V PS
P i

V PS
∈

+
=

+∑
     (6.2) 

where, 
i

V  and j
V  are the systematic utilities of routes i and j, respective-

ly. The systematic utilities in the route choice model are functions of path 

attributes such as path travel times and freeway bias. Travel times may be 

habitual or predicted. 
i

PS  and j
PS are the corresponding path sizes. 

These terms capture the effect of overlapping routes on drivers’ percep-

tions.  

The link-based route generation model does not require path enumera-

tion, which may be expensive in large urban networks. Instead, it repre-

sents a myopic behavior. This model is also useful in generating an initial 

set of paths between origins and destinations. With this model, drivers 

choose only the next link at each intersection. An MNL model is used for 

this choice:  

( ) ( )
( )

exp
| ,

exp
s

kd

jd

j L

V
P k s d

V
∈

=
∑

     (6.3) 

where, ( )| ,P k s d  is the probability of choosing link k as the next link on 

the path to destination d at node s. 
s

L  is the set of links emanating from 

node s. 
kd

V  is the systematic utility associated with link k for getting to 

destination d. 

Since link travel times are time-dependent, path travel times account for 

the time that drivers are expected to arrive at each link on their path. The 

travel time in the utility for each alternative link is the travel time from 

node s through the specific link to the destination, as illustrated in Figure 

6.5: 
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( ) ( ) ( )( )skd sk kd sk
TT t tt t TT t tt t= + +     (6.4) 

where, ( )skdTT t  is the travel time to d using link k for vehicles arriving at s 

at time t. ( )sktt t  is the travel time on the link sk for vehicles entering the 

link at time t. ( )( )kd sk
TT t tt t+  is the travel time from k to the destination 

on the shortest path at the time the vehicle arrives to k.  

To avoid using very long or circular paths, the link-based model uses addi-

tional parameters to screen out the choices leading to paths that are con-

sidered unrealistic. The first screening criterion removes alternatives with 

travel times that are too long compared to the alternative with the short-

est travel time. A second screening criterion prevents vehicles from mov-

ing to nodes that are farther away from the destination compared to their 

current position.  

The effects of traveler guidance and information on route choices are 

captured in the path-based and the link-based route choice models. Driv-

ers in MITSIMLab are classified as informed or uninformed. In the pres-

ence of traffic information, informed drivers base route choices on up-

dated travel times that incorporate real-time traffic conditions. If en-

route traveler information is available (e.g. through in-vehicle units or 

VMS) route choices are reevaluated whenever new information is re-

ceived. In the path-based model, drivers' preferences to keep their previ-

ously chosen paths are captured by a diversion dummy variable, which 

penalizes switching from the previously chosen route. Uninformed drivers 

use the habitual travel times, which represent prevailing traffic conditions 

on these paths. For networks with prescriptive VMS and route guidance 

systems, a compliance factor is defined to account for the fact that not all 

drivers adhere to the prescribed route. 
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ds k
( )sktt t ( )( )kd sk

TT t tt t+

 

Fig. 6.5. Travel times in the link-based model 

6.3.3 Traffic Control 

MITSIMLab, through the traffic management simulator (TMS), mimics the 

traffic control system in the evaluated network. A wide range of traffic 

control and route guidance systems can be simulated:  

1. Ramp control  

2. Freeway mainline control 

- Lane Control Signs (LCS) 

- Variable Speed Limit Signs (VSLS) 

- Portal Signals at tunnel entrances (PS) 

3. Intersection control 

4. Variable Message Signs (VMS) 

5. In-vehicle route guidance 

The TMS’s general structure can represent different logical designs of 

such systems at varying levels of sophistication: from isolated pre-timed 

signals to real-time predictive systems.  For example, a generic traffic con-
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troller is at the heart of the TMS. The generic controller breaks down con-

trol strategies into basic logic elements and implements them within a 

modular framework. Specific control logic can then be recreated from 

these basic components. The modular structure allows any specialized 

features to be implemented easily. The logic behind the generic controller 

is specified in terms of signal groups (not phases). Each group is defined 

by the intersection movements that it controls and by the logic that gov-

erns its operation. A signal group holds data about its current status and 

its relationship to other groups, including its current indication (e.g. green 

arrow), its current action (e.g. holding the current period), the next indi-

cation to show (e.g. yellow arrow), its conflicting groups, and stored sen-

sor data. In MITSIMLab, the status and position of every vehicle is updat-

ed at a specified step size (i.e. 0.1 seconds). A similar approach is used for 

the generic controller, which evaluates each signal group at every time 

step and determines if the state of any group needs updating.  An over-

view of the logic of the generic controller is shown in Figure 6.6. 

Upon initialization, the controller obtains information about the signals 

that it will direct, the movements controlled by each signal group, the ini-

tial state of each signal group, and the conditions that specify the control 

logic for each signal group. During a simulation run, the controller iterates 

through all the signal groups, evaluating the logic conditions, and deter-

mines whether the group’s state should be updated. This evaluation step 

is iterative because the group states may be interdependent with the 

state of one group being an input to the logic of another group. There are 

four types of conditions that correspond to different actions: general 

conditions that perform miscellaneous functions, change conditions that 

advance the signal group to the next period, hold conditions that keep the 

group in the current period, and skip conditions that indicate if the next 

specified number of conditions should be skipped. By combining the con-

ditions in a specific order, a full controller logic can be specified. The types 

of control strategies that can be simulated include isolated controller op-

erations (both fixed-time and demand-responsive) and coordinated oper-
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ations (also both fixed-time and demand-responsive). A framework to in-

corporate fully adaptive control strategies has also been developed. 

 

 

Fig. 6.6. Overall logic of generic controller 

6.3.4 Transit Representation 

The framework adopted to model bus operations benefits from MITSIM-

Lab’s modular organization. The main elements include the representa-

tion of the transit network, the movement of buses, the passenger de-

mand, the transit surveillance system and the operations of the transit 

control center. 

The components of the transit system (transit network, schedule design 

and fleet assignment) are considered as static information that is provid-

ed as input. A detailed representation of routes and schedules allows 

transit and traffic operations in the simulated network to be sensitive to 

the variations in the route and schedule inputs. MITSIMLab represents 

detailed trip chaining to explicitly capture the propagation of uncertainty 

in the network.  

The driving behavior models control the transit vehicle movements. Spe-

cific transit operator models are applied in the sections between stops 

(considering downstream stops in the lane choice), when approaching 

stops (including undertaking lane changes to get to the stop lane), depart-
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ing from stops (merging to the general traffic lanes) and dwell times at 

stops. The behavioral models also incorporate the impact of the transit 

vehicle presence on the lane choices of other vehicles.  

The representation of passenger demand determines the detail in pas-

senger arrival and departure patterns on the transit network. A minimum 

representation of demand involves passenger impacts on dwell times at 

stops. This simplified representation ignores the impact of passenger in-

teractions during boarding and alighting on bus progression, which affects 

dwell times downstream (since dwell times at a stop are independent of 

dwell times at stops upstream). The second level of demand representa-

tion uses arrival and alighting rates (defined as a percentage of the bus 

load) at stops to determine the numbers of boarding and alighting pas-

sengers. The model assumes that passengers arrive according to a proba-

bilistic distribution (e.g. time-dependent Poisson) and randomly gener-

ates the number of passengers waiting to board based on the actual bus 

headway.  

Transit surveillance and monitoring systems including onboard detection 

and sensing technologies, such as automated vehicle location (AVL) and 

automatic passenger counters (APC) are explicitly modeled.  

Transit operations control center activities and decentralized field-

deployed strategies, are simulated in the TMS (see Figure 6.2 above). The 

TMS mimics the logic of the strategy under evaluation, and may use real-

time traffic and transit data from the surveillance system as input for that 

logic. Device-based control strategies, such as signal priority, are simulat-

ed using sensors to detect approaching buses and to deliver bus data to 

the signal controller. Other strategies, such as stop-based control (e.g. 

holding) are simulated by placing conditions on the bus departure from a 

stop.  

6.3.5 Measures of Performance 

A number of measures of performance (MOP) may be collected to charac-

terize and evaluate the system. These measures may be defined at any 
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level of detail for the general and transit systems. Traffic-related outputs 

include flows, speeds, densities, travel time, delays and queue lengths. 

They are available at the system, link, segment (a part of a link with uni-

form geometry), lane, sensor, and vehicle levels. The sensor level data is 

particularly useful for calibration and validation of the simulation model 

against real-world data. The high level of detail of the collected individual 

vehicle data (positions at every 0.1 seconds of all vehicles) provides all the 

information necessary to develop statistics such as emissions and fuel 

consumption, which may be used for evaluation,.  

With respect to the transit system, a number of MOPs may be generated 

that are useful to assess the performance of the system both from a 

productivity point of view and the passenger level of service perspective. 

As with general traffic, these MOPs may be in different levels of detail: 

system-wide (e.g. total passenger travel times, number of late trips, driver 

overtime), route segments (e.g. average running speed, travel time distri-

bution), stop (e.g. average dwell times), vehicle and passenger (e.g. wait-

ing times and travel times).  

6.4 Dynamic Traffic Assignment 

MITSIMLab is not designed as a dynamic traffic assignment model and 

does not seek equilibrium travel time and traffic flow solutions automati-

cally. It simulates drivers’ route choice behavior based on input travel 

times and other path attributes. However, in the absence of habitual 

travel times, it requires an alternative method to assign vehicle trips to al-

ternative paths from their origins to their destination. This method would 

consist of two related components: (1) determining the values of path at-

tributes including the perceived link travel times, and (2) computing the 

choice probabilities of the alternative paths. The models used to compute 

the path choice probabilities are described in Section 6.3.2. 

A day-to-day learning process was used with MITSIMLab to estimate the 

congested link travel times. Multiple simulation runs were made. Each run 

represented a day. Travel times were updated as the weighted sum of the 
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expected and experienced travel times from the current day (simulation 

run): 

( ) ( ) ( ) ( )1 ( ) ( )ˆ 1 0,1, ...
k k kk k

it it it
c c c kλ λ+ = + − =    (6.5) 

where the indices i, t, and k are for the link, time interval and simulation 

iteration (day), respectively. ( )ˆ
k

itc  and ( )k

itc  are the input (expected) and 

output (experienced) link travel times respectively. ( )kλ  is a weighting pa-

rameter for iteration k, which may be determined for example, according 

to the method of successive averages (Sheffi and Powell, 1982). 

To support this functionality and to model response to real-time infor-

mation, MITSIMLab maintains two time-variant travel time tables. The 

first represents the historical travel time associated with habitual route 

choices (input from another model or study, or generated through the 

process outlined above). The second consists of the updated link travel 

times based on the real-time information system (if one is available).  

6.5 Calibration and Validation  

This section outlines the methodology that has been developed and ap-

plied for the calibration and validation of MITSIMLab, and the imple-

mented behavioral models.  

6.5.1 Overall Framework 

Figure 6.7 illustrates the framework used for the model calibration and 

validation. The process uses both disaggregate and aggregate data. In the 

disaggregate calibration (or model estimation) phase, the behavioral 

model components (e.g. acceleration, lane changing and route choice 

models) are estimated using detailed data at the individual user level. For 

driving behavior models, the required data are vehicle trajectories at a 

high time resolution. For route choice models, the necessary data are the 

routes individual travelers have chosen. This estimation approach does 

not use traffic simulators, making the estimated models simulator inde-

pendent.  
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In the aggregate calibration phase, the estimated models are calibrated 

jointly with other model components within MITSIMLab. This phase is al-

so crucial if MITSIMLab is applied in a network where detailed trajectory 

data is not available, but aggregate data such as sensor counts and speeds 

are available. Part of the aggregate dataset is used to adjust key parame-

ters in the behavior models and to estimate the travel demand on the 

case study network. This aggregate calibration problem is formulated as 

an optimization problem, which seeks to minimize a function of the devia-

tion of the simulated traffic measurements from the observed measure-

ments and of the deviation of calibrated values from their a priori esti-

mates, if available (Toledo et al. 2004, Balakrishna et al. 2007b). The rest 

of the data (to the extent possible, collected under different conditions) 

are used for the validation, which is based on comparisons of MOPs, cal-

culated from the available data (e.g. sensor speeds and flows, the distri-

bution of vehicles among the lanes, amount and locations of lane chang-

es) with the corresponding values generated from the simulation runs.  
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Fig. 6.7. Calibration and validation framework 

6.5.2 Disaggregate Model Estimation 

The disaggregate model estimation methodology is demonstrated 

through the estimation of a lane changing model, which consists of driv-

ers’ lane selection and gap acceptance decisions (a simplified version of 

the model presented in Figure 6.4). The specifications of the various com-

ponents of this model are presented next, along with the resulting likeli-

hood function to be maximized in the estimation. 

The lane-changing maneuver is modeled as a two-stage process: (1) a 

choice of target lane (plan), and (2) a decision to accept available gaps 

(execution of plan). The target lane is the lane the driver perceives as the 

best while accounting for a wide range of factors and goals. A lane-change 

is executed when the available lead and lag gaps are perceived as ac-
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ceptable. An example of the structure of this lane-changing model is 

shown in Figure 6.8. The decision maker is a driver currently in lane 3 of a 

four-lane road. The latent plan is captured by the choice of target lane. 

This latent choice dictates the immediate decisions of the driver: if the 

target lane is the same as the current lane (Lane 3 in this case), no change 

is required. The direction of change is to the right if the target lane is Lane 

4, and to the left if the target lane is either Lane 1 or Lane 2. If the target 

lane choice dictates a lane change, the driver evaluates the gaps in the 

adjacent lane corresponding to the direction of change and either accepts 

the available gap and moves to the adjacent lane or rejects the available 

gap and stays in the current lane. In the trajectory data, the target lane 

choice is not observed. Only completed lane changes (or no changes) are 

observed. In Figure 6.8, latent choices are shown as ovals and observed 

choices are represented as rectangles. 

 

 

Fig. 6.8. Structure of the simplified lane-changing model 

The latent plan choice is captured by the target lane. The target lane 

choice set constitutes of all the available lanes the driver may travel in. 

The driver chooses the lane with the highest utility as the target. Howev-

er, utilities are unobserved and modeled as random variables: 

int int i i n int
U X β αυ ε= + +      (6.6) 
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where 
int

U  is the utility of lane i to individual n at time t. 
int

X  and 
i

β  are a 

vector of explanatory variables affecting the lane utility and the corre-

sponding vector of parameters, respectively. 
n

υ  and 
i

α  are an individual-

specific error term and the corresponding parameter. 
int

ε  is a random er-

ror.  

Different choice models are obtained depending on the assumptions for 

the distribution of 
int

ε : 

( ) ( ), , ,
int n i int i i n

P TL g Xυ β α υ=     (6.7) 

where (.)
i

g  is the function denoting the target lane choice. 

The choice of target lane i dictates the change direction, 
i

d  if one is re-

quired. If the current lane is also the target lane, no change is needed. 

Otherwise, the change will be in the direction of the target lane.  

The gap acceptance model captures drivers' decisions in executing the 

chosen plan. That is, whether or not the available gap in an adjacent lane 

can be used to complete the desired lane change. To make this decision, 

the driver evaluates the available lead and lag gaps, which are defined by 

the free spacing between the subject and the lead and lag vehicles in the 

adjacent lane, respectively. The gap acceptance model assumes that the 

driver must accept both the lead and lag gap to change lanes. The proba-

bility of changing lanes, conditional on the individual-specific term and 

the direction of change is given by: 

( )
( ) ( )

,

accept lead gap , accept lag gap ,

nt nt n

nt n nt n

P l d d

P d P d

υ

υ υ

= =

=
  (6.8) 

where, { }, ,ntd Right Current Left∈  is the direction of change as determined 

by the target lane choice. 
nt

l  is the lane-changing action.  
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The joint probability density of a combination of target lane (TL) and lane 

action (l) observed for driver n at time t, and the individual-specific char-

acteristic, 
n

υ  is given by:  

( ) ( ) ( ), . ,
int nt n int n nt int n

P TL l P TL P l TLυ υ υ=    (6.9) 

where, ( )|
int

P TL ⋅  and ( )|ntP l ⋅  are given by Equations (6.7) and (6.8), re-

spectively. 

Only the driver’s lane-changing actions are observed over the sequence of 

observations. Assuming that, conditional on 
n

υ , these observations are 

independent, the joint probability of the sequence of observation for a 

given driver, 
n

l , is given by: 

( ) ( )
1

,
nT

n jnt nt n

t j TL

P P TL lυ υ
= ∈

=∏∑n
l     (6.10) 

The unconditional probability of observing the sequence of lane changes 

by an individual n is obtained by integrating over the distributions of the 

unobserved individual-specific variables:  

( ) ( ) ( )n n
L P P f d

υ

υ υ υ= = ∫n n
l l     (6.11) 

Assuming that the observations from different drivers are independent, 

the log-likelihood function for all N individuals observed is given by the 

formula below.  The model parameters are estimated by maximizing this 

function. 

1

ln( )
N

n

n

L L
=

=∑        (6.12) 

The results from applying the methodology are presented through the 

gap acceptance parameters. The assumption is that the driver evaluates 

the available adjacent gap in the target lane and decides whether the lane 

change is possible through the gap acceptance functions. The available 

lead and lag gaps must be larger than the corresponding critical gaps to 
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be acceptable. The critical gaps (i.e. the smallest gaps a driver is willing to 

accept) are assumed to follow the lognormal distribution. The mean of 

the distribution is a function of explanatory variables:  

ln( )lead cr lead lead lead lead

lnt lnt n lnt
G X β α υ ε= + +     (6.13) 

ln( )lag cr lag lag lag lag

lnt lnt n lnt
G X β α υ ε= + +     (6.14) 

where, lead cr

lnt
G  and lag cr

lnt
G  are the lead and lag critical gaps in target lane l, 

respectively. lead

lnt
X  and lag

lnt
X are explanatory variables that affect the criti-

cal gaps. leadβ  and lagβ  are the corresponding parameters.  
n

υ  is an indi-

vidual-specific latent variable that captures the correlations among deci-

sions made by the same driver over time and choice dimensions. leadα  

and lagα  are the coefficients of this latent variable. lead

lnt
ε  and lag

lnt
ε  are ran-

dom terms: ( )2~ 0,lead

lnt lead
Nε σ , ( )2~ 0,lag

lnt lag
Nε σ  

The variables that have a significant impact on the critical gaps 

are the relative speeds with respect to the lead and lag vehicles. The es-

timated lead and lag gaps were: 

( )
( )

 
1.541 6.210 0,

exp
0.130 0, 0.008

lead

lntlead cr

lnt
lead lead

lnt n lnt

Max V
G

Min V υ ε

 − ∆ −
 =
 − ∆ − +    

(6.15) 

( )( ) exp 1.426 0.640 0, 0.240lag cr lag lag

lnt lnt n lnt
G Max V υ ε= + ∆ − +  (6.16) 

where, lead

lnt
V∆  and lag

lnt
V∆  are the relative speeds with respect to the lead 

and lag vehicles, respectively.  

The lead critical gap decreases with the relative lead speed (i.e. it is larger 

when the subject vehicle is faster relative to the lead vehicle). The effect 

of the relative speed is strongest when the lead vehicle is faster than the 

subject. In this case, the lead critical gap quickly diminishes as a function 

of the speed difference. This shows that drivers perceive very little risk 

from the lead vehicle when it is getting away from them.  



26  

In the gap acceptance model, the lag critical gap increases with the rela-

tive lag speed: the faster the lag vehicle is relative to the subject, the larg-

er the lag critical gap. In contrast to the lead critical gap, the lag gap does 

not diminish when the subject is faster. A possible explanation is that 

drivers maintain a minimum critical lag gap as a safety buffer since their 

perception of the lag gap, through mirrors, is not as reliable as their per-

ception of the lead gap. Estimated coefficients of the unobserved driver 

characteristics variable,
n

υ , are negative for lead and lag critical gaps. This 

is consistent with the interpretation of 
n

υ  as being negatively correlated 

with aggressive drivers who require smaller gaps for lane changing (for 

detailed results see Toledo et al., 2005). 

 

6.5.3 Aggregate Calibration 

This section presents a mathematical formulation and solution approach-

es to the aggregate calibration problem. The methodology is appropriate 

for the simultaneous calibration of supply and demand parameters and 

inputs to microscopic traffic simulation models.  

Let the time period of interest be divided into intervals 1,2,h H= … . Let 

h
X  denote the vector of OD flows departing their respective origins dur-

ing time interval h. Let β  be the vector of simulation model parameters 

(possibly also time-varying) that need to be calibrated together with the 

OD flows. The calibration problem may then be formulated mathematical-

ly in the following optimization framework: 

( ) ( ) ( )1 1 2 3

1

( , , , ) , , ,
H

a a

H h h h h

h

Minimize z z z z
=

 = + + ∑x x β M x x β β… M          (6.17) 

subject to  

( )
{ }

1 1
, , , , , ,

1, 2, ,

h h h

x x

h h h

f G G

l u h H

l u
β β

= 


≤ ≤ ∀ ∈
≤ ≤ 

x x β

x

β

… …

…

M

  (6.18) 
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where 
h

M  and 
h

M  are the observed and simulated sensor measurements 

for interval h; a

h
x  and a

β  are a priori values corresponding to 
h

x  and β ; 

z1, z2 and z3 are goodness-of-fit functions. F( ), the simulation model, is a 

function of the unknown OD flows and model parameters β ,,,, and network 

Gh. The network may vary from time period to time period due to acci-

dents, etc, and hence is presented as time-dependent Gh. x

h
l , l

β , x

h
u  and 

u
β  represent lower and upper bounds on the OD flows and model pa-

rameters.  

The a priori values can ensure reasonable calibrated estimates. They may 

be based on the modeler’s experience and judgment from past studies, or 

transferred appropriately from similar studies. This problem formulation 

introduces the flexibility to incorporate other traffic measurements be-

yond the standard link counts. For example, speeds, occupancies or travel 

times may be used. All model inputs and parameters of interest may be 

calibrated simultaneously, using all information from the available meas-

urements, without iterating between various parameter subsets. 

To solve the resulting large-scale optimization problem, the simultaneous 

perturbation stochastic approximation (SPSA) algorithm developed by 

Spall (1998, 1999) has been used. The method performs well computa-

tionally and in terms of the solution quality. Further details on the aggre-

gate calibration problem and the solution approaches are presented in 

Balakrishna et al., 2007a. 

The methodology outlined above is illustrated through a case study, 

based on a network in Lower Westchester County, NY (Figure 6.9). This 

network is heavily congested, especially during commute periods. Truck 

traffic is prohibited from parkways. Given the significant truck percentage 

in the network traffic, passenger cars and truck demand were treated in-

dependently by calibrating multi-class demand matrices.  
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Fig. 6.9. The case study network showing sensor locations used for calibration 

The network representation of the study area comprises of 1767 directed 

links and 482 OD pairs. The data for the calibration process included 

count data from 33 sensors shown in Figure 6.9, and an all-day static OD 

matrix. Disaggregate data on individual vehicles passing through toll pla-

zas were also available. These observations also contained vehicle class 

information.  A time-dependent OD matrix was estimated for all vehicles 

using the SPSA algorithm. This demand was further decomposed into two 

components (passenger cars and trucks) prior to being input into MITSIM-

Lab using the time-dependent observed vehicle mix from the toll-plaza 

data. The normalized root mean squared error, root mean squared per-

cent error (RMSPE), mean percent error (MPE), and Theil’s coefficient 

were used as goodness of fit statistics to evaluate the calibrated model.  
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The normalized root mean square error (RMSN) and root mean square 

percent error (RMSPE) quantify the overall error of the simulator. These 

measures penalize large errors at a higher rate than small errors. The 

mean percent error (MPE) statistic indicates the existence of systematic 

under- or over-prediction in the simulated measurements.   

( )2

1

1

N
s o

n n

n

N
o

n

n

N Y Y

RMSNE

Y

=

=

−
=

∑

∑
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Where, N is the number of observations, o

n
Y  and s

n
Y  are an observation 

and the corresponding simulated value, respectively.  

Theil’s inequality coefficient is a measure of relative error given by: 

( )

( ) ( )

2

1

2 2

1 1

1

1 1

N
s o

n n

n

N N
s o

n n

n n

Y Y
N

U

Y Y
N N

=

= =

−
=

+

∑

∑ ∑
  (6.22) 

U is bounded between zero and one (where U = 0 implies perfect fit be-

tween observed and simulated measurements). Theil's inequality coeffi-

cient may be decomposed into three proportions of inequality, the bias 

(U
M

), the variance (U
S
), and the covariance (U

C
) proportions (their sum is 

equal to 1): 

( )
( )

2

2

1

1

s o

M

N
s o

n n

n

Y Y
U

Y Y
N =

−
=

−∑
    (6.23) 
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( )
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where, ρ is the correlation between the two sets of measurements; s
s
 and 

s
o
 are the standard deviations of the average simulated and observed 

measurements, respectively and sY and oY  are their expected values.  

The bias proportion reflects the systematic error. The variance proportion 

indicates how well the model replicates the variability in the observed da-

ta. These two proportions should be kept as close to zero as possible. The 

covariance proportion measures the remaining error and therefore 

should be close to 1.  

Table 6.1 compares the values of the above statistics for the calibrated 

model and to the values from the initial demand case.  All measures im-

proved over the initial values, especially the bias measures.   

Table 6.1. Goodness of fit statistics for the case study network 

Statistic Calibrated model Model with a-priori demand 

RMSPE (%) 22.1 41.6 

RMSNE (%) 23.1 47.6 

MPE (%) -5.3 -28.9 

Theil’s coefficient U  

   Bias proportion 

   Variance propor-

tion 

0.113 

0.116 

0.015 

0.264 

0.461 

0.020 
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6.5.4 Validation 

MITSIMLab has been validated in a number of studies. This section dis-

cusses the results from a validation study in Stockholm, Sweden. The 

study used a mixed urban-freeway network in the Brunnsviken area, 

north of the CBD, shown in Figure 6.10. It contains the E4 motorway con-

necting the northern suburbs to the CBD. A parallel arterial is also includ-

ed. These routes experience heavy congestion during the AM peak peri-

od. Sensor data from May 1999 were used to calibrate MITSIMLab. 

Similar data was collected a year later for validation. Measurements of 

point-to-point travel times and queue lengths by probe vehicles and from 

aerial photography were also available for validation. Sensor and other 

measurement locations are shown in Figure 6.10. A static AM peak OD 

flows matrix, previously developed for planning studies, was used in the 

OD estimation.  

The model validation used the comparison of measured and simulated 

traffic flows, travel times, and queue lengths during two hours of the AM 

peak data from May 2000 at 15 min. intervals. The traffic flows were also 

used in the estimation of OD matrices for this period. Figure 6.11 com-

pares average simulated travel times and individual probe vehicle obser-

vations for the inbound section CD, which was the most congested during 

this period. The section also includes a bus lane for buses and other 

commercial vehicles. In general, simulated travel times match observed 

travel times well. 
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Fig. 6.11. Point-to-point travel time validation results (section CD) 

Similarly, Figure 6.12 presents the validation results for the queue lengths 

measured by the probe vehicles and from aerial photographs. Queues are 

represented in the simulation both by magnitude and time of occurrence.  

 

 

Fig. 6.12. Queue length validation results (location D) 

6.6 Extended Modeling Capabilities: Working with External Ap-

plications 

MITSIMLab has been integrated with a number of external applications. 

This section presents two cases: the use of MITSIMLab to evaluate the 

performance of DynaMIT, a dynamic traffic assignment (DTA) and traffic 

predictions generation tool; and the integration of MITSIMLab with a 

mesoscopic traffic simulation model to create a hybrid model.  
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6.6.1 Closed Loop with DynaMIT  

MITSIMLab provides a controlled environment to conduct objective eval-

uations of advanced ITS concepts, such as DTA-based traffic prediction 

and information generation. MITSIMLab was integrated with DynaMIT 

(Dynamic Network Assignment for the Management of Information to 

Travelers) in a closed loop system (Balakrishna et al. 2005). DynaMIT is a 

model system for (real time) traffic estimation and prediction. A detailed 

description of DynaMIT is provided in Chapter 10 of this book. 

The closed-loop system provides a framework for off-line evaluation of 

dynamic traffic management systems such as DynaMIT.  In the closed 

loop evaluation MITSIMLab replaces the real world. Figure 6.13 illustrates 

this evaluation framework and the interactions between the two applica-

tions.  

 

 

Fig. 6.13. MITSIMLab-DynaMIT closed loop evaluation framework 

The two models are run in parallel using the same network and scenario 

database. Traffic data from the simulated surveillance system in MITSIM-

Lab are transmitted in real-time to DynaMIT. Prediction-based guidance is 
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passed back to the control and routing devices simulated in the TMS, and 

then to equipped drivers in MITSIMLab. The drivers' reactions to the dis-

seminated information and changes in the control system are reflected in 

subsequent traffic flows, which are measured by the simulated surveil-

lance system and transferred to DynaMIT for the next prediction genera-

tion step. Network performance measures are computed to assess the ef-

fectiveness of the guidance and dissemination system. The integration of 

DynaMIT within TMS is similar to the interface between DynaMIT and a 

real traffic control center.  

The advantage of the closed loop laboratory is that it allows great flexibil-

ity in performance evaluations. The testing of advanced traveler infor-

mation systems, in response to various parameters and design character-

istics is an example: 

• Modeling errors. DynaMIT uses a number of models to simulate the 

demand aspects of the transportation system (e.g. route choice, depar-

ture times) and network performance (e.g. queue formation and dissi-

pation). MITSIMLab also uses OD flows and travel behavior models (i.e. 

route choice). The error associated with the models used by DynaMIT 

(compared to the “true” behavior in MITSIMLab) can be controlled, 

and its impact on the effectiveness of the system assessed. 

• Design parameters. A number of design parameters influence the ef-

fectiveness of the system. Examples of such parameters of interest in-

clude the prediction horizon, the frequency of updating the traffic in-

formation, and the time resolution of the provided guidance. 

• Computational delay. Many strategies are computationally demanding. 

The time to generate a new strategy for implementation depends on 

the size of the network and the available computational resources. The 

laboratory tests the effectiveness of the system as a function of the 

computational delay. 

• Design of the surveillance system. The impact of the location, type, and 

number of sensors can be assessed.  In addition, sensors are assigned 

an (measurement) error attribute, allowing for the evaluation of the 

surveillance system characteristics. The impact of the accuracy of in-
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formation with respect to incidents and their severity on the effective-

ness of the system can also be evaluated. Typically, incident infor-

mation may be delayed, and duration uncertain. 

• Communication system and interfaces. Important aspects of the com-

munications between the various elements of the system can be mod-

eled, and their significance assessed. Such parameters include latency 

in information transmission, and errors and noise in the information, 

etc. 

6.6.2 Hybrid Simulation 

Microscopic simulation models provide a detailed representation of the 

traffic process. Other types of traffic simulation models, namely macro-

scopic and mesoscopic, capture traffic dynamics in less detail. But they 

require less input data preparation, and can simulate large scale networks 

efficiently (from a computational point of view). Hybrid simulations com-

bine mesoscopic or macroscopic models for most of the network; and mi-

croscopic models in the areas of interest. Hybrid models have the ad-

vantages of both types of simulation since they combine high fidelity 

micro-simulation in areas of particular interest, with meso-simulation of 

the surrounding areas (in order to represent routing decisions more accu-

rately). Another advantage of the integration is that it reduces the com-

putational requirements and the data collection and calibration effort of 

the overall model.  

An important aspect in developing a hybrid meso-micro traffic simulation 

model is the identification and implementation of conditions for con-

sistent interfaces between the two components. These conditions range 

from structural compatibility issues in terms of modeling traffic flows in 

the two models, to consistency of traffic dynamics at the meso-micro 

boundaries, to compatibility of route choice (see Burghout et al. 2005).  

Burghout (2006) integrated MITSIMLab with Mezzo, a mesoscopic model, 

to illustrate the principles of integration and its advantages. The hybrid 

simulation model was demonstrated through its application to the 

Brunnsviken network in Stockholm. The network was divided into a 
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mesoscopic part in the north, which consists mainly of freeways, and a 

microscopic part in the south, which consists of complex intersections 

with coordinated signal control and a large roundabout as shown in Fig-

ure 6.14.  

 

Meso 

Micro 

 

Fig. 6.14. Hybrid model for the Brunnsviken network 

Table 6.2 summarizes the fit of the simulated flows in the hybrid model to 

field observations and compares it against standalone applications of 

MITSIMLab and Mezzo. The RMSPE and Theil’s coefficient statistics indi-

cate that MITSIMLab provides the best fit. But, the hybrid simulation out-

performs the mesoscopic model and only suffers a slight reduction in fit. 

Using the hybrid model improves the fit compared to the mesoscopic 

one, in the microscopic part of the network and in the mesoscopic part. 

Using Theil’s proportions to break down the error shows that the 

mesoscopic model has a larger systematic error compared to the hybrid 

model. The computational time for the hybrid model is also superior. This 

difference is expected to increase as the network grows. 

Table 6.2. Results of various models 

Statistic MITSIMLab Mezzo Hybrid 
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RMSPE (%) 

    Entire network 

    Meso part 

    Micro part 

 

12 

10 

14 

 

16 

13 

18 

 

15 

11 

17 

Theil’s coefficient U  

    Bias proportion 

    Variance propor-

tion 

0.051 

0.001 

0.010 

0.055 

0.147 

0.002 

0.054 

0.075 

0.017 

6.7 Advanced Case Studies and Applications 

6.7.1 ATIS evaluation and design 

The closed-loop system from section 6.6.1 was used to evaluate several 

design aspects of information generation systems. The case study de-

tailed in Balakrishna et al. (2005) explores the impacts of several factors 

including the guidance penetration rate (i.e. fraction of drivers with ac-

cess to the information), the frequency of information update, and errors 

in the quality and effectiveness of travel time guidance generated by the 

demand prediction and route choice model. The case study uses the Cen-

tral Artery/Tunnel network in Boston, shown in Figure 6.15. This network 

consists of 182 nodes and 211 links.  
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Fig. 6.15. The Central Artery/Tunnel network (source: 

http://www.masspike.com/bigdig/multimedia/plans.html 

The case study included the AM peak period starting at 7:00 AM. At 7:10 

AM, an incident occurred in the Ted Williams Tunnel, blocking one lane 

and reducing the speed on the other lane. The incident lasted 20 minutes. 

Approximately 3500 vehicles per hour flow through the Ted Williams 

Tunnel. The simulated incident created substantial delays to travelers. 

The simulation lasted until 8:45 AM to ensure that traffic conditions were 

returned to normal after the end of the incident.  

Guided drivers are assumed to have access to descriptive information in 

their vehicles. Various values of the percentage of guided vehicles (0%, 

20%, 30%, 50%, 70% and 100%) were tested. The results are summarized 

in Figure 6.16. The results indicate decreasing average travel times as the 
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percentage of guided drivers increases. Some over-reaction was indicated 

by the slight increase in travel times as the guided fraction increased be-

yond 70%. Predictive guidance does not eliminate over-reaction due to 

the discrete nature of the representation of the problem, as well as mod-

eling and algorithmic approximations. For example, the results indicate 

that when the update frequency decreases, the shorter update intervals 

allow the system to quickly adjust to changing network conditions, and 

the impact of over-reaction is almost eliminated. This result highlights the 

need for better, more accurate anticipatory traveler information that ac-

counts for future demands and driver behavior. 

 

Fig. 6.16. Effect of guidance penetration rate 

For this case study, MITSIMLab and DynaMIT use the same OD matrices 

and route choice model based on the path-size logit structure to repre-

sent travel demand. It is unrealistic to expect that guidance generation 

models to perfectly estimate demand and predict route choices. The im-

pact of errors in these factors was assessed by introducing errors in the 
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predicted OD flows. Travel time coefficients used in DynaMIT’s route 

choice model were also modified to include an error relative to the “true” 

value used in MITSIMLab. Table 6.3 summarizes the average travel times 

in the network for the different scenarios. The results indicate that the ef-

fectiveness of the system, as measured by the average travel times, is in-

fluenced by the demand and route choice prediction errors used in Dy-

naMIT. The combined effect of error in the OD matrix and the route 

choice model is greater than the sum of the effects of the two individual 

sources of error. Differences between these results and those from previ-

ous studies may reflect the network specifics, demand characteristics, as-

sumptions of the ATIS design, and the overall structure of the evaluation 

methodology. The differences also underline the importance of the simu-

lation-based laboratory for detailed evaluations. 

Table 6.3. Effect of errors in the demand on the average travel times (sec) 

 Route choice parameter error 

OD prediction error 0 -20% +20% 

0 618 620 627 

+20% 625 633 634 

6.7.2 Evaluation of Advanced Signal Priority Strategies 

This case study evaluates bus operations through various conditional sig-

nal priority strategies for a Bus Rapid Transit (BRT) line in an urban net-

work in Stockholm, Sweden. The time period of interest is 7:30-8:30 AM. 

The BRT routes are served by articulated buses equipped with GPS-based 

AVL systems. The study area is shown in Figure 6.17. Traffic in the side-

streets crossing the three arterials is relatively low compared to traffic on 

the three arterials. There are seven signalized intersections in the study 

area. One of them is a signalized pedestrian and bicycle crossing. Three 

local lines and one BRT line operate in this section. Local buses have 15-

minute headways during the peak periods, and the BRT articulated buses 

operate with 7.5-minute headways. The local and BRT services share the 

bus stops.   
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The purpose of the case study is to evaluate the extent to which transit 

signal priorities improve the performance of the bus lines, and to assess 

its impact on the general traffic in the section. Four priority implementa-

tions are compared: (1) no priority (base case), (2) unconditional priority, 

(3) conditional priority only for buses with more than 30 passengers and 

(4) conditional priority only for buses with headways that exceed 7.5 

minutes. A sensitivity analysis that explores the effects of increased side 

street demand is also conducted. 

 

Fig. 6.17. Study network showing bus routes, stops and signalized intersections 

Figure 6.18 summarizes the main results. The top part of the figure shows 

the results for the base-case demand. The average vehicle travel times 

are shown for different groups of vehicles: all vehicles, BRT, and vehicles 

crossing the section from the side-streets. Average BRT travel times de-

creased as the priority conditions became less restrictive. The lowest av-

erage travel times occurred under unconditional priority. The signal prior-

ity reduced the variability of BRT travel times. The conditional priority 

strategies can achieve similar BRT travel times compared to the uncondi-
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tional priority without granting priority quite as often. With the relatively 

low base-case demand, the change in average travel time for side-street 

vehicles is small. It does not support general conclusions about the 

tradeoffs between transit travel time savings and side-street travel time 

penalties. Additional simulations were run with a 40% increase in side-

street demand. The results are shown in the bottom part of Figure 6.18. 

The load-based conditional priority yields BRT travel times that are similar 

to the BRT travel times under unconditional priority. The improvements in 

BRT travel times under conditional priority have considerably lower ad-

verse impacts on side-street traffic.  
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Fig. 6.18. Signal priority impact on travel times: base case (top), increased side-street demand 

(bottom) 

6.8 Advanced Modeling Details 

In recent years, the driving behavior models in MITSIMLab have improved 

in their fidelity to freeway and urban sections under congested condi-

tions. This section presents two developments: the freeway merging 

model, and the lane-choice and lane changing model for urban arterials.  
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6.8.1 Freeway Merging Model 

This application deals with drivers’ merging behavior when entering free-

ways. Traditional merging models are based on gap acceptance, i.e., driv-

ers merge when an acceptable gap is available. However, in congested 

traffic, acceptable gaps are often unavailable and more complex merging 

phenomena are observed. Drivers may merge through courtesy of the lag 

driver in the target lane or become impatient and decide to force merge, 

compelling the lag driver to slow down.  

To capture this behavior, drivers’ selection of a merging tactic needs to be 

included in the model. The decision framework is presented in Figure 

6.19. At each time interval, drivers select a merging plan (tactic) and de-

cide whether they can use this tactic to merge. Critical gaps depend on 

the chosen plan. The merging plan may evolve dynamically with changing 

conditions. For example, a driver may initially try to merge normally. But 

as the driver approaches the end of the merging lane, he may decide to 

force merge. The probabilities of transitioning between plans are affected 

by the risk associated with the merge, the characteristics of the driver 

such as patience level, urgency, and aggressiveness as well as inertia to 

continue the previously chosen merging tactic (state dependence). These 

effects are captured by variables such as relative speed and acceleration 

of the mainline vehicles, delay associated with the merge, density of traf-

fic, distance from the end of the merging lane, etc.  
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Fig. 6.19. Framework of the merging model 

The parameters of the model were estimated with trajectory data col-

lected from I-80 in California (NGSIM 2004) using the maximum likelihood 

method. In the trajectory data, only the final execution of the merge is 

observed. The sequences of tactics drivers applied are unobserved. A 

Hidden Markov Model formulation is used to model these latent tactics. 

Estimation results showed that the inclusion of the three merging tactics 

and the differences in critical gaps associated is justified by the data. The 

final results showed that drivers are willing to accept smaller lead and lag 

gaps if they perceive that the lag vehicle is courtesy yielding.  
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Fig. 6.20. Comparison of location of merges 

To demonstrate the benefits of including latent plans, the model de-

scribed above was compared against a reduced model that does not in-

corporate latent tactics. In this model, instantaneous single-level gap ac-

ceptance was used. The latent plan model showed a significantly better 

goodness-of-fit in statistical tests. Both models were implemented in 

MITSIMLab for evaluation using data from a section of US 101 in Califor-

nia (NGSIM 2005). The validation results for the location of merges are 

presented in Figure 6.20. The latent plan model more realistically repli-

cated the observations on lane-specific flows, speeds and the locations of 

merges. The detailed model structure, estimation and validation results 

are presented in Choudhury et al. (2007). 

6.8.2 Arterial Lane Changing Model 

MITSIMLab has been extended to incorporate a number of integrated 

driving behavior models appropriate for urban streets. Arterial corridors 

exhibit a set of varied driving activities that differ by lane and location. 

These activities encompass trip destination activities (e.g. parking, enter-

ing transit stops, right turns, left turns), trip origination activities (e.g. exit-

ing a parking spot, exiting transit stops), and complex routing behaviors 

(e.g. permissive left turns, pedestrian-impeded right turns). Drivers famil-

iar with the network may be aware of these activities and their likely loca-
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tions. They often make appropriate tactical lane positioning decisions to 

minimize their travel times and driving efforts. The ‘look-ahead’ or ‘plan-

ahead’ distances (i.e. how far downstream do drivers “see” in advance) 

can vary significantly among drivers depending on their individual traits 

(e.g. planning capability) as well as their experience and familiarity with 

the network.  

This look-ahead distance and the associated heterogeneity can substan-

tially affect lane changing behavior in urban arterials, and was explicitly 

accounted for in the arterial lane changing model. The model also cap-

tures the time required to complete the lane change (the time elapsed 

from the instant an adjacent gap is found to be acceptable to the instant 

the driver physically moves to the new lane) by introducing an additional 

level that captures the decision to execute/complete the lane change 

(Figure 6.21). This shows that although a gap is acceptable, the actual ex-

ecution of the lane change can depend on different factors (e.g. type and 

speed of the vehicle, trend of the change in gap size etc.).  

The parameters of the model were estimated with trajectory data col-

lected from Lankershim Boulevard in Los Angeles using the maximum like-

lihood method. Estimation results showed that the path-plan considera-

tions, inertia effect and lane attributes (e.g. queue-ahead variable in 

particular) are pre-dominant factors behind arterial lane changing deci-

sions as opposed to neighborhood conditions (speed and spacing of adja-

cent vehicles). The driver’s look-ahead distance is normally distributed 

between within 50m to 500m. In the lane-change execution model, the 

results showed that drivers tend to execute the lane change faster if the 

speed of the subject vehicle is high and/or if the corresponding adjacent 

gap is reducing (the lag vehicle is faster than the lead vehicle). A compari-

son of estimation results indicates that addressing the heterogeneity in 

plan-ahead distances and the execution of the lane change significantly 

improves the fit to the observations. 
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Fig. 6.21. Arterial lane changing model 

This was further strengthened by a validation case study within MITSIM-

Lab, where the simulation outputs of the urban lane selection model 

were compared with the MITSIMLab lane changing for freeway traffic 

models. The results indicated a significant improvement in replicating ve-

hicle distribution among lanes, at mid-sections in particular. The compari-

son of lane distributions at mid and end sections obtained from each of 

the models are presented in Figure 6.22.  The detailed model structure, 

estimation and validation results are presented in Choudhury et al. 

(2008). 
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Fig. 6.22. Comparison of vehicle lane distributions 
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