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Abstract 

This paper develops, implements and tests a framework for driving behavior modeling 

that integrates the various decisions, such as acceleration, lane changing and gap 

acceptance.  Furthermore, the proposed framework is based on the concepts of short-term 

goal and short-term plan. Drivers are assumed to conceive and perform short-term plans 

in order to accomplish short-term goals. This behavioral framework supports a more 

realistic representation of the driving task, since it captures drivers' planning capabilities 

and allows decisions to be based on anticipated future conditions.  

 

An integrated driving behavior model, which utilizes these concepts, is developed. The 

model captures both lane changing and acceleration behaviors. The driver's short-term 

goal is defined by the target lane. Drivers who wish to change lanes but cannot change 

lanes immediately, select a short-term plan to perform the desired lane change. Short-

term plans are defined by the various gaps in traffic in the target lane. Drivers adapt their 

acceleration behavior to facilitate the lane change using the target gap. Hence, inter-

dependencies between lane changing and acceleration behaviors are captured.  
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1 Introduction 

Driving behavior models describe vehicles’ movements under different traffic conditions. 

These models include speed/acceleration models and lane changing models. These 

models are an important component of microscopic traffic simulators. They are also 

important to several other application areas, such as safety studies and capacity analysis, 

in which aggregate traffic flow characteristics may be deduced from the behavior of 

individual drivers. Typically, in the literature, these models have been developed 

independently and used as such in microscopic simulation models. 

 

Early driving behavior models focused on car following. These models describe the 

behavior of a vehicle while it is following the vehicle in front of it (the leader). The 

subject vehicle is assumed to react to the leader's actions (see reviews in Rothery 1997, 

Brackstone and McDonald 1999). More recently, the advent of microscopic traffic 

simulation models lead to the development of general acceleration models, which also 

capture the behavior of drivers that do no closely follow their leaders, and to interest in 

lane changing behavior. General acceleration models (e.g. Wiedemann 1974, Gipps 1981, 

Benekohal and Treiterer 1988, Yang and Koutsopoulos 1996, Zhang et al. 1998, Ahmed 

1999) define multiple driving regimes, such as free-flow, emergency and various types of 

car following (e.g. acceleration and deceleration or reactive and non-reactive), and 

assume different behaviors in each regime. For example, drivers in the free-flow 

acceleration regime may focus on attaining their desired speed. However, the acceleration 

decisions are modeled independently. The impact of other driving goals and decisions, 

such as lane changing, on acceleration behavior has not been modeled in literature.  
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Lane changing models (e.g. Gipps 1986, Ahmed et al. 1996, Hidas and Behbahanizadeh 

1998, Zhang et al. 1998, Ahmed 1999, Salvucci et al. 2001), were also developed 

independently, and typically include two components: the decision to consider a lane 

change and the decision to execute the lane change. Lane changes are often classified as 

either mandatory (MLC) or discretionary (DLC). MLC are performed when the driver 

must leave the current lane. DLC are performed in order to improve driving conditions. 

Gap acceptance models are used to model the execution of lane changes. The 

classification of lane changes as either MLC or DLC does not allow trade-offs between 

mandatory and discretionary considerations to be modeled. The result is a rigid behavior 

structure that does not permit, for example, overtaking in MLC situations. Toledo et al. 

(2003) developed a model that integrates MLC and DLC in a single utility framework. 

Their model structure is adopted in this paper as a basis for the lane changing component 

of the integrated model.  

 

Important limitations of current driving behavior models are the assumptions of myopic 

behavior and independent behaviors: most models assume that drivers make 

instantaneous decisions in reaction to current or past traffic conditions, and that different 

driving decisions (e.g. acceleration and lane changing) made and modeled separately. In 

reality, drivers may adapt one dimension of their behavior in order to facilitate their goals 

in other dimensions. This requires drivers to use their anticipation of the behavior of 

other vehicles around them and their own path plan to conceive an action plan and 

execute it over a period of time. This is particularly important in lane changing behavior, 
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in which drivers may anticipate the behavior of other vehicles and adjust their own 

acceleration to facilitate completion of a desired lane change. 

 

The situation described in Figure 1 illustrates this behavior. Suppose that driver A tries to 

change to the right lane (for example, in order to take an off-ramp), and that the total 

lengths of the gaps between vehicles B and C and between vehicles C and D are both 

acceptable. In most current models, A only considers the adjacent gap (C-D). This gap is 

rejected because the lead gap (gap between A and C) is unacceptable, and therefore A 

does not change lanes. If the acceleration A applies is determined by an independent 

acceleration model, which ignores the lane changing goal, the process would be repeated 

in the next time steps until A is able to change lanes. This may result in unrealistic traffic 

flow characteristics. For example, if the speeds of A and C are similar, the lane change 

may not be completed until it becomes urgent. At that point, A will force its way to the 

right lane. This will prompt vehicles behind it to decelerate and may create a shock wave. 

However, in reality, A may adapt its acceleration over a period of time to facilitate the 

lane change. For example, by decelerating to be in a position to accept gap C-D or 

accelerating to be in a position to accept gap B-C. As a result, the simulation may 

underestimate bottleneck capacities and over-predict congestion (e.g. DYMO 1999, 

Abdulhai et al. 1999). Hence, driving behavior models need to be able to capture the 

complexity of human decision-making processes. 

 

<<<< place Figure 1 about here >>>> 
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The objective of this paper is to present an integrated driving behavior model framework, 

which integrates lane changing and acceleration models, captures the inter-dependencies 

between these decisions and recognizes that drivers decisions may be the results of short 

term plans to accomplish their objectives.  The framework is based on the concepts of 

short-term goal and short-term plan. Drivers are assumed to conceive and perform short-

term plans in order to accomplish short-term goals. This behavioral framework captures 

drivers' planning capabilities and allows decisions to be based on anticipated future 

conditions. The model incorporates both lane changing and acceleration decisions and so, 

captures inter-dependencies among these behaviors.  

 

The rest of this paper is organized as follows: we next introduce the concepts that form 

the basis to the proposed modeling framework and the structure of an integrated driving 

behavior model based on these concepts. Section 3 details the formulations of the various 

components within the integrated driving behavior model. Results of two case studies 

that used a microscopic traffic simulator that implements the integrated model are 

presented in section 4. Finally, discussion and conclusion are presented in section 5. 

 

2 Structure of the Integrated Model 

The proposed model explicitly recognizes that drivers have short-term driving goals and 

develop short-term plans to achieve these goals.  Sukthankar (1997) defines a short-term 

plan as a sequence of actions a driver performs in order to complete a desired tactical 

maneuver. This desired maneuver is the short-term goal. More specifically, we define the 

short-term goal by a target lane, which is the lane the driver perceives as best to be in. 
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The short-term plan is defined by a target gap, which the driver intends to use to change 

lane. The acceleration the driver applies is adapted to facilitate the short-term plan. In the 

example described in Figure 1, the short-term goal of A is to move to the right lane. The 

short-term plan may be to use gap B-C to accomplish this goal. The sequence of actions 

required to execute the plan may involve accelerating in order to pass C and then 

accepting the gap B-C.  

 

A detailed model structure based on these notions is shown in Figure 2. It hypothesizes 

four levels of decision-making: target lane, gap acceptance, target gap and acceleration. 

This decision process is latent. The short-term goal (target lane) and short-term plan 

(target gap) are both unobservable. Only the driver's actions (lane changes and 

accelerations) are observed. Latent choices are shown as ovals. Observed choices are 

shown as rectangles. At the top level the driver chooses the target lane. The Current 

branch corresponds to a situation in which the driver decides to stay in the current lane. 

In this case the acceleration behavior will depend on the relations with the vehicle in 

front. In the case that either the right lane or the left lane are chosen (the Right and Left 

branches, respectively), the driver evaluates the adjacent gap in the target lane and 

decides whether this gap is acceptable for lane changing or not. If the gap is accepted 

(Change right or Change left), the lane change is immediately executed and the short-

term goal is accomplished. The acceleration is now affected by the leader in the new lane. 

If the available gap is rejected (No change), the driver evaluates available gaps in the 

target lane and chooses the one that would be used to perform the desired lane change 

(Gap R1 to Gap RK or Gap L1 to GAP LM). The acceleration the driver applies is 
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determined to facilitate the short-term plan (i.e. the driver tries to position the vehicle 

such that the target gap will be acceptable). The acceleration may also be constrained by 

the leader in the current lane since the lane change is not immediate.  

 

This model structure allows state dependency in decisions made over time (e.g. 

persistence) to be directly captured through appropriate specification of the choice 

probabilities at the various levels. For example, the probability of targeting a lane change 

may depend on the lane change goal in previous time steps. An alternative approach, 

which is adopted in the model presented here, is based on the notion of partial short term 

plan (Sukthankar 1997). The model assumes that since the situation drivers face 

constantly changes, they reconsider their decisions at every time step, and so they execute 

one step of the short-term plan, re-evaluate the situation and decide the next action to 

take. With this approach, state dependence is only captured through the explanatory 

variables (e.g. if a driver targeted a lane change and accelerated to facilitate it, it is likely 

that the probability of targeting the same lane change would increase in the next time 

step).  

 

<<<< place Figure 2 about here >>>> 

 

The implementation of the above framework in terms of the specific models used at each 

level should capture the interdependencies and correlations among the various decisions 

made by the same driver. The econometric framework of random utility choice models, 

which can capture these interdependencies and correlations, is utilized in constructing a 
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detailed model based on this structure. The model structure is very general and provides 

several mechanisms to capture interdependencies and correlations. Decisions made at 

lower levels of the decision process are conditional on those made at higher levels (e.g. 

the acceleration behavior is conditional on the short-term plan). The expected maximum 

utilities (EMU) of lower level choices may be introduced in the specification of higher-

level choices in order to capture the effects of the lower level on higher-level decisions. 

The EMU captures the utility that the driver may extract from the lower level choices that 

become available when a higher-level alternative is chosen. For example, the gap 

acceptance EMU represents the likelihood that the driver will be able to execute a lane 

change. If it is introduced in the target lane model, it will capture the effect of gap 

acceptance decisions on the target lane choice.  

 

The data typically available for estimation of the models include detailed vehicle 

trajectories of multiple drivers, which include observations of the speed and location of 

the vehicle at high time resolution. However, it usually does not include information on 

the characteristics of the drivers, such as aggressiveness and level of driving skill. 

Nevertheless, individual-specific latent variables may be introduced in the various 

component models to capture correlations among the decisions made by a given driver 

that are due to these unobserved characteristics. The model assumes that conditional on 

the value of these latent variables, the error terms of different observations are 

independent. Thus, a general expression for the utilities specification is given by:  

( ) ( ) ( ) ( )d d d d d d d

n n n n nU t X t EMU t tβ γ α ν ε= + + +      (1) 
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( )d

nU t  is the utility of decision d to individual n at time t. ( )d

nX t  is a vector of 

explanatory variables. dβ  is a vector of parameters. ( )d

nEMU t  is the expected maximum 

utility of lower level choices that are available if decision d is made. dγ  is the parameter 

of the expected maximum utility. 
n

υ  is an individual-specific latent variable. We assume 

that the distribution of this variable in the population is normalized such that it has a unit 

variance. dα  is the parameter of 
n

υ . ( )d

n tε  is a generic random term with i.i.d. 

distribution across decisions, time and individuals. ( )d

n tε  and 
n

υ  are independent of each 

other. The resulting error structure (see Heckman 1981, Walker 2001 for a detailed 

discussion) is given by: 

( ) ( )( )

( )
( )

2
2

2

d

d

d
d d

n n

d d

if n n , d d  and t t

if n n , d d  and t tcov U t ,U t

if n n , d d  and t

0 otherwise

α σ

α

α α

′
′

′

 ′ ′ ′+ = = =

 ′ ′ ′= = ≠′ = 
 ′ ′= ≠ ∀



   (2) 

2

d
σ  is the variance of ( )d

n tε .  

 

In the acceleration component of the model, reaction times and time headway thresholds 

(that determine the transition between constrained and unconstrained regimes) also 

capture correlations among the various acceleration decisions.   
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3 Model Components 

We now present mathematical formulations of the various components of the integrated 

driving behavior model.  

 

3.1 The target lane model 

At this level, the driver chooses a short-term goal. The short-term goal is defined in terms 

of a target lane (TL). The target lane choice set includes up to three alternatives: The 

driver may decide to stay in the current lane (CL) or to target a change to either the right 

lane (RL) or the left lane (LL).  

 

This decision is formulated as a discrete choice problem. The model integrates mandatory 

and discretionary considerations into a single utility function for each lane. This 

approach, which is based on the model proposed in Toledo et al. (2003), differs from 

most lane changing models in which MLC and DLC situations are treated separately. The 

integrated utility captures trade-offs among the various considerations, and avoids the 

need to define the conditions that trigger an MLC situation. The utilities of the alternative 

target lanes to driver n at time t are given by: 

( ) ( ) ( )
( ) ( ) ( )

lane i lane i lane i

n n n

lane i lane i lane i lane i lane i lane i

n n n n

U t V t t

X t EMU t t

ε

β γ α υ ε

= +

= + + +    
(3) 

{ }, ,lanei CL RL LL∈ . ( )lane i

nV t  are the systematic utilities of the lane i. ( )lane i

n tε  are the 

random terms associated with the lane utilities. ( )lane i

nX t  are vectors of explanatory 



 12

variables. lane iβ  are the corresponding vectors of parameters. ( )lane i

nEMU t  are the 

expected maximum lower level utilities, which capture the impact of the ease of changing 

lanes on the decision to pursue a lane change. lane iγ  are the parameters of the EMUs. nυ  

is an individual specific error term that captures correlations between the observations of 

a single driver over time. lane iα  are the parameters of nυ .  

 

Lane utilities depend on variables that capture path following (e.g. distances to points 

where drivers must be in certain lanes and the number of lane changes needed in order to 

be in these lanes) and immediate conditions in the various lanes ach lane (e.g. speeds of 

the vehicles ahead in each lane and presence of heavy vehicles). Different choice models 

are obtained depending on the assumption made about the distribution of the random 

terms ( )lane i

n tε . For example, assuming that these random terms are i.i.d. Gumbel 

distributed, the target lane choice probabilities, conditional on the individual specific 

error term (
n

υ ) are given by a logit model: 

( )( )
( )( )

( )( )
exp

exp

lane i

n n

n n lane j

n n

j TL

V t
p TL t i

V t

υ
υ

υ
∈

= =
∑

      (4) 

 

3.2 The gap acceptance model 

The gap acceptance model captures the decision whether or not to change lanes using the 

adjacent gap in the target lane. The model assumes that if the adjacent gap is acceptable 

the driver executes the lane change and does not consider any other gaps. This 
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assumption is rooted in satisficing behavior theory (Simon 1955), which states that if an 

available alternative (i.e. changing lanes using the adjacent gap) is satisfactory the driver 

does not try to find a better one.   

 

The adjacent gap in the target lane is defined by the lead and lag vehicles in that lane as 

shown in Figure 3. The lead (lag) gap is the clear spacing between the lead (lag) vehicle 

and the subject vehicle. Note that these gaps may be negative if the vehicles overlap.  

 

<<<< place Figure 3 about here >>>> 

 

The available lead and lag gaps are accepted if they are greater than the corresponding 

critical gaps, which are the minimum acceptable gaps. Critical gaps may be affected by 

variables that capture the driving neighborhood, such as traffic density and the speeds of 

the lead, lag and subject vehicle as well as variables that capture the necessity and 

urgency of the lane change.   

 

The model assumes that both the lead and the lag gaps must be acceptable in order for the 

vehicle to change lanes. Conditional on the individual specific term, the probability of 

accepting the gap and executing a lane change is given by: 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,

change to target lane , 1 ,

accept lead gap , accept lag gap ,

, ,

TL

n n n n n n

TL TL

n n n n n n

lead TL lead TL cr lag TL lag TL cr

n n n n n n n n

p t TL t p l t TL t

p t TL t p t TL t

p G t G t TL t p G t G t TL t

υ υ

υ υ

υ υ

= = =

=

> >

 (5) 
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( ) { }nTL t RL,LL∈  is the target lane. ( )TL

nl t  is the lane changing indicator for the target 

lane, which takes a value of 1 if a change to lane TL is executed at time t, and 0 

otherwise. ( )lead TL

nG t  and ( )lag TL

nG t  are the available lead and lag gap in the target lane, 

respectively. ( ),lead TL cr

nG t  and ( ),lag TL cr

nG t  are the corresponding critical gaps. 

 

Critical gaps vary for different individuals and with the situation. They are modeled as 

random variables whose means are functions of explanatory variables that include the 

speeds of the subject vehicle and the lead and lag vehicles in the target lane. The EMU of 

the lower levels (Target Gap) can be used to capture the impact of opportunities to pursue 

other gaps on the decision to accept the adjacent gap. The individual specific error term 

captures correlations among the critical gaps of the same individual over time. In order to 

ensure that critical gaps are always positive, they are assumed to follow a lognormal 

distribution (see Mahmassani and Sheffi (1980) and Ahmed (1999) for reviews of earlier 

applications of this distribution in modeling critical gaps): 

( )( ) ( ) ( ) ( ),ln lead TL cr lead TL lead lead lead TL lead lead

n n n n n
G t X t EMU t tβ γ α υ ε= + + +   (6)  

( )( ) ( ) ( ) ( ),ln lag TL cr lag TL lag lag lag TL lag lag

n n n n n
G t X t EMU t tβ γ α υ ε= + + +   (7)  

( )lead TL

nX t  and ( )lag TL

nX t  are vectors of explanatory variables affecting the lead and lag 

critical gaps, respectively. leadβ  and lagβ  are the corresponding vectors of parameters. 

( )lead TL

nEMU t  and ( )lag  TL

nEMU t  are the expected maximum lower level utilities. leadγ  



 15

and lagγ  are the parameters of the expected maximum utilities.  ( )lead

n tε  and ( )lag

n tε  are 

normally distributed random terms associated with the critical gaps: ( ) ( )20,lead

n lead
t Nε σ∼  

and ( ) ( )20,lag

n lag
t Nε σ∼ . leadα  and lagα  are the parameters of the individual specific 

random term nυ  for the lead and lag critical gaps, respectively. 

 

3.3 The target gap model 

If the adjacent gap is rejected, the driver cannot change lanes immediately. The target gap 

model captures the drivers' plan how to accomplish the desired lane change by adjusting 

speed and position over a short period of time. This short-term plan is defined by a target 

gap in the target lane traffic.   

 

The alternatives in the target gap choice set include available gaps in the vicinity of the 

subject vehicle (e.g. the adjacent gap, forward gap and backward gap shown in Figure 4). 

Note that the adjacent gap, although not acceptable at the time of the decision, may still 

be chosen in anticipation that it will become acceptable. Although the definition of short-

term plans in terms of explicit target gaps is simple and intuitive, it is not a requirement 

of the model structure. For example, the target gap choice set may also incorporate 

alternatives such as to look for gaps between vehicles that are currently either 

downstream or upstream of the subject vehicle, without committing to a specific gap.  

 

<<<< place Figure 4 about here >>>> 

 

The utilities of the different target gaps to driver n at time t are given by: 
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( ) ( ) ( ) ( ) ( )gap i gap i gap i gap i gap i gap i gap i

n n n n n nU t V t t X t tε β α υ ε= + = + +    (8) 

( )gap i

nV t  is the systematic utility of gap i. ( )gap i

nX t  is a vector of explanatory variables 

affecting the utility of gap i. gap iβ  is the corresponding vector of parameters. ( )gap i

n tε  are 

the random terms associated with the gap utilities. gap iα  are the parameters of the 

individual specific error term nυ .  

 

The utilities of the different gaps are affected by variables such as the size of the gap, the 

speeds of the intended lead and lag and the subject vehicle. Assuming a logit error 

structure, the conditional gap choice probabilities for the various alternatives are given 

by: 

( ) ( ) ( )( ) ( )( )
( )( )

( )

0

n

gap i

n nTL

n n n n gap j

n n

j TG t

exp V t
p TG t i TL t ,l t ,

exp V t

υ
υ

υ
∈

= = =
∑

   (9) 

( )nTG t  is the choice set of target gaps for driver n at time t.  

 

3.4 Acceleration models 

The integration of acceleration and lane changing models requires extension of current 

acceleration models to cover a wider range of situations, since the acceleration behavior 

is expected to differ depending on the driver’s short-term goal and short-term plan. In our 

formulation, different acceleration models are used for the various combinations of target 
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lane, gap acceptance decision and target gap. More specifically, three different cases are 

considered: 

1. Stay-in-the-lane acceleration, which applies when the driver wishes to stay in the 

current lane.  

2. Acceleration during a lane change, which applies when the driver accepts the 

available adjacent gap and executes a lane change.  

3. Target gap acceleration, which applies when the driver wishes to change lanes but 

rejects the adjacent gap, and so does not change lanes immediately. In this case 

different models are used depending on the target gap choice.  

 

The overall acceleration model is expressed by: 

( )
( ) ( )
( ) ( )
( )

( ) 1

s

n n

lc TL

n n n n

tg

n

a t if  TL t CL

a t a t if  TL t =RL or LL and l t

a t otherwise

 =


= =



    (10) 

( )na t  is the acceleration vehicle n applies at time t. ( )s

na t  is the stay-in-the-lane 

acceleration. ( )lc

na t  is the lane changing acceleration. ( )tg

na t  is the target gap 

acceleration.  

 

In order to capture the effect of the subject's leader on the acceleration behavior, two 

driving regimes, car-following and unconstrained, are defined within each one of these 

acceleration behaviors. In the car following regime the subject vehicle is close to its 
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leader and therefore reacts to the behavior of the leader. In the unconstrained regime the 

subject is not close to its leader and so can determine the acceleration to facilitate the 

short-term plan. The time headway between the subject and the leader determines the 

driving regime. If the time headway is less than a threshold, the driver is in the 

constrained regime; otherwise the driver is in the unconstrained regime. Mathematically, 

this is expressed by: 

( )
( ) ( )
( )

cf *

n n n nk

n k ,uc

n

a t if h t h
a t

a t otherwise

τ − ≤
= 


      (11) 

( )cf

na t  and ( )k ,uc

na t  are the car-following and unconstrained acceleration that applies in 

case { }, ,k s lc tg∈ , respectively. 
n

τ  is the reaction time of driver n. ( )n nh t τ−  and *

n
h  are 

the time headway at time 
n

t τ−  and the headway threshold for driver n, respectively.   

 

Different models describe the acceleration behavior under the various situations. In order 

to create a consistent set of acceleration behaviors, the stimulus-sensitivity framework, 

which the GM model (Gazis et al. 1961) is based on, is adapted for all these acceleration 

models. Thus, the acceleration driver n applies in each situation r is assumed to be a 

response to stimuli from the environment: 

( ) ( ) ( ) ( )r r r r

n n n n nresponse t sensitivity t stimulus t tτ ε= × − +     (12) 

( )r

n tε  are random error terms.  
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The driver reacts to different stimuli in the various situations, depending on constraints 

imposed by the driving neighborhood and on the driver's short-term goal and short-term 

plan.  

 

Car following acceleration models 

The car-following acceleration model assumes that the stimulus is the subject relative 

speed with respect to the leader (defined here as the speed of the leader less the speed of 

the subject vehicle). In lane changing acceleration, however, the subject is already 

committed to the lane changing maneuver and so the model assumes that the driver 

follows the leader in the lane the subject is changing to. The sensitivity is a function of 

explanatory variables.  

 

The expected value of the response to the stimuli is positive (acceleration) for positive 

leader relative speeds (i.e., when the leader is faster than the subject vehicle) and negative 

(deceleration) for negative leader relative speeds. However, the response to positive and 

negative stimuli may differ because the nature of these situations are different: the main 

factor in the reaction to negative leader relative speeds is collision avoidance, whereas the 

acceleration applied in response to positive leader relative speed stimuli may be aimed to 

obtain speed advantage. To capture these differences the model allows the coefficients of 

explanatory variables to be different for positive and negative stimuli. The car following 

acceleration is therefore given by:   

( )
( ) ( )
( )

0cfacc

n n ncf

n cfdec

n

a t if V t
a t

a t otherwise

τ ∆ − ≥
= 


      (13) 
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( )cfacc

na t  and ( )cfdec

na t  are the car following acceleration and car following deceleration, 

respectively. ( )n nV t τ∆ −  is the leader relative speed. 

 

The car following acceleration and car following deceleration models are given, 

respectively, by: 

( ) ( ) ( ) ( )g g g g g

n n n n n
a t s X t f V t tτ ε   = ∆ − +        (14) 

{ }g cfacc,cfdec∈ . ( )g g

n
s X t    are the sensitivity functions for car following. ( )g

nX t  are 

vectors of explanatory variables. ( )g

n n
f V t τ ∆ −   are the stimulus functions. ( )g

n tε  are 

random terms.  

 

Unconstrained acceleration models 

The stimuli in the unconstrained acceleration regime depend on the short-term plan and 

short-term goal. The model assumes that unconstrained stay-in-the-lane and lane-

changing drivers are trying to attain their desired speeds. The stimulus for these vehicles 

depends on the difference between their desired speed and current speed. The free-flow 

acceleration is given by: 

 ( ) ( ) ( ) ( ) ( )ff ff ff ff DS ff

n n n n n n n
a t s X t f V t V t tτ τ ε   = − − − +       (15) 

( )ff

na t  is the free-flow acceleration. ( )ff ff

n
s X t    is the free-flow acceleration sensitivity 

function. ( )ff

nX t  is a vector of explanatory variables. ( ) ( )ff DS

n n n n
f V t V tτ τ − − −   is the 
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stimulus function. ( )ff

n tε  is a random term. ( )DS

n nV t τ−  is the unobservable desired 

speed, which is modeled as a function of explanatory variables: 

( ) ( )DS DS DS DS

n n n n nV t X tτ τ β α υ− = − +       (16)  

( )DS

n nX t τ−  is a vector of explanatory variables. DSβ  is the corresponding set of 

parameters. DSα  is the parameter of the individual specific random term 
n

υ .   

 

Drivers that target changing lanes but reject the available adjacent gap and therefore 

cannot immediately change lanes apply accelerations to facilitate the short-term plan. We 

assume that these drivers try to reach a desired position with respect to the target gap, 

which they perceive would allow the lane change to be executed. The stimulus the driver 

reacts to is the difference between the desired position and the vehicle's current position. 

Figure 5 illustrates this behavior. Suppose that the short-term plan for vehicle A is to 

change to the left lane using the gap between vehicles B and C (the forward gap). 

Assuming it is unconstrained by the vehicle in front of it (vehicle D), vehicle A would 

facilitate the lane change by accelerating to the desired position relative to the target gap.       

 

<<<< place Figure 5 about here >>>> 

 

The desired position with respect to the target gap is expressed as a fraction of the total 

length of the target gap. The sensitivity term is affected by variables that capture the 
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relations between the subject vehicle and the vehicles that define the target gap, such as 

spacing and relative speeds, and so the target gap acceleration is expressed by: 

( ) ( ) ( ) ( )uctg ,TL tg tg ,TL tg tg ,TL tg

n n n n n
a t s X t f D t tτ ε   = − +        (17) 

( )uctg ,TL

na t  is the unconstrained target gap acceleration. { }TL RL, LL∈  . ( )tg tg ,TL

n
s X t    

and ( )tg tg ,TL

n n
f D t τ −   are the target gap acceleration sensitivity and stimulus functions, 

respectively. ( )tg

n tε  is the random term associated with the unconstrained target gap 

acceleration.   

 

In each one of the acceleration models presented above, the random error terms ( )r

n tε  

capture unobserved effects on the acceleration. It is assumed that these terms follow a 

normal distribution and that they are independent of each other, for different drivers and 

over time. Correlations among the accelerations of the same driver over time are captured 

by the reaction time and the time headway thresholds, which are individual specific. 

Under these assumptions the probability density functions of the various accelerations are 

given by: 

( )( ) ( ) [ ] [ ]1
r r r

nr

n n

r r

a t s f
f a t |τ φ

σ σ

 − ⋅ ⋅
=   

 
      (18) 

r
σ  is the standard deviation of the acceleration error terms.  
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The distribution of the combined car following acceleration is given by: 

( )( ) ( )( ) ( )
( )( ) ( )( )1n n n nV t V t

cf cfacc cfdec

n n n n n n
f a t | f a t | f a t |

δ τ δ τ
τ τ τ

   ∆ − − ∆ −   =   (19) 

( )n n
V tδ τ ∆ −   is an indicator, which takes a value of 1 when the relative speed is non-

negative, and 0 otherwise. 

 

The probability density function of the combined car following and unconstrained 

acceleration for each case { }, ,k s lc tg∈  is given by: 

( )( ) ( )( ) ( )
( )( ) ( )( )1n n n nh t h t

k * cf k ,uc

n n n n n n n n
f a t | h , , f a t | f a t |

δ τ δ τ
τ υ τ τ

   − − −   =   (20) 

( )n n
h tδ τ −   is the time headway indicator:  

( ) ( )1

0

*

n n n

n n

if h t h
h t

otherwise

τ
δ τ

 − ≤ − =  


      (21) 

 

Time headway threshold distribution 

The time headway threshold determines the driving regime. If the leader time headway is 

less than the threshold, the driver is in the car following regime, otherwise the appropriate 

unconstrained regime applies. Following Ahmed (1999) we assume that the distribution 

of time headway thresholds in the driver population follows a double-truncated normal 
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distribution. The truncation is needed since the time headway threshold must be positive 

and is finite. The probability density function of the time headway threshold is given by: 

( )
( )

( ) ( )
1

0

*
h

h h

* *
max h min h

h h

h

* * *

min max* h h
if h h h

f h

otherwise

µ
σ σ

µ µ
σ σ

φ −

− −


 ≤ ≤

= Φ −Φ



    (22) 

*
h  is the time headway threshold. *

min
h  and *

max
h  are the minimum and maximum values 

of the threshold, respectively. µ
h
 and σ

h
 are the mean and standard deviation of the un-

truncated distribution, respectively. ( )φ ⋅  and ( )Φ ⋅  are the probability density function 

and the cumulative density function of a standard normal random variable, respectively. 

 

The probability that driver n is car following the leader at time t is given by:    

( )( ) ( )( )

( )
( )( ) ( )

( ) ( )
( )

1

1

0

*
n h min h

h h

* *
max h min h

h h

*

n min

h t h

* * *

n n n min n max
h h

if h t h

p cf t p h t h if h h t h

otherwise

µ µ
σ σ

µ µ
σ σ

− −

− −

 ≤

 Φ −Φ

= ≤ = − ≤ ≤
Φ −Φ




 (23) 

 

Reaction time distribution 

The reaction time captures the time delay from the appearance of the stimulus to the 

application of the response due to perception time, foot movement time and vehicle 

response time. The truncated lognormal probability function, which is widely accepted to 
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describe the distribution of reaction times in the population (Koppa 1997), is adopted 

here: 

( )

( )( )
( )( )

1

0

0

n

n

ln

max
ln

max
n

if
f

otherwise

τ

τ τ

τ

τ µ
σ τ σ

τ µτ
σ

φ
τ τ

τ

−

−


 < ≤

=  Φ



     (24) 

n
τ  is the reaction time. τµ  and τσ  are the mean and standard deviation of the distribution 

of ( )ln τ , respectively. 
max

τ  is the maximum value of the reaction time.   

 

4 Case Studies 

The parameters of the integrated driving behavior model were estimated using a set of 

detailed trajectory data that were collected in Arlington VA. The estimation results are 

reported in detail in Toledo (2003). For completeness, Table 1 presents final likelihood 

values and the number of parameters for the integrated model and for a combination of 

independent lane changing and acceleration models. The independent models differ from 

the integrated model in the following: 

• Acceleration and lane changing behaviors are modeled independently. Thus, the 

effect of lane changing on acceleration behaviors is not modeled. The target gap 

choice and acceleration behaviors to facilitate lane changing are excluded from the 

independent models. Correlations between the various decisions drivers make are 

captured within each one of the independent models by the unobserved driver/vehicle 

characteristics, reaction times and headway thresholds, but correlations between lane 

changing and acceleration decisions are not captured.   
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• The independent lane changing model considers MLC and DLC separately and 

therefore does not capture trade-offs between mandatory and discretionary 

considerations.  

• The conditions that trigger an MLC were not estimated previously. The model used in 

this research assumes that the probability of being in an MLC state depends only on 

the distance from the relevant off-ramp.   

 

The models cannot be considered nested and so likelihood ratio tests for model selection 

are not applicable. Instead, Akiake (1974) proposed the use of the Akaike information 

criterion (AIC), which penalizes the maximum likelihood value of each model to account 

for model complexity: 

( )2 2*AIC L Kβ= − +           (25) 

*L( )β  is the maximum log-likelihood value. K  is the number of estimated parameters. 

 

In model selection, the model with the smallest AIC is selected. In this case, there is a 

difference of 60.8 points between the models that recommends the integrated model over 

the independent ones.  

 

<<<< place Table 1 about here >>>> 

 

The estimated model was implemented within the framework of the microscopic traffic 

simulator MITSIMLab (Yang and Koutsopoulos 1996, Yang et al. 2000). The ability of 

the simulator with the integrated model to replicate observed traffic patterns was tested 
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and compared against another version of the simulator that incorporates the combination 

of independent lane changing and acceleration models. In both cases the parameter values 

that were estimated with the same trajectory data were used. Two case studies were 

studied: a road section in Arlington VA (that was also used for estimation of the models) 

and a freeway corridor in Southampton, UK.  

 

The goodness-of-fit measures that were used are the root mean square error (RMSE), root 

mean square percent error (RMSPE), and Theil's inequality coefficient (U) which 

quantify the overall error of the simulator; the mean error (ME) and mean percent error 

(MPE), which indicate the existence of systematic under- or over-prediction in the 

simulated measurements (Pindyck and Rubinfeld 1997): 

2
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s oN
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n n

Y Y
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o

nY  and 
s

nY  are the n
th

 observed and simulated measurements, respectively. The 

simulation results are averages of the simulation replications. In both case studies 10 

replication were made, which were sufficient to estimate the mean simulation outcome 

with an error that is less than 1%.  

 

4.1 Arlington, VA case study 

The two MITSIMLab versions were applied to the freeway corridor shown in Figure 6. 

This four-lane highway section is 1 kilometer long with two off-ramps and a single on-

ramp. Detailed trajectory data were collected in this section over a period of 1 hour in 

which the average traffic density was 31.4 veh/km/lane and the average speed 15.6 m/sec 

(FHWA 1985). These statistics correspond to level of service D-E. The availability of 

vehicle trajectories enabled us to setup the simulation such that simulated vehicles would 

enter the simulation network at the exact times they appeared in the real system and in the 

correct lanes. The two models are compared based on two statistics: the travel times of 

7608 vehicles traveling through the section and the distribution of these vehicles among 

the four lanes at the four locations shown in Figure 6. 

 

<<<< place Figure 6 about here >>>> 

 



 29

Table 2 summarizes the goodness of fit statistics for travel times. The table also shows 

the percent improvement in fit with the integrated model compared to the independent 

models. The integrated model shows a better fit to observed data compared to the 

independent models.  The travel times comparison indicates that the MITSIMLab version 

with independent models shows more congestion relative to the integrated driving 

behavior model and to the observed data. This explains the larger bias in travel times, 

which is captured by the ME and MPE statistics: 4.8 sec. and 9.5% against 0.9 sec. and 

3.2%.  

 

<<<< place Table 2 about here >>>> 

 

Table 3 summarizes the comparison between the two models relative the distributions of 

flows among the four lanes. The integrated model outperforms the independent models in 

all the goodness of fit measures calculated for the lane distributions. Since the total 

fraction of vehicles in all four lanes is equal to 1 at each location, the ME statistic is by 

definition equal to zero and therefore omitted. Figure 7 illustrates the actual lane 

distributions.  

 

<<<< place Table 3 about here >>>> 

<<<< place Figure 7 about here >>>> 

 

Both models, but especially the independent models, overestimate the usage of the right-

most lane and underestimate the usage of the two left-most lanes. This may suggest that 
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the tendency of vehicles that are not using any of the off-ramps to move to the left is 

stronger than captured in the models. This behavior is most evident at location 4. Some of 

the error at this location may be explained by the lack of information about downstream 

effects on the behavior of vehicles that enter the network from the on-ramp: in the 

simulation, these vehicles ignore any considerations downstream of the network 

boundary (e.g. downstream speeds and densities) and therefore have no incentive to 

change lanes. 

 

4.2 Southampton, UK case study 

This freeway corridor is shown in Figure 8. The section is a 4.3 kilometer long, three-lane 

freeway that includes two on-ramps and an off-ramp. Both on-ramps are two-lane, but 

with different geometric layout. In the upstream ramp, the two ramp lanes merge into a 

single lane, which then merges into the mainline. In the other ramp the left ramp lane 

merges into the freeway while the right one remains as an additional lane, physically 

separated from the mainline, for another 500 meters and only then merges into the 

freeway. The two on-ramps are controlled by ramp metering with the control logic 

implemented in the simulation model.   

 

<<<< place Figure 8 about here >>>> 

 

Traffic data for that network was available for the four sensor locations indicated by the 

numbers 1-4 in Figure 8 and for the two on-ramps. The sensors recorded traffic counts 

and speeds on multiple days. The validation focused on the 7:00-9:00 AM peak period. 
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Light traffic was observed at the beginning and end of the simulation period with 

congested traffic within the AM peak. While traffic counts were used in estimating OD 

flows at 15-minute intervals for the network, sensor speeds were not used in calibrating 

the two models and so facilitate an independent validation.  

 

Goodness-of-fit statistics for the traffic speeds are presented in Table 4. These statistics 

are based on 15-mniutes average speeds at the 4 sensor locations. The integrated model 

performed consistently better than the independent models. Goodness of fit measures 

expressing the total error (RMSE and RMSPE) of the integrated model are around 14% 

lower than the corresponding statistics for the independent models. The measures related 

to bias in the models (ME and MPE) are more than 40% lower for the integrated model 

compared with the independent models.  

 

<<<< place Table 4 about here >>>> 

 

Observed and simulated time-dependent travel speeds at the four sensor locations are 

shown in Figure 9. At all sensor locations, congestion build-up in the first four time 

intervals occurs faster with the independent models relative to the integrated model. As a 

result, simulated speeds are significantly lower with the independent models. In general, 

both models underestimate observed speeds at this stage. In the observed data, high 

speeds are maintained longer but the reduction in speed is steeper once capacity is 

reached.  
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<<<< place Figure 9 about here >>>> 

 

A similar effect is observed in the dissipation stage: simulated traffic takes longer to 

recover speed. This effect is again more pronounced with the independent models relative 

to the integrated model. Hence, the independent models exhibit more gradual changes in 

traffic speeds compared to the integrated model and the observed data. A possible 

explanation is that drivers are able to adjust their behavior to avoid speed loss when 

congestion build up and dissipates. The integrated model captures some of these effects 

through short-term planning and acceleration to facilitate lane changing. However, these 

behaviors are not captured with the independent behavior models. It should be noted that 

in the furthest downstream location (location 4), both models fail to capture the dynamics 

of the observed speed profile. This may be a result of downstream phenomena beyond the 

limit of the network. However, this sensor is 1.9 kilometers downstream of the nearest 

upstream sensor (location 3) and therefore it is reasonable to assume that the other 

measurements are not affected by the downstream boundary conditions. 

 

5 Conclusion 

This paper presents a framework for integrated driving behavior modeling, which is 

based on the concepts of short-term goal and short-term plan. Drivers are assumed to 

conceive short-term plans to accomplish short-term goals. The short-term goal is defined 

by a target lane, which is the lane the driver perceives as best to be in. A target gap, 

which the driver intends to use to change lanes, defines the short-term plan. The 

acceleration the driver applies is adapted to facilitate the short-term plan. This modeling 
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framework supports specification and estimation of models that capture inter-

dependencies between lane changing and acceleration and represent drivers' planning 

capabilities.  

 

We discuss several mechanisms that may be used to capture inter-dependencies among 

the various decisions. Decisions made at lower levels of the decision process are 

conditional on those made at higher levels (e.g. the acceleration behavior is conditional 

on the short-term plan). The expected maximum utilities (EMU) of lower level choices 

may be introduced in the specification of higher-level choices in order to capture the 

effects of the lower level on higher level decisions. Individual-specific latent variables 

are introduced in the various component models to capture correlations among the 

decisions made by a given driver that are due to unobserved characteristics of the driver 

and the vehicle.  

 

The lane-changing component of this model integrates MLC and DLC into a single 

model, thus capturing trade-offs between mandatory and discretionary considerations. 

Drivers that target lane changing evaluate the available adjacent gap in the target lane to 

decide whether they can immediately change lanes or not. The gap acceptance model 

requires that both the lead gap and the lag gap are acceptable. If the adjacent gap is 

rejected the driver chooses a short-term plan to accomplish the desired lane change by 

selecting a target gap from the available gaps in the target lane traffic.   
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Different acceleration behaviors apply depending on the driver's short-term goal and 

short-term plan: stay-in-the-lane acceleration, lane changing acceleration and target gap 

accelerations. In each of these situations, drivers are assumed to be either in a car-

following regime, which applies when the driver is close to the vehicle in front or in an 

unconstrained regime. The stimulus-sensitivity framework is adapted for all these 

acceleration models, but the driver reacts to different stimuli in each case. Reaction time 

and time headway thresholds are explicitly modeled in the acceleration model. New 

models that capture Drivers' acceleration behaviors to facilitate lane changing using the 

target gap are presented. These accelerations assume that drivers try to position their 

vehicles relative to the target gap such that they can accept this gap.  

 

The results of the case studies support the need for integration and situation-specific 

acceleration models. The integrated driving behavior model was validated and compared 

against a combination of independent lane changing and acceleration models using a 

microscopic traffic simulator. Overall, the integrated model performed better than the 

independent models in both case studies. Congestion build-up was generally faster with 

the independent models relative to the integrated model and the real-world observations. 

Similarly, dissipation of congestion was slowest with the independent models and fastest 

in the observed data. However, there were some time-space points in which the integrated 

model did not replicate reality better. This suggests that further work may be needed to 

improve the detailed specification of the various component models.  
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These improvements come at the cost of increased complexity of the model, which also 

increases the computational effort required to calibrate the model. However, it should be 

pointed out that the calibration of the integrated model requires similar type of data as the 

individual calibration of the independent models. In practice, a two-stage calibration 

approach proposed in Toledo et al. (2004) may be used: First, the parameters of the 

behavioral models, such as those presented here, are estimated using detailed 

disaggregate data. Ideally, this is done by the simulation developers. Then, for a given 

application, readily available aggregate data, such as sensor measurements, are used to 

calibrate only a small subset of key model parameters to capture specific characteristics 

of the network being studied. This approach significantly reduces the effort to calibrate 

the model by practitioners. However, it assumes that the estimated model parameters 

remain stable when transferred across time and space. The question of transferability is 

left for future research where trajectory data sets from additional locations could be used 

to re-estimate the model parameters. This may also help identify simplifications and 

adjustments to the model that would maintain its behavioral realism and improve its 

computational performance. 
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Figure 2 Structure of the integrated driving behavior model 
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Figure 3 The adjacent gap, subject, lead and lag vehicles and the lead and lag gaps 
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Figure 4 The target gap choice set: adjacent, forward and backward gaps 
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Figure 5 Target gap acceleration situation and variables 
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Figure 6 The Arlington, VA case study network  
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Figure 7 Lane distributions in the Arlington, VA case study network  
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Figure 8 The Southampton, UK case study network  
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Figure 9 Time dependent traffic speeds in the Southampton, UK network 
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Table 1 Likelihood values of the estimated models 

Model Likelihood value Parameters AIC 

Integrated driving behavior -25469.7 71 51081.4 

Independent lane changing 

and acceleration  

-25524.1 47 51142.2 
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Table 2 Statistics for the travel time comparison in the Arlington, VA network  

Statistic Integrated model Independent models Improvement (%) 

RMSPE (%) 15.3 20.2 24.2 

RMSE (sec.) 9.4 11.7 19.7 

MPE (%)  3.2 9.5 66.3 

ME (sec.)  0.9 4.8 81.3 

U (fraction)  0.075 0.091 17.6 

 



 53

 

Table 3 Statistics for the lane distribution comparison in the Arlington, VA network 

Statistic Integrated model Independent models Improvement (%) 

RMSPE (%) 10.8 11.2 3.6 

RMSE (%) 3.0 28.6 19.7 

MPE (%)  9.0 9.3 3.2 

U (fraction)  0.059 0.091 35.2 

 



 54

Table 4 Statistics for the traffic speed comparison in the Southampton, UK network   

Statistic Integrated model Independent models Improvement (%) 

RMSPE (%) 11.7 13.6 14.0 

RMSE (m/sec.) 3.0 3.5 14.3 

MPE (%)  -2.9 -5.6 48.2 

ME (m/sec.)  -1.0 -1.8 44.4 

U (fraction)  0.059 0.071 16.9 

 


