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ABSTRACT 

Few of the recently developed route choice models have actually been applied in traffic 

assignment problems. This paper discusses the implementation of selected route choice 

models in stochastic user equilibrium algorithms. The focus of the paper is on path-based 

assignment, which is essential in the implementation of route choice models. The paper 

analyzes the effect of choice set size and selected choice models on problem convergence, 

running time and selected results. The results presented in the paper indicate that for real-size 

networks, generation of a large number of alternative routes is needed. Furthermore, 

convergence properties greatly improve if the generated routes are sufficiently disjointed. 
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1. INTRODUCTION 

A number of discrete choice model structures have been adapted to model route choice 

behavior in recent years. These models attempt to capture the impact of similarity among 

various routes on drivers' perceptions and decisions. They range from modifications of the 

multinomial logit (MNL) model, such as C-logit and path-size logit (PSL) that capture 

similarities through additional terms in the systematic utilities of the various routes, to more 

complex models based on the generalized extreme value (GEV) theory, such as paired 

combinatorial logit (PCL), cross-nested logit (CNL) and generalized nested logit (GNL), and 

error components and logit kernel (LK) models, which capture these similarities by allowing 

more general correlation structures. 

 

Few of these route choice models have actually been applied in traffic assignment procedures. 

This paper discusses the potential implementation of selected route choice models as loading 

procedures in stochastic user equilibrium (SUE) assignment and presents results to illustrate 

the combined effect of congestion and the representation of similarity among routes on 

assignment results.  

 

Two main issues are investigated in this paper: The first issue is the influence of the path set 

on the equilibrium solution. The approach of the paper is to generate routes prior to the 

assignment, perform quantitative changes in the number of routes in the path set and 

subsequently calculate the SUE solution for different networks. For real-sized networks, it is 

impossible to enumerate all routes, and so heuristic rules are needed to confine the path set to 

a reasonable size. The paper uses a combination of two well-known generation methods to 

produce the choice set. 

 

The second issue discussed in the paper is the influence of the route choice model on the 

equilibrium flow pattern. It is well known in the literature that for very high demand levels 

SUE flow patterns approaches those given by the deterministic user equilibrium solution. 

However, depending on the route choice model SUE flows may be quite different from the 

deterministic UE flows for moderate to high levels of demand. Using real size networks, the 

paper compares link flows and path flows obtained from path-based SUE assignments for two 

choice models: the MNL model as a representative of a simple choice structure, and the CNL 

model as a representative of a more complex choice structure. 

 

The paper is organized as follows. First, a brief review of route choice models, choice set 



 3

generation methods and SUE formulations and path-based algorithms are presented. The 

definition and generation of the choice set is discussed next. The SUE solutions for different 

choice sets and model specifications are illustrated in a subsequent section. The final section 

discusses the potential use of the different route choice models in traffic assignment problems. 

 

2. LITERATURE REVIEW 

2.1 Route Choice Models 

Route choice models can be classified according to the model structure, following Prashker 

and Bekhor (2004). The first class of models relates to the MNL and its modifications, such as 

C-Logit (Cascetta et al., 1996) and Path Size Logit (Ben-Akiva and Bierlaire, 1999). These 

models were developed in an attempt to overcome the overlapping problem, while still 

retaining the MNL structure. In these models, the similarity among routes is modeled by 

including commonality measures in the deterministic component of the utility function. 

 

The second class encompasses models derived from the GEV theorem of McFadden (1978). 

The fundamental difference between route choice models in this class and the former class is 

that the similarity among routes is captured in the structure of the error component of the 

utility function. By suitably defining a generator function that satisfies the properties required 

by the GEV theorem, more general logit functions can be obtained. Examples of such models 

are the PCL model (Chu 1989), the CNL model (Vovsha 1997) and the GNL model (Wen and 

Koppelman 2001). These models were adapted to route choice situation by several 

researchers: Prashker and Bekhor (1998), Gliebe et al. (1999), Bekhor and Prashker (2001), 

Pravinvongvuth and Chen (2005). 

 

The third class of models includes the Multinomial Probit (MNP) and LK models. These 

models are more general than the closed-form GEV models. The similarity among routes is 

also captured in the error component of the utility function. The MNP model was first 

proposed by Daganzo and Sheffi (1977) to model route choice as an alternative to the MNL 

model. The choice model is based on the assumption of normal distribution for the random 

utility. 

 

The MNP and LK models require explicit evaluation of the covariance matrix in order to 

compute the choice probabilities. The key question is how to relate these covariance to 

measurable network parameters. Sheffi and Powell (1982) proposed to assume that the 

variance is proportional to a fixed characteristic of the link as e.g. free flow travel time or 
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length. Yai et al. (1997) proposed an MNP model which relates the covariance matrix to 

measurable overlapping measures, such as the common length of the routes. This method was 

also used by Bekhor et al. (2002) to adapt the LK to route choice situation. To our knowledge, 

path-based algorithms for MNP and LK are yet to be developed. For this reason, this paper 

compares path-based results for closed-form route choice models such as MNL (as a 

representative of the first class of models) and CNL (as a representative of the second class of 

models). 

2.2 Path Set Generation Methods 

The actual large number of routes in a network poses a problem for specifying the alternative 

routes and in defining choice sets. Even for small networks, the enumeration of all possible 

alternative routes is not a trivial matter. The number of possible routes increases exponentially 

with the dimensions of the network. When routes are explicitly considered, a selective 

approach is needed to approximate the choice set. In this subsection, we briefly review 

methods to explicitly generate choice sets. 

 

The most straightforward path generation approach searches for the first “K” shortest paths 

that minimize the generalized path costs. Shortest path algorithms assume implicitly 

awareness of all the link attributes. Van der Zijpp and Fiorenzo-Catalano (2001) present a 

constrained method to generate routes by finding directly feasible K-shortest paths and 

exploiting a wide class of constraints. 

 

Ben-Akiva et al. (1984) propose an approach for generating possible paths by labeling each 

route according to a criterion for which the path is optimum. This approach assumes that 

travelers may have different objective functions. Each criterion yields a different preferred 

route. Dial (2000) generalizes the labeling method by constructing a set of efficient paths, 

where being efficient means minimizing a linear combination of label costs. 

 

Azevedo et al. (1993) define a link elimination approach where the shortest path is calculated 

and then all the links on this shortest path are removed from the network. A new shortest path 

is then calculated and so on. This approach guarantees generation of disjoint paths each time. 

The main problem with this approach is that it may quickly lead to network disconnection due 

to the removal of centroid connectors and major junctions. A variant to this approach obviates 

the problem by eliminating individual links or a combination of links from the shortest path 

rather than all the links on the shortest path simultaneously. 

 

De la Barra et al. (1993) proposed the link penalty approach, where the impedances of the 
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links on the shortest path are increased before the next best path is calculated. The process 

continues until no more new paths are produced. Park and Rilett (1997) use a variation of this 

approach in which the impedance on links within a certain distance from the origin or the 

destination is not increased. Scott et al. (1997) optimize the penalizing factor for impedances 

in order to generate a next best path that overlaps with the shortest path by no more than a 

given number of links. 

 

Simulation methods assume that travelers erroneously perceive link attributes. Therefore 

extracting random draws from a distribution that might represent drivers’ perceptions appears 

suitable. Fiorenzo-Catalano and Van der Zijpp (2001) implement a version of the Monte Carlo 

technique by gradually increasing the variance of the random components in the model in 

order to keep the rate with which new paths are found constant. Bovy and Fiorenzo-Catalano 

(2007) discuss route choice set generation in uni-modal and multi-modal networks. Bekhor et 

al. (2006) verify the suitability of simulation methods to produce paths similar to those 

observed for a case network in Boston. A combination of methods was found to yield the 

highest coverage of traveled routes, with the simulation method being the best single 

generation method.  

 

Another class of constrained enumeration procedure was introduced by Friedrich et al. (2001), 

who applied a branch and bound assignment procedure for transit networks using a 

timetable-based search algorithm. Hoogendoorn-Lanser (2005) adapted the same procedure 

for choice set generation in the analysis of multimodal transport networks. In the transit 

applications mentioned above, the method exploits predefined route sections. Prato and 

Bekhor (2006) designed a different approach for road networks. The algorithm constructs a 

connection tree between origin and destination of a trip, by processing sequences of links 

according to a branching rule that accounts for logical constraints formulated to increase route 

likelihood and heterogeneity. Initial results presented in Prato and Bekhor (2006) indicate that 

the branch and bound method outperforms the simulation method, however more research is 

needed to validate both the simulation and branch and bound methods against large datasets. 

In the present paper, we use simpler techniques such as link penalty and link elimination 

methods, because of the relative ease and fast computational implementation. According to 

Bekhor et al. (2006), many routes need to be generated with these methods in order to obtain 

an acceptable coverage. 

 

Recently, Bar-Gera and Boyce (2005) analyzed the characteristics of route sets in the solution 

of a deterministic user equilibrium model. The network used in the analysis represents the 

Chicago area, composed of 1,790 zones, 12,982 nodes and 39,018 links. An average of 2.686 
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routes per OD pair was obtained, 56% of the OD pairs were connected by only one route, and 

more than 95% of the OD pairs were connected by up to 10 routes. The authors found that 

numbers of routes used largely depends on the level of congestion in the network. 

 

In the context of path set generation in stochastic traffic assignment problems, there is relatively 

few evidence in the literature. Most models use implicit methods such as Dial’s (1971) method. 

In Huang (1995) the set of paths is determined in a preliminary phase which combines the paths 

found by Dial's approach and those obtained from solving a deterministic user equilibrium 

assignment. In Damberg et al. (1996), the choice set was based on the set of shortest paths 

obtained during the iterations of deterministic assignment. The authors recognized that the 

choice set affects the solution properties.  

2.3 Stochastic User Equilibrium Models and Algorithms 

Daganzo and Sheffi (1977) defined the concept of SUE as a state in which no driver can 

improve his/her perceived travel time by unilaterally changing routes. The “stochastic” term is 

related to a probabilistic route choice model, instead of simply assuming the shortest path as 

in the deterministic user equilibrium model. 

 

Sheffi and Powell (1982) formulated the SUE assignment problem as an unconstrained 

mathematical program. This formulation is appropriate for a wide range of probability 

distributions for the path costs that satisfy certain conditions. The well-known Method of 

Successive Averages (MSA) developed by Powell and Sheffi (1982) was the first algorithm 

applied to solve the SUE problem. This algorithm can be applied with any stochastic network 

loading method. The step size is predetermined by a descent sequence with respect to the 

iterations. 

 

For GEV-type route choice models, alternative optimization formulations can be derived. Fisk 

(1980) developed a path-based SUE formulation for the MNL model, using an entropy term. 

Similar entropy-based formulations have been proposed for SUE assignment based on other 

GEV models, including CNL and PCL (Bekhor and Prashker 1999), and GNL (Bekhor and 

Prashker 2001). For brevity, we present the SUE optimization formulation for the CNL model. 
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Where: 

rs

mkf : Flow on path k between origin r and destination s that is attributed to the choice of link 

m. The path flow rs

kf  is related to these flows as: rs rs

k mk

m

f f=∑     

q
rs

: travel demand between r and s 

ca: travel cost on link a  

θ : dispersion coefficient (travel time parameter) 

µ : nesting coefficient of the CNL function 

rs

mkα : inclusion coefficient of link m in path k between r and s.  

Bekhor and Prashker (1999) showed that the above formulation collapses to Fisk's 

formulation for the MNL based SUE assignment when the nesting coefficient is equal to 1. 

The above CNL-SUE formulation assumes a single nesting coefficient µ. If this coefficient is 

nest-specific, the resulting formulation is equivalent to the GNL-SUE model. To simplify 

interpretation of results, we will assume a single nesting coefficient in this paper.  

 

Maher (1998) developed link-based algorithms for the logit SUE problem, using Sheffi and 

Powell’s formulation. He proposed an algorithm that uses the same search direction as the 

MSA algorithm, but calculates an approximately optimal step size in this direction, thus 

improving overall convergence. Dial (2001) also developed an algorithm for the logit route 

choice model, which exploits the property of the MNL model that allows a unique mapping of 

path flows from link flows (and vice versa).   

 

The algorithms discussed above solve the assignment problem in the space of link flows, and 

so do not require explicit enumeration of the path choice set. Instead, these algorithms assume 

an implicit choice set, such as the use of all efficient paths (Maher 1998, Dial 2001), or all 



 8

cyclic and acyclic paths (Bell 1995, Akamatsu 1996). Huang and Bell (1998) proposed a 

method to exclude all cyclic flows in the logit-based SUE assignment. However, from a 

behavioral standpoint it may be more realistic to assume that drivers choose from more 

limited route sets. Path-based formulations allow a more flexible definition of the choice set. 

 

Damberg et al. (1996) extended the path-based disaggregated simplicial decomposition (DSD) 

algorithm (Larsson and Patriksson 1992) to solve the SUE problem for the MNL model. They 

show that given a current (feasible) path flow pattern, an auxiliary path flow pattern can be 

obtained by calculating the MNL model with current travel times. A line search is then 

performed along the direction of the difference between the current flow and auxiliary flow 

patterns. The authors show that this procedure converges to a unique solution for a given set 

of routes. 

  

The above algorithm can be extended to other logit-type models, such as CNL and PCL. 

Bekhor and Toledo (2005) developed the GP2 algorithm and compared the performance with 

respect to the DSD algorithm. Their conclusion was that both algorithms have similar 

convergence properties, and both outperform the path-based MSA algorithm. Chen and al. 

(2003) developed an algorithm based on the partial linearization method for solving the PCL 

stochastic user equilibrium problem. Recently, Bekhor et al. (2007) presents an extension of 

the DSD algorithm for the CNL model, which is used in the present paper.  

 

3. INFLUENCE OF THE PATH CHOICE SET  

Two networks were used to examine the impact of the size of the path choice set on the 

equilibrium solution reached. The first network is the well-known Sioux Falls network 

(Leblanc, 1973). The second is the Winnipeg network provided in the EMME/2 software. We 

first analyze the results for the Sioux Falls network. 

3.1 The Sioux Falls Network 

The network is composed of 24 nodes, 76 links and 528 OD pairs with positive demand. The 

paths were generated prior to the assignment, using a combination of the link elimination 

method of Azevedo et al. (1993) and the penalty method of De La Barra et al. (1993), with a 

penalty of 5% on the travel times on the shortest path links. Only acyclic paths were 

considered in these methods. On average, 6.3 paths were generated for each OD pair. The 

maximum number of routes generated for an OD pair was 13.  
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For the purposes of the present analysis, we assumed a value of 0.5 units/min for the 

dispersion parameter θ. This value is consistent with empirical evidence (Ramming 2001), 

which estimated values in the range from –0.4 to –0.6 units/min, depending on the model 

structure and other parameters in the model. This value indicates that given a 5-minute 

difference between two paths, about 8% of the drivers will chose the route with the higher 

cost. 

 

To test the impact of the choice set on the equilibrium results, we varied the maximum 

numbers of paths allowed for each OD pair and performed path-based SUE assignments using 

MNL as the route choice model. In all assignments, the DSD algorithm of Damberg et al. 

(1996) was used, using the Armijo rule for step size calculation. The stopping criterion for the 

assignment is 1% for the root mean square percentage error (RMSPE) of the path flows 

between consecutive iterations. Figure 1 below shows the equilibrium objective function 

values reached.  
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Figure 1. Influence of the Choice Set Size on the Equilibrium Solution – Sioux Falls Network. 

   

The results indicate that for the Sioux Falls network, relatively few paths are needed to 

achieve equilibrium at a reasonable level. This result suggests that path-based SUE 

assignment may be performed with few routes in the path set. 

3.2 The Winnipeg Network 

This network is composed of 948 nodes (154 of them corresponding to traffic area zones), 
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2,535 links and 4,345 OD pairs with positive demand in the matrix. The total demand on the 

network is for 54,459 trips. The volume-delay function for each link is based on the BPR 

formula with link-specific parameters, calculated from the original Emme/2 data.  

 

Similar to the case of the Sioux Falls network, travel routes were generated prior to the 

assignment using a combination of the link elimination method and the penalty method. A 

total of 174,491 unique paths were generated for all OD pairs (average of 40.1 paths per OD 

pair). The maximum number of routes generated for any OD pair was 50. More routes can be 

generated, but as we will show below for the purposes of this paper this maximum number is 

sufficient. Figure 2 illustrates the Winnipeg network. The dots indicate the centroids of the 

traffic area zones. 

 

 

Figure 2. The Winnipeg network 

 

Inspection of the generated routes reveals that the choice set used for the analysis includes 

both completely disjointed routes and very similar routes. This was expected due to the 

methods (link penalty and link elimination) selected to generate the routes: the link 

elimination method produces disjoint routes (because of the removal of all links belonging to 
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the shortest path) and the link penalty method produces similar routes because of the low 

penalty (5% increase link travel time) used to find the subsequent routes. 

 

The methodology used for the comparison was similar to the Sioux Falls example: each 

path-based SUE assignment was performed with a different maximum number of routes in the 

path set, starting from 2 routes up to the maximum of 50, using the MNL as the route choice 

probability function. In all assignments, the DSD algorithm of Damberg et al. (1996) was 

used, using the Armijo rule for step size calculation. The stopping criterion for the assignment 

is 1% for the RMSPE of the path flows. Table 1 summarizes the results, and Figure 3 displays 

the results of the ratio Z / Z* for both the MNL and CNL route choice models. The CNL-SUE 

results are further presented in Table 3. 

 

Table 1. Summary of SUE results for the Winnipeg Network – MNL choice function. 

 

Maximum 

paths 

generated 

per OD 

Total 

number 

of paths 

Number 

of paths 

per OD 

Minimum 

Objective 

function 

value (Z) 

Ratio Z / Z* 

using 50 

paths 

Number of 

Iterations to 

converge 

CPU 

time 

(sec) 

CPU 

time per 

iteration 

(sec) 

2 8690 2.0 1111964 1.21 35 493 14.1 

3 13035 3.0 1051540 1.15 58 1335 23.0 

4 17380 4.0 1023947 1.12 63 1943 30.8 

5 21723 5.0 1007347 1.10 73 2895 39.7 

6 26057 6.0 994993 1.08 76 3865 50.9 

7 30386 7.0 985460 1.07 64 3569 55.8 

8 34708 8.0 978177 1.07 56 3571 63.8 

9 39025 9.0 972004 1.06 56 4101 73.2 

10 43332 10.0 966810 1.05 51 4012 78.7 

15 64575 14.9 949299 1.03 41 5152 125.7 

20 85278 19.6 939014 1.02 36 5767 160.2 

25 105198 24.2 932290 1.02 37 7539 203.8 

30 124066 28.6 927121 1.01 29 6952 239.7 

40 157104 36.2 920440 1.00 29 9360 322.8 

50 174491 40.2 917976 1.00 28 9967 356.0 
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Figure 3. Influence of the Choice Set Size on the Equilibrium Solution – Winnipeg Network. 

 

The results displayed above show a pattern similar to the one observed in the Sioux Falls 

result (Figure 1): as the number of routes increases, the minimum value of the objective 

function at convergence decreases. However, compared to the Sioux Falls network, more 

routes are needed in order to obtain equilibrium at a reasonable level. The objective function 

using only 2 routes for each OD pair is 21% higher than the one using 50 routes. If 10 routes 

are used, the objective function is 5% higher compared to the full set of 50 routes. The 

CNL-SUE pattern is similar to the MNL-SUE pattern. 

 

Note that the CPU time per iteration increases linearly with the size of the path set, as can be 

seen in Figure 4 below. This result is expected because a predefined path set is used in the 

assignment procedure, and the increase of the path set mainly affects the probability 

calculations. The average time to perform an iteration for the maximum path set used (50) 

was close to 6 minutes, using a Pentium IV computer with 3.0 GHz CPU and 512 MB RAM. 
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Figure 4. Influence of the Choice Set Size on Algorithmic Performance – Winnipeg Network 

 

4. INFLUENCE OF THE CHOICE MODEL  

This section analyzes the influence of the route choice model on the equilibrium flow pattern. 

The section focuses on the comparison of the CNL-SUE and MNL-SUE path flows for 

different networks. Subsection 4.1 presents results for the Sioux Falls network, and subsection 

4.2 presents results for the Winnipeg network. Subsection 4.3 summarizes selected results for 

both networks. 

 

4.1 Sioux Falls Network 

This subsection compares the assignment results obtained with CNL and MNL route choice 

models depending on the values of the model parameters and the level of demand for travel. A 

path-based DSD algorithm was used for all models, and the stopping criterion was set to 

0.001 maximum difference between link flows in consecutive iterations. The following delay 

function was used for all links: 
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Where: 

ca: travel cost on link a; 

c0a: free-flow travel cost on link a; 

xa: flow on link a.   

 

Figures 5 to 7 shows the RMSPE between CNL-SUE and MNL-SUE path flows for different 

values of the parameters θ, μ and the demand. Note that when the nesting coefficient is equal 

to 1, the CNL-SUE model collapses to the MNL-SUE model and consequently the difference 

is zero. This theoretical result was verified by the assignment results. 
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Figure 5. Sioux Falls Network - Influence of the Demand and θ on the difference between 

CNL-SUE and MNL-SUE path flows (μ=0.25) 



 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.7 0.9 1.1 1.3 1.5

Demand

R
M

S
P

E

θ = 0.01 θ = 0.1 θ = 0.25 θ = 2

µ = 0.5µ = 0.5µ = 0.5µ = 0.5

 

Figure 6. Sioux Falls Network - Influence of the Demand and θ on the difference between 

CNL-SUE and MNL-SUE path flows (μ=0.5) 
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Figure 7. Sioux Falls Network - Influence of the Demand and θ on the difference between 

CNL-SUE and MNL-SUE path flows (μ=0.75) 

 

The results indicate that only for large values of θ and small values of μ, the differences 

between CNL-SUE and MNL-SUE path flows are significant. As expected, when μ increases, 

the differences between CNL-SUE and MNL-SUE path flows decrease. 
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4.2 Winnipeg Network 

This subsection compares results obtained from path-based SUE assignments using the MNL 

and CNL route choice models for the Winnipeg network. The CNL-SUE assignments were 

performed using the same methodology described in section 3.2 for the MNL model. The 

DSD algorithm of Damberg et al. (1996) was modified to compute choice probabilities based 

on the CNL model instead of the MNL model. The Armijo rule was used for step size 

calculation. The stopping criterion for the assignment is 1% for the RMSPE of path flows 

between consecutive iterations. The nesting coefficient of the CNL model was set to 0.5. The 

dispersion parameter was set equal to 0.5 units/min for both the CNL and MNL models. Table 

2 summarizes the results for the CNL model. 

 

Table 2. Summary of SUE results for the Winnipeg Network – CNL choice function. 

Maximum 

paths 

generated 

per OD 

Total 

number 

of paths 

Number 

of path 

per OD 

Minimum 

Objective 

function 

value (Z) 

Ratio to Z 

using 50 

paths 

Number of 

Iterations to 

converge 

CPU 

time 

(sec) 

CPU 

time per 

iteration 

(sec) 

2 8690 2.0 1128444 1.14 50 970 19.4 

3 13035 3.0 1075475 1.09 45 1321 29.4 

4 17380 4.0 1053691 1.06 42 1578 37.6 

5 21723 5.0 1041684 1.05 52 2370 45.6 

6 26057 6.0 1033424 1.04 55 3051 55.5 

7 30386 7.0 1027005 1.04 76 5097 67.1 

8 34708 8.0 1022400 1.03 69 5218 75.6 

9 39025 9.0 1018658 1.03 70 6129 87.6 

10 43332 10.0 1015593 1.03 70 6612 94.5 

15 64575 14.9 1005584 1.02 70 10294 147.1 

20 85278 19.6 1000073 1.01 57 11418 200.3 

25 105198 24.2 996603 1.01 52 12973 249.5 

30 124066 28.6 993961 1.00 56 16248 290.1 

40 157104 36.2 990655 1.00 56 21412 382.4 

50 174491 40.2 989445 1.00 50 21597 431.9 

 

Comparison of the results reported in Table 2 to those reported for the MNL model in Table 1 

shows that, as expected, the CNL model takes more time to converge, because of the 

additional computations needed to calculate the CNL choice probabilities. The CPU time for 

the run using all 50 routes is almost 6 hours. As with the MNL model, the CPU time per 

iteration increases linearly with an increase in the number of routes in the path set. Figure 8 
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compares the number of iterations in each model to reach the same convergence level of 

0.001, representing the maximum difference between link flows in consecutive iterations. 
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Figure 8. Winnipeg Network – Iterations needed to reach 1% RMSPE of path flows. 

 

The approximately gamma-shaped pattern for both CNL and MNL are similar: when the 

number of routes in the path set is small (up to 10), more iterations are needed in order to 

obtain convergence when the path set is increased. When the size of the choice set is further 

increased the number of iterations required to reach convergence decreases. Interestingly, 

when few routes are included, the CNL model requires less iterations compared to the MNL. 

However, for larger choice sets this pattern changes. This result may be explained by the 

choice set generation method used in both cases, which includes both similar and disjointed 

routes. Recall that the MNL model is insensitive to similarity between routes, while the CNL 

takes into account the similarity. This means that the combination of the similarity and 

congestion effects in the algorithm needs more iterations to converge. If all routes were 

disjointed, the CNL and MNL model would theoretically need the same number of iterations 

to converge (since the probability function in this case is the same). 

 

To further study the differences in equilibrium assignments using the MNL and CNL route 
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choice models a comparison of the equilibrium path flows is conducted. The following 

goodness-of-fit measures were used to quantify the deviations between the results obtained 

with the two models: 
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Where RMSE is the root mean square error, RMSPE is the root mean square percentage error, 

K is the total number of routes and 
rsK  is the number of routes for the specific 

origin-destination pair rs. The rationale for using equation (5) is to avoid large contributions 

to the error by routes which carry a very small fraction of the demand, which may happen 

when the number of routes in the choice set increases. 

 

Figure 8 presents the results for different choice set sizes. The CNL-SUE model results were 

computed assuming a nesting coefficient equal to 0.5, similar to the model used in Figure 6. 

In the present figure, the demand is set equal in both cases, and the differences are computed 

after reaching convergence level lower than 0.001 (in each model). The left axis in Figure 9 

represents RMSPE, and the right axis represents RMSE. 
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Figure 9. Winnipeg Network – Comparison between CNL and MNL path flows (θ = 0.5 and 

μ=0.5) 

 

As expected, the RMSE measurement decreases, while the RMSPE measurements increase, 

relative to the choice set size. To give a numerical interpretation of the results, recall that the 

average flow for each path in the network for the maximum choice set size (50 routes) is 0.31 

(54,459 divided by 174,491). The RMSE is close to 0.25 (flow units), and consequently the 

relatively high RMSPE1 value found (0.55), and the relatively low RMSPE2 value found 

(0.28). 

 

Since the fixed routes generated are based on link penalty and link elimination methods, there 

is a certain degree of similarity among these routes (because of the common links). Therefore, 

as the number of routes in the choice set increase, the similarity among routes increase. The 

CNL model accounts for similarity, and consequently there is an increase of the relative 

difference between CNL and MNL route flows for increasing choice set sizes. 
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4.3 Network Comparison 

 

Table 3 compares selected MNL-SUE and CNL-SUE results for both networks tested in this 

paper, assuming θ = 0.5 and μ=0.5 for the CNL model. All results were computed using the 

same computer platform. 

 

Table 3. Comparison of Selected Network Results (θ = 0.5) 

 

Model Network Characteristic Sioux Falls Winnipeg Ratio 

 Total links 76 2,535 33.4 

Total OD pairs 528 4,345 8.2 

Total generated routes 3,441 174,491 50.7 

Average routes per OD pair 6.5 40.2 6.4 

Average routes per link 45.3 68.8 1.5 

Average OD pair per link 6.9 1.7 0.2 

MNL – SUE  Iterations needed to reach 

0.001 precision 31 28 0.9 

CPU time (sec) 1.4 9,967 7,119.3 

CPU time per iteration (sec) 0.045 356 7,882.1 

CNL – SUE  Iterations needed to reach 

0.001 precision 32 50 1.6 

CPU time (sec) 2.8 21,597 7,768.7 

CPU time per iteration (sec) 0.087 432 4,972.0 

 

 

The CPU time needed to reach the same convergence precision is more than 7,000 times 

higher in the Winnipeg network, compared to the Sioux Falls network, for both MNL-SUE 

and CNL-SUE models. The non-linear increase in CPU times may be explained by the 

increase in network complexity: the Winnipeg network has more routes per OD pair, but 

fewer routes per link. This means that the Winnipeg network is less dense compared to the 

Sioux Falls network, and consequently there are more opportunities to swap flows among 

paths. The 0.001 convergence precision in the Winnipeg network is reached in relatively few 

iterations because the network is moderately congested, compared to the Sioux Falls network. 
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5. SUMMARY AND CONCLUSIONS  

In practice, route choice models are commonly used as components in large model systems, 

such as traffic assignment, route guidance, network design, etc. For this reason, the choice 

models used to capture routing decisions are often very simple, generally consisting of finding 

the least cost path or the simple MNL model. This paper presents results that illustrate the 

potential of using more realistic route choice models at affordable resources. This paper 

analyzed the effect of choice set size and selected choice models on SUE assignment running 

time and flow patterns. 

 

For small networks, such as the Sioux Falls and the inter-urban network described in Cascetta 

et al. (1997), few routes are sufficient. This is mainly due to the relatively simple network 

topology. For larger and more complex networks, such as the Winnipeg network, the results 

indicate a need to generate a large number of alternative routes.  

 

The problem of choice set generation is still an open problem for SUE models. In the present 

paper, a heuristic method based on the combination of link penalty and link elimination 

method was applied for the Winnipeg network. These methods produce both similar and 

disjointed routes. We agree with previous authors that disjointed routes are essential to 

increase the convergence properties. However, more research is needed to verify the stability 

of the results with respect to other choice set generation methods. 
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