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ABSTRACT 

 

Most published microscopic driving behavior models, such as car following and lane changing, 

were developed for homogeneous and lane-based settings. In the emerging and developing world, 

traffic is characterized by a wide mix of vehicle types (e.g. motorized and non-motorized, two, 

three and four wheelers) that differ substantially in their dimensions, performance capabilities and 

driver behavior and by a lack of lane discipline. This paper presents a review of current driving 

behavior models in the context of mixed traffic, discusses their limitations and the data and 

modeling challenges that need to be met in order to extend and improve their fidelity. The models 

discussed include those for longitudinal and lateral movements and gap acceptance. The review 

points out some of the limitations of current models. A main limitation of current models is that 

they have not explicitly considered the wider range of situations that drivers in mixed traffic may 

face compared to drivers in homogeneous lane-based traffic, and the strategies that they may 

choose in order to tackle these situations. In longitudinal movement, for example, such strategies 

include not only strict following, but also staggered following, following between two vehicles 

and squeezing. Furthermore, due to limited availability of trajectory data in mixed traffic, most of 

the models are not estimated rigorously. The outline of modeling framework for integrated driver 

behavior was discussed finally.  

 

KEYWORDS: Mixed Traffic; Longitudinal Movement Models; Lateral Movement Models;  

                          Trajectory Data; Model Calibration and Validation 
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1.0 INTRODUCTION 

 

The rapid economic growth of developing and emerging countries has generated an increase in 

travel demand, overwhelming the limited transportation infrastructure. A useful indicator of that 

trend is the total number of motorized vehicles, which has increased from 1981 to 2012 from 5 

million to 159 million in India and from 5.5 million to 221 million in China [1-2]. In both countries, 

the problem of increased motorization is compounded by an inadequate road infrastructure, unsafe 

vehicles and driving behavior, sharing of roads by motorized and non-motorized modes, 

overcrowding of vehicles, and inadequate traffic signals, signs, and traffic management (Pucher et 

al. [3]). These problems lead to high levels of congestion, traffic deaths and injuries and 

environmental pollution. In Kolkata (India), for example, the average speed during peak hours in 

the Central Business District (CBD) area is as low as 10 km/h (Singh [4]). In China, the Beijing-

Tibet Expressway experienced the world’s worst traffic jam ever, as traffic congestion stretched 

more than 100 km from August 14 to 26, 2010 (Hickman [5]).  In road related crashes, fatality 

rates in china and India are 22 and 17 per 100,000 inhabitants, respectively which is higher 

compared to developed countries, 5 in the United Kingdom and 6 in Germany (Sivak and Schoettle 

[6]). In 2010, the Indian cities Chennai, Delhi, Mumbai and Kolkata, average annual particulate 

matter PM10 were measured at 55, 286, 97 and 136, respectively. This is 2.75 or higher times the 

WHO guideline (average annual particulate matter is 20 micrograms per cubic meter) indicating a 

truly alarming public health hazard [7]. 

In order to reduce congestion, the performance of the road system has to be improved through 

building new infrastructure and through improved operations of the existing infrastructure with 

efficient traffic control and management strategies. Design of useful traffic control and 

management measures is difficult and requires testing with various designs. In most cases, it is not 

practically feasible to carry out field tests of these designs.  Microscopic simulation tools are 

commonly used to test different traffic management strategies because they mimic the driver 

behavior explicitly and in detail in a controlled environment. Driving behavior models, including 

both longitudinal and lateral movements of the vehicles, are key components of microscopic traffic 

simulation tools. The detailed level of vehicle movement in microscopic simulation models is 

needed to understand the underlying behavior at the formation of congestion and is necessary for 

evaluation the impact of various solutions on traffic flow.  

 

Traffic flow characteristics in emerging and developing countries are substantially different from 

those in the developed countries, and so microscopic traffic models that are designed for 

homogenous traffic streams need to be adapted for these situations. This is exemplified by Figure 

1. In homogenous traffic, vehicles are predominantly cars that follow the marked lanes. Traffic in 

emerging and developing countries is characterized by a wide mix of vehicles that includes 

motorized vehicles such as motorized two wheelers (MTW), auto-rickshaws (three-wheeled 

motorized vehicles), cars (including jeeps and small vans), buses, light commercial vehicles 

(LCVs), trucks, and non-motorized vehicles such as bicycles and tricycles. These vehicles have 

wide varying dimensions and performance capabilities. This variety leads vehicles not to follow 

strict lane discipline and occupy any available space on the road. Smaller size vehicles, such as 

two-wheelers, often utilize gaps between vehicles [8-9]. As a result, the interactions among 

vehicles and the resulting maneuvers they undertake are much more complex in mixed traffic 

conditions. Driving behavior models that describe these interactions are at the core of microscopic 
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traffic simulation systems. Driving behavior models has been developed for more than half a 

century [10-12]. However, most of the available models are designed for homogenous traffic and 

so are not fully capable to reproduce traffic patterns that emerge in the presence of mixed traffic 

conditions. Reviews of these models in the context of homogeneous traffic can be found, for 

example, in Brackstone and McDonald [11], and Toledo [12].  

 

This paper reviews the literature on driving behavior models that were specifically aimed for mixed 

traffic conditions. The models discussed include those for longitudinal and lateral movements and 

gap acceptance.  

 

 
(a) Homogeneous Traffic     (b) Mixed Traffic 

Figure 1 Homogeneous and Mixed Traffic Characteristics 

The rest of this paper is organized as follows: the next two sections reviews current models for 

longitudinal and lateral movements in mixed traffic. The following section discusses the 

limitations and gaps in state of the art models as well as data needs to support estimation of these 

models and improve their fidelity. The next section introduces new modeling framework and the 

final section summarizes our findings and conclusions. 

 

2.0 LONGITUDINAL MOVEMENT MODELS 

 

Longitudinal movement models commonly describe how a following vehicle reacts to the lead 

vehicle in the same lane. A large number of car following models have been proposed in the 

context of homogenous traffic. These may be classified based on behavioral assumptions, namely, 

stimulus response models [13-17] psycho-physical models [18-19] and fuzzy logic based models 

[20]. Car following models have also been extended to more general acceleration models that also 

consider free flow situations in which the subject driver does not closely follow a leader. 

 

Studies of longitudinal movement for mixed traffic suggest extensions of the car following 

paradigm is several ways: First, drivers may react differently to their leader depending on the 

combination of the types of the two vehicles (their own and the leader). Second, the lack of lane 

discipline in the traffic stream causes drivers to react not only to their leader but also to other 

vehicles on their sides. Furthermore, the lack of lane discipline and the variability in vehicle widths 

result in situations in which drivers do not strictly follow a leader. For example, drivers may follow 

their leader only partially in a staggered way. They may follow two leaders at the same time or be 
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squeezing between two leaders. Finally, in road sections with unseparated bidirectional flow, 

drivers may also respond to oncoming traffic sharing the same roadway. 

 

2.1 Car following regimes   

 

Lan and Chang [21] developed a car following model for motorcycles using the General Motors 

(GM) [13-14] model structure. They considered two cases: (1) only one leading vehicle in front; 

(2) two or more leading vehicles in front and neighboring-front (including either left-front, right-

front, or both). In addition, an adaptive neuro-fuzzy inference system (ANFIS) was developed to 

capture the following behavior of motorcycle. They found that the ANFIS model performed better 

than the GM model.                            

 

Chakroborty et al. [22] proposed a longitudinal acceleration model that considers different driving 

behaviors in mixed traffic based on safety and urgency: free flow, car following, passing and 

presence of an opposing vehicle. The mathematical model is expressed by: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 1
n n

n

s

n n

n

s
V t V t V t V t

a t T t k k U t
T T

α β α
 − −   

+ = − + −    
     

ɺ    (1)

 
Where, ( )n na t T+  is the acceleration/deceleration at time 

n
t T+ . 

n
T  is the perception/reaction time 

of the vehicle. ( )sV t  is the sustainable speed of the subject vehicle at time t. ( )nV t  is the subject’s 

actual speed. ( )U tɺ  is the rate of change of potential being faced by the subject. α  is a state 

dummy variable that indicates whether or not the vehicle is constrained by dynamic obstacles (i.e., 

� is 0 for free flow and 1 for constrained flow). k1 and k2 are calibration constants. ( )tβ  is a 

sensitivity parameter. 

 

The above equation depends on two terms: the deviation from the sustainable speed, which the 

driver feels comfortable driving at, and the rate of change of potential function. The potential 

function captures the magnitude of interaction with obstacles and other vehicles in the 

surroundings [23]. The interaction with obstacles depends on their characteristics. For example, 

the potential field due to a parked vehicle may be less pronounced than the potential field emanated 

by a truck coming in the opposing direction. The obstacles which are considered in the study are 

road edges, lane markings, static obstacles (e.g. potholes, parked vehicles) and dynamic obstacles 

(e.g. vehicles in the same and opposing directions).The results show that the model is capable to 

predict different driving regimes, from free flow to congested, in a single framework and to capture 

the effects of varying road geometry. However, the paper does not provide any details on the 

parameters’ calibration. 

 

Minh et al. [24] developed an acceleration model for motorcycles at signalized intersections. The 

model includes four driving regimes that are defined by combinations of car following or free 

flowing and acceleration or deceleration. Drivers are assigned to one of the four regimes based on 

the space headway to the leader. Free regime is invoked when distance headway is greater than the 

longitudinal threshold distance, otherwise the following-regime is applied. In free flow case, 

acceleration will be invoked when signal turns to green and deceleration regime is invoked when 

signal turns to red. In the following regime, the acceleration is invoked when relative speed is 
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positive, otherwise deceleration regime is invoked. The acceleration in each regime is modeled 

using a generalization of the GM model [13-14] framework. The model takes into account the 

effect of the gender of the motorcycle driver, the number of people riding the motorcycle and 

whether the leader is a motorcycle or a four-wheeler: 

 

Free acceleration:  ( ) ( ) ( )DS

n n n n n n
a t T V V t t Tα ε + = − + +     (2) 

Free deceleration:         ( )
( )( )
( )( )
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n
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Following acceleration: ( )
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Following deceleration: ( )
( )( )
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ϕ
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Where, ( )n n
a t T+  is the acceleration/deceleration of the subject motorcycle at time 

n
t T+ . 

n
T  is 

the subject’s reaction time. ( )
n

V t  and 
DS

nV  are the speed of the subject and its desired speed, 

respectively. ( )
n

X t∆  is the spacing between the subject and the leader or the stop line. λ, α, ξ , ϕ 

and ψ are parameters. 
p

n
δ , 

g

n
δ  and 

h

n
δ  are the dummy variables associated with multiple riders 

on the motorcycle, the gender of the driver and four wheeler leaders, respectively. 
pυ , 

gυ , p
ϑ , 

gϑ  

and 
h

ϑ  are the parameters associated with these dummy variable. ( )n nt Tε +  is a random error 

term. 

 

The parameters of all components of the model were estimated jointly using the maximum 

likelihood method with trajectory data of individual vehicles. However, only 20 trajectory data 

points at a resolution of 0.2 seconds (thus covering only 4 seconds of travel) were available due to 

limited field of view. The results showed that accelerations and decelerations were larger in 

absolute values when the driver was alone on the motorcycle and when the lead vehicle is a four 

wheeler. Accelerations and decelerations were lesser for female drivers compared to male drivers. 

 

Ravishankar and Mathew [25] included vehicle-type specific parameters for different 

combinations of leaders and followers in the Gipps’s car-following model [15]. They studied all 

nine combinations of leaders and followers consisting of auto-rickshaws, cars and buses. They 

introduced type-specific parameters for the maximum comfortable acceleration and for the desired 

speed in the acceleration model and for the maximum deceleration in the deceleration model. In 

addition, different parameters for the sensitivity of the deceleration to the spacing between the 

vehicles were introduced for each leader-follower combination. The model parameters were 

estimated using trajectory data collected with GPS devices that were installed in pairs of vehicles 

that participated in following experiments. The estimation results showed that the smaller Auto-

rickshaws-tend to maintain lesser space headways compared to larger vehicles. 
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2.2 Other following regimes  

 

Several studies acknowledged that, in mixed traffic, drivers may not strictly follow their leader, 

but only be partially aligned with it, following multiple leaders or being between leaders. Cho and 

Wu [26] developed a model based on the concept of thrust and repulsion. In their model, the speed 

of the subject motorcycle is a function of its desired speed and current speed, the current speed of 

the leader, the space headway and a minimum safe headway: 

 

( )
( )( )

( )( )
( )1 1

1 1 exp
n n nDS

n n

n

V t x t S
V t V

LV t

α γ

β
λ

− −
  ∆ −   + = − −  
     

     (6) 

Where, ( )nV t  and ( )1nV t−  are the speeds of the follower (subject) and the leader at time t , 

respectively. . 
DS

nV  is the desired speed of the follower. ( )nx t∆  is the space headway between the 

leader and the follower. 1n
S −  is the minimum space headway at a standstill. α , β , γ , λ  and L  

are parameters.  

 

In order to study the staggered following, a weight function that captures the lateral separation 

between the subject and leaders was introduced in the model. The model allows the possibility of 

two leader motorcycles (the nearest on the right-hand and left-hand sides). The speed of the subject 

vehicle is calculated using the following equation: 
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 − −
 + =
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     (7) 

Where, w is the weight function. ( )
r

y t  and ( )
l

y t  are the lateral positions of the nearest lead 

vehicle on the right-hand and left-hand sides, respectively. ( )
n

y t  is the subject’s lateral position.  

 

This study considers multiple leaders and staggered following in the longitudinal behavior models. 

The limitation is that calibration and validation of the model from field data is not reported. 

 

Lee et al. [27] developed a car following model for motorcycles that requires the driver to maintain 

a minimum gaps that would allow it to stop in time to avoid a collision with the leader if it breaks 

to a stop. But, because motorcycles may be staggered with their leaders and can easily maneuver 

laterally, the model also allows them to keep shorter following distances if these allow them to 

dodge the crash by moving laterally, as shown in Figure 2. The minimum distances are calculated 

in both cases based on equations of motion under constant decelerations: 
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Where ( )min

nS t is the minimum following gap. ( )1nV t−  and ( )nV t  are speeds of the leader and 

follower, respectively. ( )nV t∆  is the speed difference between the two (speed of the subject less 

the speed of the leader). 1n
b −  and 

n
b  are their decelerations when braking to a stop. 

n
b′  is the 

deceleration of the subject motorcycle when moving laterally. 
n

T  is the reaction time. ( )nd t  is the 

lateral movement needed by the subject in order not to overlap laterally with the leader. 
n

v  is the 

lateral speed. 

 

Figure 2 Lateral Movement for Collision Avoidance (adopted from [27]) 

The authors also introduced a model for the minimum following gap in oblique following for cases 

that the subject does not laterally overlap with the leader, as shown in Figure 3. The model assumes 

that there are minimum longitudinal and lateral gaps that the subject would maintain if strictly 

behind or parallel to the leader. When the subject is oblique to the leader, the minimum space gap 

would be defined by a linear interpolation of these two values. The minimum longitudinal and 

lateral gaps are given by:      

 

( ) ( ) ( )1 2 1

long long long long

n o n nS t S V t V tα α −= + ∆ +        (9) 

( ) ( )0 1

lat lat lat

n nS t S V tα= + ∆          (10) 

  

It is assumed that vehicles follow elliptical path in oblique following behavior. The equation of 

elliptical curve is described as follows: 
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( ) ( )sin cos
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n long lat
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S t S tθ θ
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⋅
       (11) 

Where, ( )long

n
S t , ( )lat

n
S t  and ( )oblique

n
S t are the minimum longitudinal, lateral and oblique gaps, 

respectively. θ  is the following angle. 
long

oS , 1

longα , 2

longα , 0

lat
S  and 1

latα  are parameters.  

       Car MC      
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d 
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The more constraining minimum longitudinal distance among ( )min

n
S t  and ( )oblique

n
S t is used as the 

safety margin in the calculation of accelerations using Gipps’ model [15]. The longitudinal 

headway model and the oblique and lateral headway models were calibrated by using detailed 

vehicle trajectory data. 
 

 

Figure 3 Oblique Following (adopted from [27]) 

Jin et al. [28] proposed a modification to the optimal velocity model [19] to capture staggered car-

following situations (Figure 4). The modified model takes into consideration the extent of lateral 

overlap between the leader and follower with additional time to collision .The mathematically 

model for acceleration is given as follows: 

 

( ) ( )( ) ( )
( )

opt

n n n n

n

a t T V t V t
TTC t

λ
α θ + = − −         (12) 

Where, ( )n na t T+  is the acceleration of the subject vehicle,
 

( )n
TTC t  is the time to collision. α  

and λ  are parameters. ( )( )opt

n
V tθ  is the subject’s optimal velocity, which depends on the width 

of the leader and visual angle and can be written as: 

 

( ) ( ){ }1 2 1 1 2( ) tanh [ / ]
opt

n n n
V t V V C w t Cθ θ−= + −

      
(13) 

Where, V1 = 6.75 m/s, V2 = 7.91 m/s, C1 = 0.13 m−1, and C2 =1.57 are parameters that were 

obtained in a previous study [29].  

 

The TTC variable takes into account lateral separation effects. It can be expressed as: 
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Where, θn (t )  is the visual angle which is observed by the driver of the  n th vehicle at time t . ( )
n

tϕ  

is the visual gap angle separating the leader from the moving direction of the subject. ( )
n

x t∆  is 

Slat 

       Car 
Slong 

MC      

θ 
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the distance headway between the leader and subject. bn is the lateral separation distance between 

the two vehicles. ln−1 and wn−1 are the length and width of the leader, respectively.  
  

 

 

 

  

Figure 4 Staggered Car Following (adopted from [28]) 

The authors conducted stability analysis of the proposed model. However, they did not estimate 

or validate their model with real-world data.  

 

Gunay [30] proposed a car following model that considers the lateral friction with surrounding 

vehicles. In this model, the subject vehicle chooses a maximum speed that, in order to avoid 

crashing with a leader that brakes to a stop, would allow it to either squeeze between two leaders 

or to shift laterally from the path of the leader. Squeezing between two leaders can occur at a 

Maximum Escape Speed (MES), which depends on the lateral clearance between the leaders 

(Figure 5):  

 
217.2( ) 77.6( ) 0.7                0.5 1.5MES FC FC FC=− + − < <   (17) 

 

 

 

 

 

 

 

 

 

 

Figure 5 Speed to Allow Squeeze Pass the Leader (adapted from [30]) 

 

The maximum speed that would allow the driver to undertake the squeezing maneuver is given 

by Gipps’ model framework [15]: 

 

( ) ( )
2

22

1
1 1

1

( )
2 ( ) ( ) ( )

2 2 2

n n
n n n n n n n n n n n

n n

T V tMES
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−
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  (18) 

Where, ( )nV t  and ( )1nV t−  are the speeds of the subject and the leader, respectively. 
n

T  is the 

subject’s reaction time. nb  and 1nb−  are the deceleration rates of the subject and the leader, 

n-1 

Vn(Pass) = MES = f(ERW) 

n 

Another vehicle or roadway edge 

ERW= Escape Route Width 
n 

Vn(t+τ)>MES 

Vn-1(rest) = 0 

 

Φn(t) θn(t

) 

bn 

 

       n 

    n-1   
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respectively. ( )nx t  and 1( )nx t−  are the positions of the subject and leader, respectively. 1n
S −  is the 

length of the leader vehicle. 

 

At the same time, the driver should also be able to veer laterally to avoid crashing with the leader, 

as shown in Figure 6. The maximum speed that would allow the subject to veer and avoid a crash 

with the leader if it comes to a stop is given by: 

 

( )
1

( )
( ) ( )

2 22

n veer
n n n body

n n

veer n

V t t
x rest x t T MES d

V t T
t T

− − − − −
+ ≤

+
         (19) 

Where, 1( )
n

x rest−  is the position of the leader after coming to a stop. veert  is the time taken for the 

veering manoeuver, which depends on the veering distance. 
bodyd  is the distance between the 

center of bodies of the two vehicles, at the time that the passing takes place.  

 
 

 

 

  

 

 

 

 

Figure 6 Speed to Allow Partial Lane Change (adapted from [30]) 

 

The study presents this theoretical framework, but does not make any attempt to estimate the model 

parameters with field data.  

 

In summary, several authors have proposed modifications and variants of strict car following 

models that have also been used in modeling homogeneous traffic that capture the differences 

between various vehicle types that are present in the mixed traffic stream. Others, have suggested 

models for non-strict following situations, such as staggered following [26, 27, 28, 30] and passing 

behavior [30]. Only limited research has been done to integrate these various regimes in a unified 

following model framework. In terms of data and estimation, some of the proposed models [e.g. 

22, 27, 28, 30] require difficult to collect data, such as on visual angles, escape and veering speeds. 

Minh et al. [24], Lee et al. [27] and Ravishankar and Mathew [25] used trajectory data for 

estimation and validation of their models. The lack of such data dictated that other studies relied 

on macroscopic data for the model calibration and validation.   

 

3.0 LATERAL MOVEMENT MODELS 

 

Lane changing models describe the dynamics of lateral movement behavior of vehicles. They 

incorporate the decision to initiate a lane change and its execution. The distinction between the 

Vn (t) 

xn-1(t) 

dbody 

Veer 

 

CS 

Vn (Pass) = MES 

  n 

n-1 n-1 

xn (t) xn-1 (rest) 

  n 
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wish to change lanes and the execution of the lane change was introduced by Sparmann [31]. Lane 

changing may be mandatory (MLC) or Discretionary (DLC).  MLC lane change are those that the 

driver must take, for example in order to turn at an intersection or avoid obstacles. DLC are 

motivated by the drivers’ desire to improve their current driving conditions by overtaking a slow 

vehicle or having a shorter queue. This structure was implemented in CORSIM [36]. 

Lane changing models are often based on decision rules (Gipps [32], SITRAS [33-34], Wei et al. 

[35]). In this approach, drivers select lanes by comparing the acceptable lanes with respect to, a 

hierarchy of considerations, such as downstream lane blockages, lane use restrictions, the locations 

of obstructions, the presence of heavy vehicles, and potential speed gains. Other studies (e.g. Yang 

[37], Ahmed [38] and Toledo [39]) used the random utility theory, which captures trade-offs 

among the various considerations, to describe the lane selection behavior. These models are 

commonly estimated using the maximum likelihood approach based on vehicular trajectory data. 

3.1 Lateral shift behavior under mixed traffic conditions 

 

Conventional lane-changing models are designed for lane-based movements. They cannot describe 

the lateral movements of mixed traffic adequately. Due to non-lane discipline and smaller size of 

vehicles, lateral movements occur also without changing lanes entirely. The following studies 

describe lateral movement behavior for mixed traffic. 

 

Malikarjuna et al. [40] studied the lateral gap maintaining behavior in heterogeneous traffic 

conditions. In this study, the data was extracted using video image processing software, TRAZER. 

The data was collected for different road widths ranging from 6.60 m to 12.50 m. Four vehicle 

combinations were considered such as light motorized vehicle (LMV)-Two-wheeler (TW), TW-

LMV, LMV-LMV, TW-TW. Lateral gaps from left side and right side of the subject vehicle were 

considered. The following factors were considered in this study: speeds and types of subject 

vehicle and adjacent vehicles. The results of the study are that if the speed of the adjacent vehicle 

increases, lateral gap between subject vehicle and adjacent vehicle increase. This study focuses 

only on empirical results and does not deal with any driver behavior model. 

 

Luo et al. [41] studied the interaction between cars and bicycles in heterogeneous traffic 

conditions.  They developed a cellular automata (CA) model with an occupancy rule based on 

lateral gap of mixed traffic. Bicycles move laterally within the bicycle lane or to the cars lane, with 

different required gaps. Using traffic video data that were collected in Beijing, China, they 

developed a regression model to find needed lateral gaps based on speed of the car. The study 

results show that lateral gaps increase with an increase in speed. The study set up was limited to a 

situation that cars and bicycles move in fixed lane for each type.  

 

Cho and Wu [26] proposed a lateral movement model for motorcycles that assumes drivers try to 

modify their positions to get the maximum lateral space and the motivation decides the lateral 

movement. Lateral position of a motorcycle (Vehicle N) was decided by the positions of the nearest 

vehicles at front left (vehicle J), front right (vehicle I), adjacent left (Vehicle L), adjacent right 

(Vehicle R), rear left (Vehicle Q), and rear right (Vehicle P) as shown in Figure 7. The following 

factors which affect the lateral movement model are longitudinal and lateral position of 

surrounding vehicles, vehicle performance and maximum steering angle. The vehicle will modify 

its lateral position to the middle of those vehicles surrounding it. 
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Figure 7 Vehicles on a Motorcycle Lane - Lateral Movement (adopted from [26]) 
 

The lateral movement model developed by Chakroborty et al. [22] uses the maximum steering 

angle and speed of the vehicle to define a set of accessible points for the subject vehicle. Among 

these points, the driver chooses the one that has the least interaction with other vehicles and 

obstacles. Calibration of the model parameters was not discussed.  
 

Oketch [42] presents a model for mixed-traffic streams with motorized and non-motorized 

vehicles. The lateral movement decisions are governed by fuzzy logic rules. The decision process 

of lateral movement is modeled using three steps: 1) identification of options 2) their evaluation 

by fuzzy logic and 3) testing the safety criteria (available gaps) before execution of the actual 

manoeuver. The lateral movement evaluation considers avoiding obstructions, directional 

movement requirements, avoiding slow moving vehicles and gaining speed and queue 

advantage.  The model incorporates gradual lane change manoeuver (as opposed to an 

instantaneous one), by assuming lateral speed of 1.0 m/sec for each vehicle. Validation and 

calibration of the model were carried out with macroscopic data (delay, queue lengths, mid-link 

speeds and link travel times) from Nairobi, Kenya.  

 

Mathew et al. [43] proposed a modeling framework using the concepts of strips to capture the 

lateral movements. The benefit from changing strips stems from the difference between the safe 

speeds on the two strips as computed using the car-following model. In order to represent tactical 

lateral movement, the driver evaluates multiple strip changes. The benefit of each strip depends on 

the speed advantage and decays with the number of required strip changes:  

    ( )

max,

( , ) ( , )

n

c

safe n safe c s

s t

s

v t s v t s
b e

v

λ− ×
−

= ×         (20) 

Where, 
( )ns tb  is the benefit of changing to strip ns . cs is the current vehicle’s strips. 

safev  and maxv  

are the safe speed and the maximum speed in the strip. s is the number of strip changes to strip 

ns . λ is a parameter.  

 

The model was validated using macroscopic data (throughput, average speed and travel time) that 

were collected in Mumbai, India.  

 

Some of the studies model the lateral movement behavior of vehicles using discrete choice models. 

For example, Lee et al. [27] developed a model for lateral movements of motorcycles using path 

choice model. Such path choice behavior is described by using a Multinomial Logit model. There 
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are three alternatives in the choice set: shifting leftward, keeping straight, and shifting rightward. 

These alternatives are formulated based on the speed of the vehicle in front, interacting force with 

the front and rear vehicles, size of the vehicle near the path, lateral distance to the ready to 

overtaken position, lateral clearance beside the preceding vehicle.  The lateral movement distance 

for the next time step was calculated based on lateral speed of the vehicle. The models were 

calibrated on the basis of trajectories of motorcycles recorded at a section of the Victoria 

Embankment in central London. But in this study, only lateral movement behavior of motorcycles 

was studied. 

 

Siddique [44] developed discretionary and mandatory lateral movement models under week lane-

discipline conditions using a multinomial logit (MNL) model. The road was divided into a number 

of strips with a width of 0.5m, which formed the discrete alternatives. The variables considered in 

the model included the subject vehicle type, speed, lead vehicle type and follower vehicle type, 

position of the road, type of movement and mandatory critical zones. It was estimated with 

trajectory data that were collected from two locations of Dhaka, Bangladesh. The results show that 

non-motorized slow-moving vehicles prefer to stay on the left (slow) side of the roadway whereas 

other vehicles tend to move on the right (fast) side with an expectation to gain speed. A limitation 

of the data used in the study is that due to limited field of view of the cameras used to collect the 

data, it was not possible to record the movement of the vehicle for a long distance. 

 

Munigety et al. [45] presents a lateral movement model for different vehicle types such as 

motorcycles, cars, auto-rickshaws and heavy vehicles using discrete choice analysis. The 

framework of the lateral-shift decision model is described using a Multinomial Logit model. There 

are three alternatives in the choice set: shifting leftward, keeping straight, and shifting 

rightward.  The explanatory variables of the model are speed of the vehicle ahead, gap and size of 

the vehicle in front.  These models are estimated using detailed vehicle trajectory data that was 

collected in mixed traffic driving conditions. The output of the study in the context of speed gain 

is that cars and two-wheelers preferred faster path whereas; heavy vehicles and three-wheelers 

preferred slower path. This implies that heavy vehicles and three-wheelers may change their 

current path in order to prevent obstructing the fast moving vehicles which approaching from the 

rear. The longitudinal gap turned out to be an insignificant variable for two-wheelers in the context 

of space gap. This may be due to its smaller size which allows it to enter any convenient path once 

it finds a sufficient lateral gap. 

 

In summary, Oketch [42] has dealt with mandatory lateral shift and other studies have dealt with 

discretionary lateral shift. Several authors proposed discrete lane change models that are similar 

to those used with homogeneous traffic conditions. Oketch [42], Mathew et al. [43] and Siddique 

[44] applied these concepts on a finer scale by dividing the roadway into a number of narrower  

strips (corresponding to the width of a motorcycle). The vehicle moves laterally discretely between 

these strips. Continuous lateral movement models may provide a more realistic description of this 

behavior. Lee et al. [27], Siddique [44] and Munigety et al. [45] used trajectory data to estimating 

the direction of lateral shift through discrete choice models.  The lack of such data dictated that 

other studies were not estimated with real-world data.  
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3.2 Gap acceptance models 

 

Gap acceptance models describe whether there is a sufficient gap present for the vehicle to execute 

the desired lane change or shift manoeuver. In these models, the driver compares the available gap 

between the vehicles in the desired lane with a corresponding critical gap. , the driver will invoke 

lane change if the available gap is larger than the critical gap. Critical gaps are modeled as random 

variables using various distributions in to capture its variability across drivers. Drew et al. [46], 

Cohen et al. [47] and Solberg et al. [48] used the lognormal distribution to describe critical gap. 

Miller [49] assumed it to be normally distributed. The influence of different traffic factors on 

critical gaps was discussed in several studies [50-53]. Ahmed [38] allowed different sets of 

parameters for MLC and DLC situations. Choudhury et al. [54] and Hidas [55] distinguished 

between normal and forced lane changing, in which the subject vehicle forces the lag vehicle to 

decelerate. 

 

Most studies related to gap acceptance model in the context of mixed traffic deal with yield 

controlled intersection crossing behavior. They mostly use constant critical gaps that differ 

between various categories of vehicles (e.g. Popat et al. [56], Raghavachari et al. [57]). Similarly, 

Agarwal et al. [58] used different constant critical gap values for trucks/buses, cars/two-wheelers, 

auto-rickshaw, and cycles. Kumar and Rao [59] distinguished between critical gaps on the near 

and far lanes at the intersection.   

 

Sangole et al. [60] used Neuro-Fuzzy technique to model the gap acceptance behavior of right 

turning two-wheelers at three-legged intersections. Data for this study were collected at two three-

legged right angled intersections in Aurangabad, India. The gap acceptance decisions depend on 

the size of lag/gap, age of the driver, conflicting vehicle type, and the vehicle occupancy. The 

study found that two-wheelers accept gaps as short as 1 second. Large gaps over 9.5 seconds were 

accepted in all cases.  

 

Several studies incorporate the variations in the critical gap by assuming that they follow some 

probability density function. For example Hossain [61], within the MIXNETSIM model for 

roundabouts, used a lognormal distribution model following analysis of field data from Dhaka, 

Bangladesh. In the simulation model, each driver is assigned different critical lags/gaps from this 

distribution. The model was validated using data on the travel times of vehicles through the 

roundabouts and macroscopic relationships of the flows circulating flows.  

 

Pawar and Patil [62] analyzed gaps and lags at four-legged partially controlled intersections in 

India. They estimated critical gaps using several different estimation methods. Critical lags and 

gaps vary and depend on the subject vehicle type, speed, position of the conflicting vehicle. 

Depending on the method of estimation temporal were estimated between 2.8 seconds and 3.9 

seconds, ans spatial critical gaps were between 31.8 m and 36 m. These values are smaller than 

similar values reported in developed countries indicating drivers’ aggressiveness in India.  

 

Ashalatha and Chandra [63] proposed an alternative definition of critical gaps using the clearing 

behavior of vehicles. They defined a rectangular conflict zone which has the width of the lane and 

a length which is related to the length of the crossing vehicle (Figure 8). It is assumed that the 

critical gap is the time needed for the crossing vehicle to clear this area. Estimation results using 
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this definition yielded critical gaps that were lower than those given in HCM but greater than those 

estimated by standard critical gap estimation methods.  

 

 
 

Figure 8 Schematic Representation of Conflict Zone (adapted from [63]) 
 

Kanagaraj et al. [64] studied merging manoeuvers at T-junctions under congested traffic 

conditions. They developed probabilistic merging models. This is one of the first attempts to 

investigate merging behavior under mixed traffic conditions. The critical gap functional form was 

expressed as follows:
  

 

 n ( ) exp ( ) ( )M M M

cr n nG t X t tβ ε = +          (21)  

Where, 
 n ( )M

crG t  is the critical gap for merging. ( )nX t  and 
Mβ  are the vector of explanatory 

variables that affect critical gaps and the corresponding parameters, respectively. ( )M

n tε  is 

anormally distributed random term.  

 

The explanatory variables used in the model included the lead, lag and subject vehicle type, the 

speeds of the lead and lag vehicles, the subject’s waiting time and the traffic volume on the main 

road. The model was calibrated and validated using field data collected in Chennai, India. The 

results showed that the critical gaps for smaller vehicles are smaller than those for cars. 

 

Kanagaraj et al. [65] studied two unique merging processes which are commonly observed in 

mixed traffic: group and vehicle cover merging. Probabilistic models for these behaviors were 

developed. In group merging several vehicles merge in the same gap at the same time. Critical 

gaps for this case depended on the lead and lag vehicle speeds, the gap between the lead and lag 

vehicle, the number of vehicles in the group and the time it has been waiting to merge. Vehicle 

cover merging describes a situation that a vehicle merges under the cover of another (often larger) 
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zone  Crossing 

vehicle 
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vehicle that interferes with the lag vehicle. Critical gaps in this situation depend on the lateral gap 

longitudinal and lateral gaps, the lead vehicle type and the subjects’ waiting time.  

 

The models were estimated and validated using field data collected in Chennai city, India. Two-

wheelers were found to be more likely to accept use these merging behaviors compared to auto-

rickshaw. Vehicles tended to accept smaller gaps when the lead vehicle is a two-wheelers 

compared to cars and auto-rickshaws. Similarly, two-wheeler tended to reject gaps more when the 

lag vehicle is a car.  

 

In summary, gap acceptance studies in the context of mixed traffic focus on intersection crossing 

and merging behavior. They do not describe the lateral shift process in mid-block sections. The 

developed models generally adopt the gap acceptance framework used in the context of 

homogeneous traffic conditions, but with additional explanatory variables, mostly in order to 

capture differences in behavior among different vehicle types. As with homogeneous traffic 

models, in congested conditions, cooperative and forced lateral shifts may also take place. These 

have been modelled by Kanagaraj et al. [64]. Hence, in this context as well, there is a need for a 

unified model that describes lateral movement including both lateral shift and gap acceptance 

behavior.  

 

4.0 CHALLENGES AND RESEARCH DIRECTIONS 
 

There are two important characteristics that distinguish mixed traffic flow from homogenous 

traffic: the presence of a mix of widely variable vehicle types, and organization of lane-less traffic. 

The mix of vehicles can be captured by developing type-specific driving behavior models. For 

example, Lee et al. [27] developed behavior models specifically for motorcycles. Alternatively, 

type-specific parameters may be added to generic driving models. For example, Asaithambi et al. 

[66] and Mathew and Ravishankar [67] simulated mixed traffic using vehicle type-specific 

parameters in car following models. The non-lane based movements of vehicles have also been 

studied in the literature. The lateral movement of vehicles results, especially for two-wheelers that 

the leader-follower pair changes frequently. Figure 9 shows the distribution of duration that 

various vehicle types are behind the same leader [68]. The figure shows that following episodes 

tend to be very short. 80% of two-wheeler will follow the same leader for less than 3 seconds, 

whereas only 70% and 66% of auto-rickshaw and larger size vehicle. This may be due to 

motorcycle’s smaller size and better maneuverability. At the other end of the distribution, 15% of 

larger size vehicles and 11% of auto-rickshaws follow the same leader for more than 8 seconds. 

But, only 5% motorcycles experience similar following episodes. The results imply significant 

lateral movements in the traffic stream and suggest that the two-dimensional movement of vehicles 

need to be integrated in a comprehensive driver behavior model. To this end, several research 

directions to advance driver behavior models for mixed traffic flows, through improved modeling, 

data collection and model estimation, are discussed next.  
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Figure 9 Frequency of Same Leader Present for Different Types of Following Vehicle 

 

4.1 Driver Behavior Models 

Some directions for improvement of the specification of state-of-the-art models are as follows: 

1.  Driving regimes: A wider range of driving regimes exists in mixed traffic streams. For example, 

in the longitudinal movement, drivers may not only strictly car follow, but also have different 

interaction regimes with their leaders. These regimes needs to first be clearly defined, for example, 

using the extent of lateral overlap or gap with the leader as a classifying variable. Figure 10 shows 

examples of various following regimes:  

• Car Following:  In this case, the lag vehicle (car) strictly following with leader (car).   

• Staggered Following: Due to lane-less traffic and different type of vehicles, the following 

vehicle (car) is staggered with the leader vehicle (car), which implies looser following, and 

a better field of view and opportunities to initiate lateral shifts.  

• Following between two vehicles: In mixed traffic, vehicles occupy any lateral position on 

roadway, based on space availability. Hence, the subject vehicle (auto-rickshaw) follows 

between two leaders (car and car). This also allows better field of view and opportunities 

to pass between two vehicles or initiate lateral shifts.  

• Passing: Passing is a typical behavior of two-wheelers in mixed traffic due to their narrow 

size and high maneuverability. The existence of this behavior pattern has been pointed out 

in several studies [42, 69-72]. 

 

2. Multiple leaders: Due to non-lane based movement and different vehicle sizes, a vehicle may 

follow multiple leaders. Following models need to identify the lead vehicle that affects the subject 

vehicle movement to a greater extent. To the best of our knowledge, the effect of multiple leaders 

has not been incorporated in the existing models. 
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  (a) Car following           (b) Staggered following 

 
(c) Following between two vehicles    (d) Passing 

Figure 10 Following Behaviors in Mixed Traffic 

 

3. Adjacent vehicles: In homogenous traffic following models, the subject vehicle considers only 

the leader in the same lane. It is commonly assumed that adjacent vehicles in other lanes do not 

affect the longitudinal movement. This assumption is less reasonable in in mixed traffic. Vehicle’s 

movement may be affected by adjacent vehicles. For example in the passing situation (Figure 10d), 

the speeds of the passing vehicle may be affected by the lateral gap between the adjacent vehicles. 

The effect of adjacent vehicles was proposed by Gunay [30], but is absent in most other studies.  

 

4. Lateral movement: Lateral movement is often modeled in discrete lanes or strips. Several 

authors (Oketch et al. [42], Arasan and Koshy [9], Kanagaraj et al. [73], Asaithambi et al. [74]) 

assumed a constant lateral speed (e.g. 1 m/sec). Siddique [44] assumed move discretely between 

strips (each 0.5 m wide). Mathew et al. [43] also assumed discrete lateral movement allowing 

vehicles to move only one strip at a time. The different vehicles types in the traffic stream vary 

widely in their dynamic capability, which affects their lateral movement. For example, motorcycle 

can move laterally much faster compared to larger size vehicles. Hence, lateral movement models 

may be extended to account for these differences in speed and maneuverability.  

 

5. Lateral shift processes: Due to the non-lane based conditions, lateral shifts occur frequently in 

mixed traffic streams, and therefore need to be modeled in detail. As with homogenous flow, these 

can take place using in different processes, such as normal, forced and cooperative lateral shifts. 
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These also differ in the effect on other vehicles and traffic flow. Kanagaraj et al. [64] studied 

normal and forced merging behavior at intersections. However, more research is needed on these 

shift mechanisms and in more general settings.  

 

6. Desired lateral positioning: Several authors (e.g. [44], [68]) showed that drivers have preferred 

lateral positions in different situations. For example, cars tend to prefer the far side of the roadway 

that offers higher speeds and lesser friction with other vehicle types and obstructions (e.g. parked 

vehicles, bicycles and pedestrians). Motorcycles and auto-rickshaws tend to keep to the near side. 

Driver behavior models should be developed that capture the lateral position preferences. 

 

4.2 Model Estimation and trajectory data 

 

Driving models in homogenous traffic have been estimated with econometric methods and using 

detailed trajectory data (e.g. Toledo et al. [75], Choudhry [76]) However, in the context of mixed 

traffic calibration and validation have mostly been based on macroscopic flow characteristics, such 

as flows, speeds and densities [8-9, 66, 77]. This approach limits the level of detail that can be 

captured in the developed models. Few studies utilized trajectory data, but these are often small 

samples collected for a specific study and for limited field of view [27, 64, 78].   

 

Trajectory data are obtained using the video recordings [38, 79-80] and naturalistic studies [81]. 

FHWA’S Next Generation Simulation project [82] shared several datasets of vehicle trajectories 

collected on expressway and urban arterials in US. These have been used extensively to calibrate 

and validate driving behavior models [83-87, among others] for homogeneous traffic. To the best 

of our knowledge, limited vehicle trajectory data are available in the context of mixed traffic. This 

may, to a large extent, be due to the difficulty and high cost involved in data collection and 

extraction, and the technical complexities associated with having a wide mix of vehicles types with 

varying physical dimensions and dynamics characteristics (speed and acceleration capabilities) 

and non-lane based movement. Few studies involved collection of mixed traffic trajectory data. 

Lee et al. [27] extracted trajectories of 2019 motorcycle and other vehicles on an 80 meters section 

in London. Mallikarjuna et al. [88] developed TRAZER an automated image processing system to 

extract trajectories from video records. They collected six hours of data from a 25 meters section of a 

road in Delhi, India. Munigety et al. [45] collected trajectories of 3173 vehicles on a 320 m road 

section in Mumbai, India. A recently collected data set that was collected by Kanagaraj et al. [68] 

is available as open source at http://toledo.net.technion.ac.il/mixed-traffic-trajectory-data/. This 

dataset includes 3005 vehicle trajectories at a resolution of 0.5 seconds on a 200 meters section in 

Chennai, India. In all these studies, the trajectory length is short due to the limited field of view of 

the cameras. Observations on longer sections are necessary in order to model complex behaviors 

patterns.  

 

5.0 MODELLING FRAMEWORK OUTLINE 

 

This section outlines an integrated model for driving behavior that captures both longitudinal and 

lateral movement of the vehicles under mixed traffic conditions. Figure 11 shows the overall 

framework. In the first step, the drivers’ goal is defined in terms of a desired manoeuver. Based on 

the literature, types of desired manoeuvers that may be considered include Car following (CF), 

Staggered following (SF), Following between two vehicles (FB), and Passing (PS). Examples of 
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these situations were shown above in Figure 10. The choice among the various alternatives may 

be based on decision rules or discrete choice models, and affected by the neighboring vehicles and 

their relative locations and speeds, the path plan and the characteristics of the driver. 

 

 
 

Figure 11 Overall Model Framework for Driver Behavior in Mixed Traffic 
 

The chosen desired manoeuver dictates a desired lateral position, where the driver would like to 

position the vehicle in order to complete the desired manoeuver. Figure 12 shows possible desired 

lateral positions for various manoeuvers. In CF and SF, the desired lateral position may be the 

centerline and the edge, respectively, of the intended lead vehicle. In FB, the desired lateral 

position may be the middle point between the two leaders. In PS, the desired lateral position may 

be one that maintains a minimum safe distance the subject vehicle and the closer leader.   

 

In some cases, it may not be feasible for the driver to immediately move to the desired position 

due to the presence of other neighboring vehicles. Therefore, a target lateral position may be 

defined, which is the furthest the driver able to move in the direction of the desired position. This 

position may be determined by applying gap acceptance functions on the available gaps in the 

direction of the desired lateral movement. This process is shown in Figure 13. Suppose that the 

subject vehicle (S) decides to follow leader (L), the desired lateral position is therefore directly 

behind the intended leader. The driver then evaluates the gaps with each one of the vehicles 

between its current and desired position from nearest to farthest (Gap 1 to Gap 4). The target 
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position is dictated by the first gap to be rejected. For example, if gap 3 is rejected the target 

position would be dictated by the position of this vehicle and a safe lateral clearance. Gap 

acceptance decisions depend on the magnitude of the available gaps, the relative speed of the two 

vehicles, the types of vehicles and the urgency of the lateral movement.  

 

 

 
 

Figure 12 Desired Lateral Positions 

 

 
Figure 13 Lateral Gap Acceptance and Target Position 

 

For the lateral acceleration, as well as all other acceleration behaviors, it may be assumed that the 

driver reacts to different stimuli depending on the driving regime. For example, in lateral 

acceleration, the driver may react to the distance between the current position and the target 

position. In longitudinal acceleration, the driver may react to the leader relative speed in CF and 

SF, the relative speeds of both leaders in FB and PS. 

 

This framework outline allows to form integrated models for driving behavior that capture both 

longitudinal and lateral movement of vehicles and hence, inter-dependencies among them and 

different behaviors such as staggered following, vehicle following between two vehicles and 

passing. 
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6.0 CONCLUSIONS 

 

This paper reviews the state-of-the-art in driver behavior models under mixed traffic conditions: 

Longitudinal acceleration, lateral shift and gap acceptance models. Mixed traffic is characterized 

by a wide range of vehicle types and lack of lane discipline. As a result, there are driving behaviors 

that are specific to mixed traffic streams, such as staggered following, following between two 

vehicles, and passing and lateral shifts. There have been many attempts to model these behaviors 

separately. This paper outlines an integrated model framework for the two-dimensional movement 

of vehicles that has the potential to capture inter-dependencies in the movements. A major obstacle 

to development of mixed traffic driving models is the limited availability of trajectory data that is 

needed for estimation of their parameters.  
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