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Automated vehicles and driving assistance systems such as adaptive 
cruise control (ACC) are expected to reduce traffic congestion, acci-
dents, and levels of emissions. Field operational tests have found that 
drivers may prefer to deactivate ACC in dense traffic flow conditions 
and before changing lanes. Despite the potential effects of these con-
trol transitions on traffic flow efficiency and safety, most mathemati-
cal models evaluating the impact of ACC do not adequately represent 
that process. This research aimed to identify the main factors influ-
encing drivers’ choice to resume manual control. A mixed logit model 
that predicted the choice to deactivate the system or overrule it by 
pressing the gas pedal was estimated. The data set was collected in an 
on-road experiment in which 23 participants drove a research vehicle 
equipped with full-range ACC on a 35.5-km freeway in Munich, 
Germany, during peak hours. The results reveal that drivers were 
more likely to deactivate the ACC and resume manual control when 
approaching a slower leader, when expecting vehicles cutting in, when 
driving above the ACC target speed, and before exiting the freeway. 
Drivers were more likely to overrule the ACC system by pressing the 
gas pedal a few seconds after the system had been activated and when 
the vehicle decelerated. Everything else being equal, some drivers had 
higher probabilities to resume manual control. This study concludes 
that a novel conceptual framework linking ACC system settings, driver 
behavior characteristics, driver characteristics, and environmental fac-
tors is needed to model driver behavior in control transitions between 
ACC and manual driving.

Automated vehicles and driving assistance systems can contribute 
to reduce congestion, accidents, and levels of emissions. Auto-
mated vehicles may increase roadway capacity, improve traffic 
flow stability, and speed up the outflow from a queue (1). The 
functionalities of automated systems are gradually introduced into 
the market, such as in the case of adaptive cruise control (ACC). 
The ACC is designed to maintain a desired speed and time head-
way, therefore influencing substantially the performance of the 
driving task. The impact of ACC systems on driving behavior has 

been extensively analyzed since the 1990s, primarily in driving 
simulator experiments. Field operational tests have shown poten-
tial safety benefits of ACC systems that are inactive at low speeds 
when they are activated: drivers maintain larger time headways 
(2–5), follow the leader twice as long as in manual driving (4), 
and prepare lane changes in advance to refrain from interactions 
with slower vehicles (2). A possible explanation for these behavioral 
adaptations is that, when the ACC is active, drivers do not manually 
control the vehicle (1).

These findings, however, might be biased by the circumstances in 
which the system is engaged (e.g., medium-high speeds, medium-
light traffic, and noncritical conditions). In certain traffic situations, 
drivers may prefer to deactivate the system and resume manual 
control, or the system deactivates because of its functioning limi-
tations. These transitions between automation and manual driving 
are called control transitions (6) and may have a significant impact 
on traffic flow efficiency (7) and safety (8). The characteristics of 
the ACC, the road, the traffic flow, and the drivers affect the initia-
tion of these transitions (9). Field operational tests have shown that 
dense traffic conditions (4, 10) and maneuvers such as lane chang-
ing may influence drivers’ decision to disengage ACC systems that 
are inactive at low speeds. Recently, these functioning limitations 
have been overcome by the introduction of full-range ACC sys-
tems that can operate in stop-and-go conditions. Full-range ACC 
has been shown to positively affect traffic flow efficiency (11). To 
quantify this effect at varying penetration rates, mathematical mod-
els of manually driven and automated vehicles should be devel-
oped and implemented into microscopic traffic simulation models. 
However, most current car-following and lane-changing models do 
not account for these control transitions. A few microscopic traffic 
flow models (12, 13) have implemented deterministic decision rules 
for transferring control between ACC and manual driving, ignoring 
heterogeneity between and within drivers in the decision-making 
process. Thus the impacts on traffic flow predicted by these models 
could be misleading.

This research explores the factors that influence transitions from 
full-range ACC to manual control. A mixed logit model for this tran-
sition choice is estimated using a data set collected in a controlled 
on-road experiment. The paper is structured as follows. The next 
section discusses potential reasons for control transitions and limi-
tations of existing models for these transitions. This section is fol-
lowed by a description of the controlled on-road experiment. Next, 
the model specification and the estimation results are presented. 
The last section discusses the main factors influencing transitions 
to manual control and directions for future research.
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LiTeRATuRe Review

This section reviews available behavioral theories and models for 
control transitions between ACC and manual driving, on the basis 
of on-road studies in real traffic [for a review of data collection 
methods, refer to Carsten et al. (14)]. Notably, transitions of control 
between ACC and manual driving in safety-critical situations and 
automation failures have also been investigated in driving simulator 
experiments with a high degree of controllability [for a review, refer 
to Varotto et al. (7)].

Control transitions can be initiated by the driver voluntarily or 
by the automated system because of its own functioning limitations. 
Lu and de Winter proposed a classification of transitions of control 
based on who (driver or automation) initiates the transition and who 
is in control afterward (6). Therefore, transitions are defined as driver 
initiated driver in control (DIDC) when drivers deactivate the system, 
driver initiated automation in control (DIAC) when drivers activate 
it, and automation initiated driver in control (AIDC) when the system 
disengages because of its functioning limitations. The circumstances 
in which these transitions occur appear to be strongly related to the 
characteristics of the driver support system. Several field operational 
tests (2, 4, 10, 15) have investigated driving behavior with ACC sys-
tems that are inactive at speeds below 30 km/h and have limited decel-
erations capabilities. DIAC transitions may occur for comfort reasons 
(16, 17) in noncritical and nondense traffic situations [e.g., after enter-
ing the freeway (2)]. DIDC transitions by braking have been primarily 
related to safety indicators such as time to collision. Xiong and Boyle 
classified events in which ACC decelerates automatically into near-
crash, conflict, and low-risk cases on the basis of time to collision 
and distance headway rate (15). They found that drivers were more 
likely to resume control by braking in near-crashes (56%) and conflicts 
(42%), compared with low-risk situations (7%). However, drivers 
can also resume manual control in situations that ACC is able to 
manage when the response of the system does not match their 
expectations (18). Viti et al. found that most ACC deactivations 
occurred in noncritical situations; in their study, 65% to 70% of 
the deactivations were initiated by braking lightly, 20% to 25% 
without braking, and only 5% to 10% by braking hard (10). They 
concluded that drivers transfer to manual control to maintain a 
constant speed in medium-dense traffic conditions. Other studies 
(16, 17) proposed that further reasons to initiate DIDC transitions 
include preparation for changing lanes, anticipation of vehicles 
merging into the lane, and avoiding overtaking slower vehicles on 
the left lanes. AIDC transitions occur when the system fails (e.g., 
the sensors malfunction) or when the required control exceeds the 
system limits (e.g., hard braking is needed).

However, control transitions with full-range ACC systems might 
be initiated in different situations. In a controlled on-road experiment, 
Pereira et al. found that DIDC transitions occurred when the vehicle 
exited the freeway (51% of the deactivations), approached a moving 
vehicle (13%), and changed lane (13%), and when the leader changed 
lanes or a vehicle cut in (22%) (19). They also suggested that DIDC 
transitions by pressing the gas pedal can be seen as a compensation 
strategy to increase the complexity of a situation considered to be too 
simple. This study did not find significant learning effects related 
to control transition behavior over the duration of the experiment.

To date, few microscopic traffic flow models have accounted 
for the possibility of control transitions between ACC and manual 
driving. Van Arem et al. developed a microscopic traffic simulation 
model (MIXIC) in which drivers activated and deactivated the ACC 
(12). DIDC is initiated when the situation requires hard braking, 

when the vehicle approaches a considerably slower leader, and when 
changing lanes. DIAC is initiated when the current acceleration is in 
the range −0.5 to 0.5 m/s2 and when the current distance headway 
allows synchronizing the speed with a deceleration equal to −1 m/s2. 
On the basis of this model and empirical findings by Viti et al. (10), 
Pauwelussen and Feenstra (16), and Pauwelussen and Minderhoud 
(17), Klunder et al. (13) proposed a microscopic traffic simulation 
model (ITS Modeler) in which DIDC is initiated when the abso-
lute value of the difference between the desired acceleration and 
the ACC acceleration is larger than 3.5 m/s2 and the relative speed 
between the leader on the left lane and the subject vehicle is larger 
than 3.0 m/s. AIDC transitions occur when the desired speed or  
acceleration is outside the range supported by the system (30 to 
160 km/h and −3 to +3 m/s2). Drivers are assumed to activate 
the system (DIAC) after it has been inactive for at least 5 s and 
when both the speed and the acceleration are within the ranges of  
36 to 160 km/h and 0 to 3 m/s2. The main limitation of these models 
is that the decision rules are deterministic: heterogeneity between 
and within drivers in the decision-making process is ignored.

Xiong and Boyle estimated a logistic regression model to predict 
the probability that drivers would brake to initiate a DIDC transi-
tion as they closed in on a leader (15). They included variables that 
describe the situation and characteristics of the driver in their model. 
They found that drivers are more likely to intervene in nonhighway 
environments, at lower speeds, and with short gap settings. In addi-
tion, middle-aged drivers are more likely to resume manual control 
than young drivers. However, this model only handles transitions in 
a narrowly defined set of situations.

In summary, to date, limited efforts have been made to study and 
model control transitions in a way that would be suitable for imple-
mentation in microscopic traffic simulation models. This paper 
presents a mixed logit model predicting the probability of DIDC 
transitions, both deactivation (by braking or using the on–off button)  
and overruling (by pressing the gas pedal) of the ACC system.

DATA CoLLeCTion

A controlled on-road experiment was conducted using a BMW 5 
Series research vehicle equipped with a standard version of full-range 
ACC. The experiment took place on the section of the A99 freeway 
in Munich, Germany, shown in Figure 1. The experiment consisted 
of a single 46-km-long drive using different freeway facilities (basic 
sections, on- and off-ramps) in varying traffic densities. In light traffic 
conditions, speed limits were not enforced in most of the main line. In 
medium-dense traffic conditions, a variable speed limit system recom-
mended a certain speed (120, 100, 80, 60, or 40 km/h) based on real 
traffic information. The freeway sections were mostly separated six 
lanes. The test route was preset in the navigation system. Participants 
were instructed to try the ACC system and select their preferred gap 
setting in the first freeway segment. In the other 35.5 km of the route, 
they were asked to drive as they would do in real life, regulating the 
desired speed setting at any time and using the ACC system as they 
thought it was appropriate.

ACC System Specifications

The ACC system used in the experiment controls the speed in the 
range between 0 and 210 km/h and the time headway at speeds 
above 30 km/h. Drivers can select one of the following desired time 



40 Transportation Research Record 2622

headways: 1.0, 1.4, 1.8, and 2.2 s. The ACC supports an accelera-
tion range between −3 m/s2 and +3 m/s2, and the response sensitivity 
cannot be customized with respect to acceleration characteristics. 
When the radar (120-m range) does not detect any leader, the system 
maintains the desired speed as a conventional cruise control system. 
Figure 2 shows the three system states (inactive, active, and active 
and accelerate) and the transitions between them. When the system is 
inactive, it can be activated by pressing the on–off button, the desired 
speed setting switch, or the resume button. When the system is active, 
it can be deactivated by pressing the on–off button or by braking (to 
inactive) and temporarily overruled by pressing the gas pedal (to 
active and accelerate). When the gas pedal is released, the system 
transfers back to active.

Participants and Data Collection

Twenty-three participants (15 males, 8 females) were recruited 
from BMW employees who were not involved in the develop-

ment of the system. Their age ranged between 25 and 51 years old 
(M = 31.57, SD = 6.73), and their driving experience between 3 and 
33 years (M = 13.04, SD = 7.16). Six participants had no experi-
ence with ACC, nine were used to driving with ACC less than 
once a month, and eight more often than once a month. Participants 
received written instructions on the general scope of the research, 
the ACC system specifications, and the potential safety risks. Nota-
bly, the precise aim of the experiment (i.e., investigating driving 
behavior in control transitions) was not disclosed and a written 
informed consent was signed.

The experiment was conducted during morning and evening peak 
hours (7 to 9 a.m., 4 to 6 p.m., 6 to 8 p.m.) from June 29 to July 9, 
2015. Participants were assigned to one of the above-mentioned 
time slots and drove between 45 and 90 min depending on the traf-
fic conditions. The instrumented vehicle recorded the ACC system 
settings and state, GPS position, speed, acceleration, leader distance 
headway (from radar), and leader speed and acceleration (from radar). 
The data were synchronized and recorded at a frequency of 50 Hz 
(e.g., speed and acceleration of the subject vehicle), 15 Hz (e.g., 
distance headway), and 1 Hz (GPS position).

DATA AnALySiS

The data collected on the 35.5 km of the experiment for the 23 drivers 
were analyzed to understand the conditions in which control tran-
sitions occurred most often. This paper focuses on control tran-
sitions in cases that did not involve lane changes (within a time 
window of 10 s before and 10 s after the transition). The data were 
reduced to 1-Hz resolution, which resulted in 31,165 observations.

Overall, the ACC system was active in 83.8% of the observations, 
active and accelerate in 3.4%, and inactive in 12.8%. A leader was 
detected by the radar (120-m range) in 89.6% of the observations. In 
this paper, 23,568 1-s observations are analyzed in which the ACC 
system is active and a leader is detected. Of these, the number of 
observations for each driver ranges from 334 to 1,936 (M = 1,025, 
SD = 467). Fifty-five observations (0.23%) were immediately fol-
lowed by a DIDC transition to inactive (deactivations), 106 (0.45%) 
by a DIDC transition to active and accelerate (overruling), and 
23,407 (99.3%) by no transitions. Transitions initiated by the system 
are not analyzed. Drivers transferred to inactive from zero to seven 
times (M = 2.39, SD = 1.83) and to active and accelerate from zero 
to 26 times (M = 4.61, SD = 5.88).

(a) (b)

FIGURE 1  A99 in Munich: (a) map (20) and (b) picture of the test route.
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Figure 3, to explore the circumstances in which the control tran-
sitions were initiated, compares the empirical cumulative distribu-
tion functions (CDFs) of the driver behavior characteristics when no 
transitions occurred, when the system was deactivated, and when it 
was overruled. Table 1 presents the mean and the standard devia-
tions of these variables and the results of two-sample Kolmogorov–
Smirnov tests on the similarity of the distributions between the 
three groups. Figure 3a shows that most transitions were initiated a 
few seconds after the ACC had been activated. Notably, 48.1% of 

the transitions to active and accelerate occurred up to 7 s after the 
activation. The distributions of time after last activation differed 
significantly between the three groups. Figure 3b indicates that most 
transitions were initiated at speeds between 80 and 130 km/h and, 
within this interval, transitions to active and accelerate were more 
frequent at higher speeds. The distributions of speed differed sig-
nificantly between the three groups. Figure 3c shows that 76.1% of 
the transitions to active and accelerate occurred when the vehicle 
decelerated. Figure 3d illustrates that 86.3% of the deactivations 
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FIGURE 3  Empirical cumulative distribution functions of driver behaviors when system is maintained active (blue)  
and when transitions to inactive (red) and to active and accelerate (green) are initiated. Variables plotted are (a) time 
after last activation, (b) speed, (c) acceleration, (d ) target time headway - time headway, (e) target speed - speed,  
( f) distance headway, (g) relative speed, and (h) relative acceleration.
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occurred when the actual time headway was larger than the one 
set in the ACC. Figure 3e shows that 7.3% of the deactivations and 
11.3% of the overruling actions occurred when the speed was higher 
than the target speed set in the ACC. Figure 3f suggests that, on 
average, deactivations were associated with larger distance head-
ways. Figure 3g shows that 80.0% of the deactivations and 65.1% 
of the overruling actions occurred when the speed of the subject 
was higher than the speed of the leader. The distributions of rela-
tive speed differed significantly between transitions to inactive and 
the other two groups. Figure 3h indicates that 76.4% of the deacti-
vations happened when the subject vehicle accelerated more than 
the leader. The distributions of relative acceleration differed sig-
nificantly between the three groups. In addition, cut-in maneuvers 
were detected comparing the distance headway from radar to the 
distance headway calculated using the speed and the acceleration 

of the subject vehicle and the leader in the previous observation. 
When this difference was larger than 7 m, it was assumed that the 
distance headway reduction was caused by a new vehicle cutting in. 
The authors conclude that the driver behavior characteristics of 
the subject vehicle and the leader may influence significantly the 
choice to resume manual control.

Freeway sections of increased lane changing, merging, and weav-
ing were associated with more frequent control transitions (Table 2). 
Deactivations occurred more often when drivers were on the  
freeway main line close to an on-ramp and in the segment between 
the first exit sign and the exit (1,600 m). Drivers overruled the system 
more often in proximity to on-ramps and between ramps placed at 
a distance shorter than 600 m, which might cause disturbances to 
traffic flow (21). Significant differences in transferring control were 
also associated with drivers with different characteristics (Table 3). 

TABLE 1  Statistics on Driver Behavior When System Is Maintained as Active and When Control Transitions Are Initiated  
to Inactive and to Active and Accelerate

Mean and Standard Deviation
Two-Sample Kolmogorov–Smirnov Test: 
p-Value

Variable Description A I AAc A versus I A versus AAc I versus AAc

Time after last 
activation

Time after ACC has been 
activated (s)

152 (155) 76.0 (83.2) 50.3 (128) 4.73 × 10−5 9.04 × 10−27 8.64 × 10−5 

Speed Speed of subject vehicle 
(km/h)

72.8 (37.9) 94.8 (40.9) 86.5 (36.9)  .00112 4.91 × 10−5 .0486 

Acceleration Acceleration of subject 
vehicle (m/s2)

−0.00254 (0.390) −0.0491 (0.549) −0.272 (0.462)  .432 (*) 2.01 × 10−10 .00320 

Target time 
headway −   
time  
headway 

Difference between target 
time headway set in  
ACC and time headway 
(front bumper to rear 
bumper) (s)

−0.364 (0.561) 
 
 
 

−0.574 (0.758) 
 
 
 

−0.160 (0.780) 
 
 
 

 .192 (*) 
 
 
 

1.79 × 10−11 

 

 

 

.000110 
 
 
 

Target speed −  
speed

Difference between target 
speed set in ACC and sub-
ject vehicle speed (km/h)

25.6 (25.0) 16.2 (22.2) 20.2 (24.9)  .239 (*) .00655 .464(*)

Distance 
headway 

Distance headway (front 
bumper to rear bumper) 
(m)

36.7 (22.9) 
 

49.8 (27.5) 
 

39.1 (23.1) 
 

 .00935 
 

.147(*) 
 

.0335 
 

Relative speed 
 

Difference between leader 
speed and subject vehicle 
speed (km/h)

−0.810 (5.72) 
 

−7.84 (11.8) 
 

−1.04 (6.33) 
 

2.86 × 10−8 

 
.0902(*) 

 
.000230 

 

Relative  
acceleration 

Difference between leader 
acceleration and subject 
vehicle acceleration (m/s2)

0.0142 (0.376) 
 

−0.287 (0.609) 
 

0.225 (0.479) 
 

1.20 × 10−8 

 
.00113 

 
7.67 × 10−9 

 

Note: A = active; I = transitioning to inactive; AAc = transitioning to active and accelerate.
* = p-value > .05. 

TABLE 2  Statistics on Road Sections When System Is Maintained as Active and When Control Transitions  
Are Initiated to Inactive and to Active and Accelerate

Observation (percentage per group)

Variable Description A I AAc

On-ramp Freeway main line close to an on-ramp 3,608 (15.4) 16 (29.1)  26 (24.5)

Off-ramp Freeway main line close to an off-ramp 274 (1.2)  3 (5.5)   1 (0.9)

Between ramp Freeway main line between ramps closer than 600 m 987 (4.2)  3 (5.5)  10 (9.4)

Exit Freeway main line between first exit sign and exit (1,600 m) 1,934 (8.3) 11 (20.0)   3 (2.8)

Total 23,407 (100) 55 (100) 106 (100)
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Females and drivers with 13 to 33 years of driving experience (31 to 
50 years old) overruled the system less often. Drivers inexperienced 
with advanced driver assistance systems (ADAS) transferred control 
less often and drivers with medium experience with ADAS resumed 
control more often.

ChoiCe MoDeL FoR TRAnSiTionS  
To MAnuAL ConTRoL

A discrete choice model was developed for the decision to maintain 
the system active, to transfer to inactive (by pressing the brake 
pedal or the on–off button), or to transfer to active and accelerate 
(by pressing the gas pedal). Since these transitions are intentionally 
initiated by the drivers, it was assumed that only one transition may 
occur within a 1-s interval, a value similar to the mean reaction 
time between the detection of a stimulus and the application of 
the response available in literature (22). The choices are modeled 
for this time interval and are associated with the driver behavior 
characteristics registered at the beginning of the interval. Repeated 
observations of multiple time intervals (panel data) are available 
for each driver. To predict the probabilities of transition choices 
capturing this panel dimension, a mixed logit model was estimated 
introducing a driver-specific error term ϑn assumed to be normally 
distributed over the sample (22). This driver-specific error term 
captures unobserved preferences that affect all choices made by the 
individual driver over time (i.e., the alternative specific constants 
differ between drivers). Below, the final specification is presented, 
selected on the basis of statistical significance. The utility functions 
for remaining active (A), transitioning to inactive (I ), and transition-
ing to active and accelerate (AAc) for driver n at time t are given 
by Equations 1 to 3:

0 (1)U t tn
A

n
A( ) ( )= + ε

U t t t

t t

t t

t t

t t
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( )( ) ( ) ( )

( ) ( )
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where

	 αI and αAAc = alternative specific constants,
	 βI and βAAc =  vectors of parameters associated with 

explanatory variables listed in Table 4,
	 γ =  parameter associated with individual-

specific error term ϑn ~ N(0,1), and
	εA

n(t), εI
n(t), and εn

AAc(t) =  independent and identically distributed 
Gumbel error terms.

The model was estimated using the software PythonBiogeme (23). 
The log likelihood values, the goodness-of-fit indicators, and the esti-
mation results are presented in Table 4. Most parameters associated 
with the explanatory variables in the utility functions are statistically 
significant at the 95% confidence level. The variables associated with 
transition-specific parameters had a significantly different impact on 
transitions to inactive and to active and accelerate. Both alternative 
specific constants are negative and large in magnitude, indicating that 
drivers are more likely to keep the system active than to transfer to 
manual control. Everything else being equal, drivers are more likely 
to overrule than to deactivate the system. The probability that drivers 
would resume manual control is highest in the first few seconds 
after the system has been activated. The logarithmic transforma-
tion is consistent with the empirical distribution function of time 
presented in Figure 3a and resulted in a significantly better fit than 
a linear specification. This effect is stronger for overruling than for 
deactivating the system. Analyzing the driver behavior characteris-
tics of the subject vehicle, one notes that drivers are more likely to 
resume manual control at higher speeds. In addition, they are more 
likely to intervene when their speed is higher than the target speed 
set in the ACC and this probability increases for larger differences. 
Speeds lower than the target speed had nonsignificant effects on tran-
sitions. Drivers are more likely to overrule the system when the ACC 
acceleration is low. The time headway and the target time headway 
set in the ACC did not influence significantly the choice to overrule 

TABLE 3  Statistics on Driver Characteristics When System Is Maintained Active  
and When Control Transitions Are Initiated to Inactive and to Active and Accelerate

Observation (percentage per group) Chi-Square Test

Variable A I AAc df χ p-Value

Gender 2  9.49 .009
  Male (n = 15) 15,707 (67.1) 36 (65.5) 86 (81.1)
  Female (n = 8) 7,700 (32.9) 19 (34.5) 20 (18.9)

Driving experience 2 14.4 .0007
  3–12 years (n = 16) 16,347 (71.6) 38 (76.0) 86 (88.7)
  13–33 years (n = 7) 6,493 (28.4) 12 (24.0) 11 (11.3)

Experience with ADAS 4 14.9 .005
  Inexperienced (n = 6) 6,246 (26.7) 10 (18.2) 15 (14.2)
  Medium experienced (n = 9) 7,905 (33.8) 22 (40.0) 51 (48.1)
  Experienced (n = 8) 9,256 (39.5) 23 (41.8) 40 (37.7)
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the system. Drivers are more likely to deactivate when the time head-
way is short for speeds higher than 30 km/h. The time headway at 
speeds lower than 30 km/h, the target time headway set in the ACC, 
and the ACC acceleration did not have a significant effect on deactiva-
tions. The driver behavior characteristics of the leader have a differ-
ent effect on overruling and deactivating. Drivers are more likely to 
deactivate when they are faster (negative relative speed) and accelerate 
more (negative relative acceleration) than the leader and to overrule 
when they are slower (positive relative speed). Relative accelerations 
had a nonsignificant effect on choices to overrule. Drivers are more 
likely to deactivate the system when they expect that a vehicle will 
cut in during the next 3 s (proactive behavior) and to overrule after a 
vehicle has cut in (reactive behavior). This specification was selected 
on the basis of statistical significance, assuming that drivers are able to 
anticipate traffic conditions up to 3 s downstream (without any error 
in their predictions) and can be influenced by events that occurred 
in the previous 10 s.

Road locations influenced significantly the choices to transfer con-
trol. Drivers are more likely to deactivate the system close to on-
ramps, between two ramps (closer than 600 m), and before exiting the 
freeway. The latter is consistent with previous findings (19). Drivers 
are more likely to overrule close to on-ramps and between two ramps. 
Proximity to exits did not influence significantly the decision to over-
rule the system. Proximity to off-ramps had a nonsignificant effect 
on transitions.

Notably, driver characteristics have a significant effect on transi-
tion choices. Female drivers and experienced drivers are less likely 
to overrule the system. However, these driver characteristics did 

not influence deactivations significantly. In addition, experience 
with ADAS did not affect significantly the transition choices. It 
was assumed that the driver-specific error terms for overruling and 
deactivating the ACC are equal because these terms were strongly 
correlated (r = .908), suggesting that drivers who deactivate more 
frequently also overrule more frequently. The effects of these terms 
on the transitions were nonsignificantly different, meaning that the 
variability between drivers in deactivating and overruling is similar 
(i.e., the alternative specific constants have equal variance).

To illustrate the impact of changes in the explanatory variables on  
the choice probabilities, the choice probability ratio was calculated 
between a baseline observation and observations in which only one 
variable was changed while all the other variables were kept fixed. 
In the baseline observation (choice probability ratio equal to 1), the 
driver was assumed to be a male with 13 years of driving experi-
ence. The actual speed was assumed to be equal to 89.3 km/h and 
lower than the target speed, the acceleration −0.195 m/s2, the time 
headway 1.79 s, the relative speed −3.37 km/h, and the relative 
acceleration 0.0648 m/s2. In addition, it was assumed that the ACC 
system had been activated for 59 s and the observation was not 
influenced by ramps, exits, or cut-in maneuvers. These values were 
chosen on the basis of the average conditions of the observed control 
transitions. The results are shown in Figure 4 (ratio variables) and 
Table 5 (ordinal and nominal variables). All results are consistent  
with previous discussions. Comparing the plots in Figure 4 reveals 
that the time after activation, the acceleration (negative), the dif-
ference between target speed and actual speed (negative), and the 
driver-specific error term (positive) have a stronger impact on the  

TABLE 4  Statistics and Estimation Results of Mixed Logit Model

Variable Description Parameters Estimate T-Test

— Alternative specific constant αI −6.56 −11.3

— Alternative specific constant αAAc −3.01 −5.73

TimeAct Time after ACC has been activated (s) β I
TimeAct −0.198 −1.96

TimeAct Time after ACC has been activated (s) βAAc  
TimeAct −0.740 −10.7

Speed Speed of subject vehicle (km/h) βSpeed 0.00705 2.79

LowTarSpeed Difference between target speed set in ACC and speed of subject vehicle when the former  
is relatively lower (km/h)

βTarSpeed−	 −0.0290 −1.90* 

AccNeg Acceleration of subject vehicle (m/s2) when this value is negative βAAc  
Acc− −1.52 −5.79

AccPos Acceleration of subject vehicle (m/s2) when this value is positive βAAc  
Acc+ −3.71 −3.63

THW30 Time headway (front bumper to rear bumper) (s) when speed is higher than 30 km/h β I
THW30 −0.357 −1.84*

RelSpeed Relative speed (leader speed − subject vehicle speed) (km/h) β I
RelSpeed −0.106 −6.96

RelSpeed Relative speed (leader speed − subject vehicle speed) (km/h) βAAc  
RelSpeed 0.0574 3.82

RelAcc Relative acceleration (leader acceleration − subject vehicle acceleration) (m/s2) β I
RelAcc −1.40 −5.69

AntCutIn3 Number of vehicles that will cut in during the following three seconds β I
AntCutIn3 1.77 6.96

CutIn Dummy variable equal to 1 when a vehicle cuts in front of the subject βAAc  
CutIn 1.91 3.68

OnRamp 
 

Dummy variable equal to 1 when drivers are in main line close to an on-ramp or between 
two ramps closer than 600 m (20)

βOnRamp 0.541 2.91 

Exit Dummy variable equal to 1 when distance to closest exit is less than 1,600 m (first exit sign) βI
Exit 1.93 5.15

Female Dummy variable denoting female drivers βAAc  
Female −0.985 −2.56

ExpDriving Years of driving experience βAAc  
ExpDriv −0.0456 −1.87*

ϑn Individual specific error term γ 0.857 4.23

Note: — = not applicable. Number of parameters K associated with explanatory variables = 17; number of alternative specific constants = 2; number of drivers = 23; 
number of observations = 23,568; constant log likelihood L(c) = −1,067; final log likelihood L(β) = −818; adjusted likelihood ratio index (rho-bar-squared) is
ρ–2 = 1 − (L(β̂) − K ) /L(c) = 0.217.
* = .05 < p-value < .10.
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FIGURE 4  Effect of explanatory variables and driver-specific error term on choice probability ratio of 
keeping ACC active (blue), transferring to inactive (red), and transferring to active and accelerate (green). 
Variables plotted are (a) time after last activation, (b) speed, (c) acceleration, (d ) target speed - speed, 
(e) time headway, ( f) relative speed, (g) relative acceleration, (h) driver experience, and (i) driver-specific 
error term f.
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decision of overruling the system. The difference between target 
speed and actual speed (negative), the relative speed (negative), the 
relative acceleration (negative), and the driver-specific error term 
(positive) are the variables that influence most the decision of 
deactivating the system. In Table 5, note that the probability of 
deactivations is strongly influenced by the number of vehicles that 
are expected to cut in over the next 3 s.

DiSCuSSion AnD ConCLuSionS

The aim of this paper was to identify the factors that influence 
drivers’ decision to initiate a control transition between ACC and 
manual driving, which may have a significant impact on traffic flow 
efficiency (7) and safety. To gain empirical insight into the decision-
making process, the authors estimated a mixed logit model with panel 
data collected in an on-road study. In this model, it was found that 
drivers are more likely to deactivate the system when approaching a 
slower leader, when driving above the ACC target speed, and when 
expecting vehicles cutting in over the following 3 s. Drivers are more 
likely to overrule the ACC by pressing the gas pedal a few seconds 
after the system has been activated, when the vehicle decelerates, and 
when driving above the ACC target speed.

The study concludes that drivers deactivate the system when the 
speed and acceleration of the leader are lower than their (unobserv-
able) desired speed and acceleration. This condition happens when 
the leader is slower than the subject vehicle and the ACC system auto-
matically decreases the speed to synchronize [similar to findings in 
Xiong and Boyle (15) and Pereira et al. (19)]. The desired speed and 
acceleration might be influenced by environmental conditions that 
cause disturbances to traffic flow, such as proximity to ramps and 
exits. In addition, drivers deactivate to anticipate cut-ins in the fol-
lowing few seconds, questioning whether the system will be able to 
handle a potential safety-critical situation. Drivers press the gas pedal 
when the ACC acceleration is lower than their desired acceleration, 
which is influenced by the functioning of the system (e.g., how long 
the system has been active) and by environmental conditions (e.g., 
proximity to ramps). In general, drivers transfer to manual control 
more often when driving above the ACC target speed (which has 
been reached by pressing the gas pedal in the previous observations), 
meaning that the target speed does not correspond to the desired speed 
anymore. Notably, some drivers (positive driver-specific error term) 
are more likely to deactivate and to overrule the system than others. 

Further research is needed to determine the origin of this effect, which 
may be linked to personality traits and driving styles.

The generalizability of the results presented is subject to certain 
limitations. For instance, the participants were not a sample represen-
tative of the driver population in relation to age, gender, employment 
status, and experience with ADAS. Because it was limited to 23 par-
ticipants who drove the test route only once, this study gained little 
insight into the factors explaining heterogeneity between drivers. 
Moreover, the results presented are related to the characteristics of the 
ACC system tested and cannot be generalized to other technologies. 
Finally, the effects of the average traffic conditions (mean speed and 
flow from point-based loop detectors) and of the variable speed 
limits were not accounted for in the choice model, assuming that 
data at the individual vehicle level (driver behavior characteristics 
of the subject vehicle and of the direct leader) are more informative 
predictors of the decision-making process.

The key implication of this study is that, to assess the effects of 
ACC on traffic flow including control transitions, a conceptual frame-
work is needed that links ACC system settings, driver behavior char-
acteristics, driver characteristics, and environmental factors. Future 
research will focus on the mathematical formulation of this novel 
framework and on the model calibration using the data set available. 
The final model can be implemented into a microscopic simulation to 
assess the effects of control transitions on traffic flow.
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