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This paper presents a real-time simulation-based control framework 
to determine dynamic toll rates to optimize an operator’s objective 
subject to various operational and contractual constraints, such  
as smooth toll rate changes and maintenance of prescribed levels of 
service on the toll lane. The toll-setting system incorporates models to 
predict both the vehicle arrival process upstream of the toll lane facility 
and drivers’ choice whether to use the toll lanes as a function of the 
toll rate and travel times presented to drivers within the information  
system. A macroscopic traffic simulation model is used to predict the 
flow conditions within the prediction horizon. The travel times pro-
vided to users as information and the travel times predicted by the traf-
fic flow model are iterated until consistency between them is obtained. 
The whole process is embedded within an optimization algorithm that 
sets tolls to optimize a given objective function. Several case studies  
demonstrate the use of this framework and its potential to provide  
useful toll settings.

Managed lanes, such as toll or high-occupancy-toll (HOT) lanes, are 
efficient means to mitigate traffic congestion through management of 
travel demand. “Dynamic tolling” refers to the situation in which tolls 
vary on the basis of traffic conditions and allow operators to control 
the utilization of the toll facility in response to changing traffic and 
demand conditions.

The tolling scenario considered in this research is shown in Fig-
ure 1. A freeway section consists of free and toll lanes. Vehicles 
approaching the section receive information through variable mes-
sage signs on the current toll rate. They may also receive travel time 
information on the toll lane, on the free lanes, or both. Drivers then 
choose to use either the toll or the free lanes. The toll-setting problem 
addresses the toll rate chosen by the road operator, which may change 
at regular control steps (e.g., every 5 min).

Early works on this problem used static toll strategies, that is, 
constant or varying on the basis of a priori definitions, such as time 
of day. Lindsey and Verhoef (1) and Li and Govind (2) developed 
optimal constant toll rates by assuming time-independent demands 
and traffic conditions and by taking into account the effect of the 
toll rates on drivers’ selection between the toll and free alternatives.

Recently, methods to determine dynamic tolls in real-time have 
also been proposed. These typically sought to maintain free-flow 
conditions on the toll lane while maximizing the throughput of the 
freeway. Yin and Lou developed and compared two such strategies 
(3). The first was based on feedback control. In that strategy, the toll 
rate at a given time step depended on the toll rate at the previous 

step and the occupancy at a bottleneck downstream of the end of  
the toll lane. The second was based on reactive self-learning. This 
approach formulated a discrete choice model to capture drivers’ 
decisions whether to use the HOT lane. The model was based on 
drivers’ willingness to pay for travel time savings, which is learned 
over time from observations on traffic data and toll road use. The toll 
rate itself was determined as a function of the approaching demand, 
the estimated travel times, and the willingness to pay. Simulation 
results demonstrated the effectiveness of the two approaches, in 
particular the self-learning approach. Lou et al. (4) and Lou (5) 
expanded the reactive self-learning approach by using a macro-
scopic traffic flow model to create a more realistic representation of 
traffic dynamics. This model captured the effects on travel times and 
throughput of lane changes that take place at the upstream end of the 
toll lane. The toll rate in each control step was determined by solving 
an explicit nonlinear optimization problem. Traffic state estimation, 
demand prediction, and learning of willingness to pay were also 
introduced in the model.

The methods just described are based on the maximization of the 
throughput or the satisfaction of constraints on the speed or density 
in the toll lane. But toll lane operators may be more interested in 
maximizing other objectives, such as revenue or social welfare. In 
addition, these methods do not ensure that the travel time information 
provided to travelers is consistent with the travel times that they 
experience in the system. This paper presents a framework for a 
model-predictive toll-setting system that extends previous ones in 
the following ways. First, it allows operators the flexibility to define 
explicitly any objective function that they may wish to optimize. 
Second, it accounts for the effect of not only the toll rate information 
but the travel time information that is provided to the drivers on their 
choices. Thus, the framework may be used to ensure that travel time 
information provided to drivers will be consistent (i.e., that it will 
agree with the travel time predictions based on the responses of 
drivers to information they receive) and to evaluate the impact of 
various ways to present and display the information.

The rest of this paper is organized as follows. The next section 
presents the overall framework and components of the toll-setting 
system. Then a case study is used to demonstrate the operations of 
the toll-setting system. That is followed by the results from the 
case study. The final section discusses the results and potential 
enhancements and extensions to the system.

Model Description

Overall Framework

The system is designed to reside at the control center for the tolled 
facility and to operate in real time. The overall framework of the 
toll-setting system is shown in Figure 2. The optimization process 
shown in the figure is run at the beginning of each control step t to 
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FIGURE 1    Road section with both free and toll lanes (VMS = variable message sign).
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FIGURE 2    Framework of toll-setting system.
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determine the toll rate for that interval. A “control step” is defined as 
the time between each update of the toll rate (typically, 3 to 5 min). 
The system first uses available traffic measurements and historical 
data to estimate the current state of the network (i.e., travel times 
and densities) and to predict the overall demand of arriving vehicles 
in the next intervals. Then, an initial value for the toll rate is used 
within a lane choice model to predict the shares of drivers who will 
choose the toll and the free lanes. The estimated network state and 
the predicted demands are used as initial boundary conditions for  
a traffic flow model to predict flows, speeds, and travel times. If travel 
time information is provided to the drivers, it is updated according 
to the predicted values. This update, in turn, affects the prediction of 
lane choices, which affects traffic flow and so on. Therefore, the pro-
cess iterates until consistency of the predicted and informed travel 
times is achieved.

The prediction process is embedded in an optimization algorithm 
that uses the predicted traffic flow characteristics to calculate the 
value of the objective function and iteratively to find the optimal toll 
rate. The optimization process is implemented in a rolling-horizon 
framework, which is shown in Figure 3. At each time step, the simu-
lation is run for a certain prediction horizon h. Within this horizon, 
optimal toll rates are calculated for m control steps that define a 
control horizon (m ≤ h). The optimal toll rate for the first step is 
implemented in the field. When the time for the next step arrives, the 
process is repeated.

Traffic Dynamics

The presented framework requires a realistic representation of 
traffic dynamics on both free and toll lanes and the use of a traffic  
flow model. The traffic model should be capable of estimating the 
time-dependent traffic states within the prediction horizon and the 
effect on these states of past and future control actions (i.e., toll rates) 
and of the demand inputs. The traffic flow model outputs (e.g., flows, 

speeds, and travel times) are used not only to help calculate the objec-
tive function but to evaluate satisfaction of the set of constraints on the 
toll lane operations (e.g., minimum speed, maximum flow, or travel 
times). The model predictions provide early warnings of potential 
problems that may affect toll settings ahead of their predicted occur-
rence. The traffic dynamic model should have the following main 
characteristics:

1.	 Easy implementation and adaptation within the framework,
2.	 Real-time use capability, and
3.	 Easy calibration and error handling.

In the current implementation, the cell-transmission model (CTM), 
a macroscopic first-order traffic flow model is used (6, 7). CTM 
divides the freeway into homogeneous sections (cells) so that vehi-
cles move from an upstream cell to the next downstream cell. CTM 
simulates the freeway system with a time-paced strategy in which 
traffic states are updated in every simulation step. The inputs to CTM 
are these:

1.	 A vector of the predicted demands for the prediction horizon,
2.	 A vector of the split ratios for the prediction horizon, and
3.	 Initial densities along both the free and toll lanes.

The model outputs are flows, densities, speeds, and travel times in 
each cell and at every simulation step within the prediction horizon. 
From these outputs, the values used by the toll-setting system may 
be extracted:

1.	 Predicted travel times for both the toll and free lanes within 
the prediction horizon,

2.	 Predicted traffic states at the beginning of the next control step, 
and

3.	 Predicted number of vehicles that will enter the toll lane in each 
step within the prediction horizon.
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FIGURE 3    Framework of rolling time horizon.
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Lane Choice

The ability to predict travelers’ choices of whether to use the toll 
lane is central to the entire process of setting optimal tolls, which are 
ultimately designed to affect traffic conditions through this choice.

In the wider context of route choices many previous studies [e.g., 
Bonsall (8) and Ramming (9)] have shown that the factors affecting 
this choice include travel times and delays, travel distances, tolls, 
physical characteristics of the route (e.g., types of roads or presence of 
intersections), safety, and security. Information provided to the drivers 
in real time about these factors, in particular traffic conditions and 
tolls, also have been shown to affect route choices. Both the content 
and the presentation of the information have been shown to affect 
route choices [e.g., Wardman et al. (10), Hidas and Awadalla (11), 
Peeta and Ramos (12), Erke et al. (13), and Zheng and Levinson (14)].

Somewhat surprisingly, the choice between toll and free lanes 
within a highway has not received much attention in the literature. 
Janson and Levinson evaluated the values of time that are reflected in 
this choice (15). They found that the willingness to pay for travel time 
savings in this context is substantially higher than that commonly 
found in other route choice scenarios.

The scenario assumed in the current study is that drivers receive 
information when they approach the entrance to the toll lanes. 
This information included the current toll rate and may have also 
included information on the travel times and level of congestion. This 
information may be related only to the managed lane (as implemented, 
for example, on the I-91 express lanes between Orange and Riverside 
counties in California), only to the free lanes (e.g., Highway 1 fast 
lane in Israel), or to both. In other cases, no information at all was  
provided and drivers were left to rely only on their own perceptions 
(e.g. SR-167 HOT lanes in the State of Washington). The current 
implementation assumed that drivers were provided with full travel 
time predictions on both the free and toll lanes. Furthermore, for 
simplicity, it assumed that the lane choices were affected only by 
these two variables. The lane choice probability, which defines the 
split ratio that was introduced earlier, was modeled by using a binary 
logit model and given by

p
t

t
T

t
F

t( )( )β =
+ − α + α − + α 

1

1 exp tt tt
(1)

0 1 2

where

	 βt	=	� probability of choosing the toll lanes in simula-
tion step t,

	 tt t
T and tt t

F	=	� expected travel times on the toll and free lanes, 
respectively,

	 pt	=	 toll rate, and
	α0, α1, and α2	=	scalar parameters.

In the proposed framework, at each time step, this model is 
applied to the h steps within the prediction horizon on the basis of 
corresponding vectors of expected travel times and toll rates. The 
output of this model is a vector of split ratios of drivers who will 
choose the toll lanes in these intervals.

Demand Prediction

The proposed model deals with traffic states within a prediction 
horizon. Therefore, it needs predictions of the future incoming flows 
to the traffic network within the prediction horizon. The demand 

prediction model must be fast for online use, reliable, and capable 
of coping with modest amounts of data. Statistical time series tech-
niques are well suited for this purpose. Williams and Hoel showed 
that a seasonal autoregressive integrated moving average model can 
be used for short-term predictions of traffic flow in freeways (16). In 
the current implementation, this model was adopted to predict the 
traffic inflow at the entrance of the freeway section within the pre-
diction horizon. The forecast used time series data on these inflows 
from previous seasons (e.g., weeks) and earlier time intervals on the 
same day. Mathematically, the prediction is given by
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where

	 q̂t and qt	=	� predicted and measured incoming flows, respec-
tively, in step t,

	θ, ϕ, and Θ	=	model parameters, and
	 H	=	number of intervals in a season.

Objective Function and Constraints Evaluation

The demand estimates and the traffic flow models are used within 
an optimization framework. Toll lane operators may adopt several 
objective functions, such as maximizing revenue, social welfare, or 
throughput. The objective may also be subjected to various operational 
and contractual constraints, such as requiring smooth transitions in toll 
rates and enforcing lower and upper bounds on toll rates, bounding 
the densities, or requiring minimum speeds or minimum flows during 
certain periods of the day on the toll lanes.

The decision variables in this optimization problem are the m toll 
rates for the steps within the control horizon. The current implementa-
tion assumed that, after the end of the control horizon (step t + m and 
onward until the end of the prediction horizon in step t + h − 1), the 
toll rate was held constant at its last value (from step t + m − 1).

State Estimation and Learning

To achieve better accuracy, the toll-setting system was designed to 
be able to use measurements from traffic sensors that may be avail-
able in the system. These data were used to correct errors in the 
initial states of the traffic system that served as inputs to the traf-
fic dynamics model and in predicting future inflows to the system 
(Equation 2). The measurements may also be used to learn and refine 
values of the parameters within the various model components (e.g., 
the demand prediction model described earlier, which uses sensor 
count measurements to adjust earlier demand estimates). Similar 
methods may be used to calibrate online the parameters of the lane 
choice and traffic dynamics models when new measurements are 
received (17–20).

Demonstration Case Study

To demonstrate the use of the toll-setting framework, several simu-
lation experiments were conducted with the toll-setting system. The 
toll road facility used in the case study, shown in Figure 4, is based 
on the one for Highway 1 in Israel. This is a four-lane, 14-km freeway 
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section. A toll information sign is located at the upstream end of the 
section, which is 1 km upstream of the entrance to the toll lane. The 
main section of the highway has three free lanes and a single toll 
lane. This section is 12 km long. At the downstream end, the toll and 
free lanes merge again and all four lanes are free.

In the CTM, this network is represented with cells that are 0.5 km 
long. The traffic states are updated every 15 s (simulation step). 
The traffic fundamental diagrams for cells in regular and bottleneck 
conditions are shown in Figure 5. Bottleneck cells (e.g., during inci-
dent conditions) were constructed to have 50% of the capacity of a 
regular cell. The free-flow speed is 90 and 45 km/h for the regular 
and bottleneck cells, respectively.

Two profiles for the total flow entering the section were considered 
in the experiments. These are shown in Figure 6. They differ in the 
duration for which the peak demand exists.

The parameters of the lane choice model were set such that when 
the travel times on the toll and free lanes are equal, and the toll rate 
is zero, drivers will split equally among all lanes. Other assump-
tions were that the value of time was 50 new Israeli shekels (NIS) 

(1 NIS = $0.26 in January 2017) and that the use of the toll lane 
when the travel times were equal was less than 5% when the toll was 
above 20 NIS. The values of parameters of the lane choice model 
that satisfy these assumptions are α0 = −1.099, α1 = −4.149, and  
α2 = −0.083, respectively. Tolls were assumed to change in intervals 
of 5 min and increments of 3 NIS. Another assumption was that 
the toll road operator was required to keep the travel time on the 
toll lane to less than 20 min. If this constraint was violated during 
some interval, the entire revenue collected within that interval was  
surrendered to the state. These constraints were loosely based on the 
ones implemented in Highway 1 in Israel. The objective function 
used in the case study was to maximize operator revenue over the 
prediction horizon while taking into account the possibility of lost 
revenue as just described. In the case study, the prediction and control 
horizons were both set to three steps (15 min). Thus, the objective 
function is given by

max (3)tt 20
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FIGURE 4    Scheme of road section used in case study.
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where

	 ns
T	=	� number of vehicles that entered the toll lane during 

interval s,
	 ps	=	 toll rate at interval s, and
	δ s

ttT≤20	=	� indicator variable (= 1 if travel time on toll lane for  
vehicles entering it during interval s is less than 20 min 
and = 0 otherwise).

Experiments with System

Several scenarios were used to evaluate the performance of the toll-
setting system: Scenario 1 used the standard demand profile shown 
in Figure 6, with the full capacity of all cells in the network. This 
scenario was used to examine the effect of different initial toll rates on 
the dynamics of the tolling and traffic flow produced by the system. 
Scenario 2 added a bottleneck cell, with reduced capacity at the 
merging of the free and toll lanes at the downstream end. Scenario 3  
used the same bottleneck characteristics but with an extended demand 
profile. In each of these scenarios, the CTM model itself was used 
to produce the measurements of flows, travel times, and densities that 
were used within the toll-setting system. Thus, the assumption was 
made that the model predictions were error free. Scenarios 4 and 5 
evaluated the effect of this idealistic assumption on the model perfor-
mance through introduction of errors in the prediction of the demand 
and in the estimation of the current network state.

Scenario 1. Effect of Initial Conditions

The Scenario 1 experiment examined the effect of different initial 
toll rates on the dynamics of the toll rate and traffic flow. The results 
presented in Figure 7 show the evolution of the tolls, with two initial 
toll values: 21 NIS (Figure 7a) and 6 NIS (Figure 7b). In both cases, 
the toll converged in no more than four time steps to the steady 
state toll value of 12 NIS. Evolution of the lane choice probabilities 
was consistent with that of the toll rates and also converged to an 
equilibrium value of β = 0.11 (Figure 7, c and d).

Scenario 2. Base Demand,  
Reduced Merge Capacity

The Scenario 2 experiment demonstrated the response of the sys-
tem to the formation of congestion on the free lanes. The results 
are presented in Figure 8. The travel time on both the free and toll 
lanes increased (Figure 8a) as congestion built upstream of the 
bottleneck cell when the total inflow increased to 7,000 vehicles 
per hour (Figure 8b). As a result, the toll increased to avoid con-
gestion on the toll lanes and loss of the revenue to the operator 
(Figure 8c). The travel time on the free lanes peaked after 35 min 
and then gradually decreased when the queue dissipated after the 
demand started to decrease. The toll rate followed a similar trend. 
It initially increased from its initial value of 9 NIS to 18 NIS. It 
decreased to 15 NIS when the travel time on the free lanes started 
to decrease but stayed at that level for seven control steps (35 min), 
until the queue on the free lanes dissipated completely. At that 
point, the toll decreased to the steady state value of 12 NIS. During 
peak demand, the flow on the toll lane increased as a result of both 
the increase in demand and an increase in the fraction of drivers 
choosing the toll lane, but the travel time constraint was never 
violated (Figure 8d).

Scenario 3. Extended Peak Demand

In the Scenario 3 experiment, the same setup as in the previous one 
was used but with the extended demand profile. The results are pre-
sented in Figure 9. The prolonged peak demand resulted in higher 
tolls, which reached 24 NIS (Figure 9a). Again, the relationship 
between the travel time on the free lanes and the toll rate was evident. 
The results also exemplified the effect of the use of future predicted 
demand. Travel times at the intervals starting at Minute 40 and at 
Minute 55 were similar on both lanes (Figure 9b). But the toll rates 
were different. The figure for the split-cell outflow graph shows 
that the demand decreased significantly between these two periods 
(Figure 9c). Therefore, in the later period, the toll rate was lower and 
in turn encouraged drivers to choose the toll lane (Figure 9d).
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Scenario 4. Effect of Prediction Errors

Two main sources of error in the model were the predictions of traf-
fic demand entering the corridor and the estimates of current traffic 
conditions (densities) that were used as initial values for the CTM 
model. By using the setup of Scenario 3, artificial random errors were 

implemented on one of these two models, while the other model 
was kept error free. In each case, the standard deviation of the error 
was expressed as a percentage of the “true” mean value. Figures 10 
and 11 present the effect of the prediction error in the demand and in 
the state, respectively, on the revenue. The results were normalized 
against the revenue obtained with error-free models. The reported 
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results were based on 20 model runs in each case. The figures show 
the mean as well as the 5th and 95th percentiles, which correspond 
to the mean ±2 standard deviations of the revenue. As expected, the 
mean revenue decreased with an increase in the errors of both the 
demand prediction and the state estimation. However, the reduction 
attributable to demand errors was slight, reaching only 3% when 
the prediction error was 20%. With the state estimation, the loss of 
revenue was larger, up to 13%. In specific cases, modeling errors 
may lead to increased revenue. However, such errors will also result 
in provision of unreliable information to the drivers, which, in the 
long run, will lead to loss of trust by the drivers and consequently to 
loss of the ability to affect use patterns of the toll lane.

Summary

This paper presents a real-time simulation-based control framework 
to determine dynamic toll rates to optimize an operator’s objective 
subject to various operational and contractual constraints. The toll- 
setting system incorporated models to predict both the vehicle arrival 
process upstream of the toll lane facility and drivers’ choice whether 
to use the toll lanes as functions of the toll rate and travel times 
presented to drivers within the information system. A macroscopic 
traffic simulation model was used to predict the flow conditions 
within the prediction horizon. The travel times provided to users as 
information and the ones predicted by the traffic flow model were 
iterated until consistency between them was obtained. The whole 
process was embedded within an optimization algorithm that set 
tolls to optimize a given objective function. Several case studies 
demonstrated the use of this framework and its potential to provide 
useful toll settings.

The system presented in this paper was applied to a road section 
with a single entrance and single exit. However, increasingly, net-
works of toll facilities are being built. Thus, a natural extension is to 
adapt the toll-setting system to multiple entry and exit points. This 
adaptation requires the use of efficient optimization algorithms that 
would support a larger number of variables and constraints. It also 

calls for clearer understanding of users’ route choice and the effect 
of the various operational and contractual constraints on the tolling 
system on the objective function.
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