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Abstract: As connectivity and automation make their way in to transportation systems, they are expected to have a forceful
impact, drastically changing road transportation. The introduction of autonomous vehicles (AVs) and connected autonomous
vehicles (CAVs) is expected to advance safety and comfort. But, they can also affect characteristics of road networks, such as
capacities, delays and efficiency. To foresee important challenges, reinforce potential benefits and reduce potential
disadvantages of this new disruptive technology, its impacts should be well studied and understood before their anticipated
introduction. In this paper, a microscopic simulation framework to estimate these impacts is developed. Simulation experiments
are conducted for various traffic mixtures of manually driven vehicles, AVs and CAVs, different desired time headways settings
and traffic demand levels, to evaluate the sensitivity of the network performance to these factors. The ring road of Antwerp is
used for the case study. Thus, the results and conclusions refer to a large real-world network. The consequences of the
introduction of AVS and CAVs on traffic flow and pollutant emissions are evaluated. The results show that depending on the
demand, AVs introduction can have negative effects on traffic flow, while CAVs may benefit the network performance, depending
on their market penetration.

1 Introduction
Road transportation has a substantial impact on several areas. The
environmental impacts of transport are substantial, especially since
it is the only sector in Europe, where greenhouse gas emissions are
still rising [1]. Mobility, the ability to transfer goods and people, is
an important factor, affecting urban development and planning.
Road safety is also a major issue, considering that there were more
than 26,000 deaths in the EU alone in 2015. Technological
advances in automation and connectivity are now promising to
revolutionise the sector.

Low-level automation is already available for privately owned
vehicles. Companies like Waymo [2] are promising to introduce
fully autonomous vehicles (AVs) before long, for private
ownership or considering mobility as a service. Connectivity can
further increase the benefits of automation. Apart from safety and
comfort, the introduction of AVs and connected AVs (CAVs) may,
in the near future, have substantial effects on road networks, travel
delay times, energy efficiency and traffic demand.

To foresee important challenges, reinforce potential benefits
and, to the extent possible, prevent potential disadvantages of this
new disruptive technology, its impacts should be well studied and
understood before their anticipated introduction. Since large scale
field experiments are currently next to impossible, simulation
experiments are necessary. Taking into account the complexity of
road transportation networks, these simulation experiments should
be implemented on a large scale, realistic networks that closely
represent existing networks and their characteristics.

The way that AVs and CAVs operate differs substantially from
human driving. These differences should be represented in
microscopic traffic simulation experiments. Their reaction time is
expected to be lower than that of the average human driver, leading
to safer and smoother traffic flows [3]. AVs are also expected to
function in a safer and more conservative way, maintaining larger
headways and avoiding the use of larger acceleration and
deceleration that are outside the human comfort zone. CAVs, when
they interact with other CAVs, can benefit from the information

exchanged for a car following and lane changing, forming platoons
that may increase lane capacities and for the network as a whole.
Moreover, different cooperation and control strategies can be
developed and exploited. To measure their effectiveness and
necessity, a framework representing the base scenario is required.

The scope of this paper is to develop a microscopic traffic
simulation framework to test the deployment of vehicles with
automatic cruise control (ACC) and connected ACC (CACC)
capabilities. This framework is utilised for a case study on the ring
road of Antwerp. The network has been modelled in detail and the
traffic demand has been estimated using observed peak period
traffic counts. In the simulation experiment, the mix of vehicles
with different technologies, their safety configurations and the
level of traffic demand are varied. This produces a large number of
scenarios that were tested. The behaviours of AVs and CAVs were
modelled according to state of the art ACC and CACC algorithms,
respectively. The COPERT (Computer Programme to calculate
Emissions from Road Transport) emission model [4] is used to
quantify the environmental effects on the network. The analysis of
the results shows that ACC can have a negative impact on the
network's congestion, depending on the market penetration rate and
the desired time gap setting, which were assumed to be constant
across vehicles. An interesting observation is that as the
deployment of AVs approaches 100%, a capacity drop is observed
on the network, which deteriorates traffic flow. This result shows
the existence of trade-offs between the capabilities of the
technology (shorter time gaps) and serving the goals of safety and
comfort. CAVs can have slightly negative consequences on traffic
flow in low penetration rates. With higher penetration rates, they
are beneficial to the network performance, as long as traffic
demand levels are not very high. The traffic demand level and the
desired time gap for AVs had a substantial effect on the network's
performance. The desired time gap choice seems to play an
important role in critical situations where lane changes become
mandatory. Thus, further research is recommended on cooperative
control strategies that may support smoother lane changes for
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CAVs. Regarding the environmental impacts, high penetration of
AVs on high density roads seems to results in very high emission
rates, while the high penetration rate of CAVs can prove to be
beneficial.

The remaining of the paper is organised as follows: Section 2
presents the relevant literature on simulating AVs and CAVs.
Section 3 describes the algorithms used for the simulation
scenarios, major assumptions and limitations of the experiments.
Section 4 provides the necessary information about the case study
experiment and the simulation scenarios. Section 5 discusses the
results of the simulation. Finally, conclusions and future work are
presented in Section 6.

2 State-of-the-art
According to NHTSA [5], vehicle automation can be divided into
five different categories referenced as levels of automation, from 0
to 4. Level of automation 0 is considered to be manual vehicles
with no automated capabilities. Levels 1 and 2, incorporate
function-specific automation and combined function automation,
respectively. However, these are considered to provide driver
assistance. Levels 3 and 4 vehicles can perform all driving
functions, with the driver not expected to constantly monitor the
roadway.

The highest automation level available in the market now is
ACC systems, which correspond to level 2. CACC is another level
2 technology that is expected to become available in the market. It
is currently subject to numerous experiments. Recent studies on the
subject of vehicle automation and connectivity are listed in Table 1.

A substantial literature describing microscopic traffic
simulation experiments of automation and connectivity exist.
These studies use road sections or small networks, in some cases,
with a limited number of on- and off-ramps. Experiments on larger
networks, to the best of the authors’ knowledge, are limited to
macroscopic simulations. In [39] an evaluation of the impact of
CACC on the Antwerp ring-road for different penetration rates and
different traffic demands was presented. At that point, only
cruising was performed by the CACC controller so that other
manoeuvres where performed by the simulated human controller.
The impact was beneficial for the network average speed and delay
times. But, in some cases, the energy demand increased with the
CACC market penetration rates because of the higher average
speeds on the network. Also, a more detailed analysis of the work
presented in Table 1 can be found in [39]. Another study [40]
presented negative impacts of automation and connectivity, which
may be caused by the coordination scheme that was utilised.

In the preparation for this new era of transportation, it is
important to identify possible challenges before the introduction of
fully functioning CAVs on our road networks. Hence, and because
of the complexity of the transportation systems and the
expensiveness of real experiments, simulation experiments on large
networks are necessary. This is the objective of this paper, using

what is considered by the authors to be the closest to a consensus
on human driven and autonomous vehicle modelling.

3 Simulation set up
3.1 Assumptions and limitations

In order to model the behaviour of AVs and CAVs in
microsimulation frameworks, various models with vastly different
results have been presented on various studies mentioned in the
state-of-the-art section [3, 6–15]. It has been assumed that the AVs
and CAVs cruising behaviour can be simulated using models
developed to describe ACC and CACC cruising controllers.
Various different models have been proposed for ACC and CACC
cruising, and the ones chosen represent models that have been
broadly used and cited in studies in the field.

Regarding overtaking, lane changing and giving way
behaviours, the default AIMSUN models have been used, taking
into account the different reaction time and deceleration
capabilities for AVs and CAVs. The assumption here is that the
AVs will try to mimic human behaviour, according to their
performance characteristics. The assumptions are considered to be
valid, as the scope of this paper is not to introduce several optimal
control algorithms targeted to various functionalities of CAVs, but
to assess the possible impacts due to the introduction of
connectivity and automation in a real network in order to highlight
possible future challenges. The undesirable consequences that are
presented are avoidable with appropriate legislation or coordination
algorithms. Our goal is to identify those problems and estimate the
most significant ones, to motivate further research.

3.2 Driver models

The AIMSUN traffic simulation model is used in this study. Three
types of vehicles have to be simulated, to construct the mixture of
the traffic that uses the network: manually driven cars with no
automation capabilities, AVs were the human driver is not
responsible to regain control at any point of the trip, and CAVs that
operating as AVs and make use of their connectivity when possible.
Details about vehicles lateral and longitudinal motion are presented
in the following paragraphs.

Manual vehicles: For the simulation of manually driven
vehicles, the default model that is implemented in AIMSUN was
used. This is a modified Gipps’ car-following model [41].

AVs without connectivity capability: To simulate AVs that do
not have the ability to exchange information with other vehicles or
the infrastructure, the model proposed in [3] was utilised. It is a
first order model representing ACC vehicle longitudinal behaviour.
For the lateral movement, the default AIMSUN model was used,
according to the ACC maximum deceleration and car following
deceleration functions. Also, AVs are forced to obey the speed
limits, in contrast to manually driven vehicles that have an
acceptance factor allowing them to accede to the speed limit.

Connected Automated vehicles: CAVs can be expected to have
a car-following behaviour similar to CACC vehicles while
cruising. Hence, the model described by Talebpour and
Mahmassani [14] was used when following another CAV. The
aforementioned AV model was used when following another type
of vehicle, assuming that a CAV will behave as an AV when it is
not able to exchange information with its neighbouring vehicles.
CAVs are also forced to obey the speed limits, in the same way as
AVs. Lane changing is again modelled based on the default
AIMSUN algorithm, using the CAVs particular car following
deceleration model.

Table 2 presents the values of the maximum acceleration and
deceleration and reaction time parameters used with each model. 
The maximum parameter values reported in the table are used in
AIMSUN as the means of normal distributions in the drivers’
population. AVs and CAVs have more strict limits on accelerations
and decelerations. These are aimed to increase passengers’
comfort. Reaction times are also much lower for AVs and CAVs.
But, they are not negligible. For other driving parameters, not
shown in Table 2, the default values in AIMSUN were used for
human-driven vehicles. Within the AV and CAV models, the

Table 1 Literature review
Category Studies
micro-simulation on simple networks [3, 6–15]
overall assessment [11, 16–21]
CACC behaviour model [15, 18–29]
environmental impact [22, 25, 28, 30–32]
macro-simulation experiments [33–38]

 

Table 2 Vehicle parameters
Vehicle
type

Max acceleration,
m/s2

Max deceleration,
m/s2

Reaction
time, s

manual 4 −6 0.8
AV 2 −3 0.3
CAV 2 −3 0.3
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parameter values are those reported in the references they are
derived from [3, 14].

3.3 Emission model

A point of concern for road transportation networks is the
pollutants that road users’ vehicles emit. It is suggested that the
introduction of AVs and CAVs can have strong environmental
effects [22, 25, 28, 30–32]. To test this it is necessary to estimate
the emissions on a large network. These emissions depend on
multiple variables and the use of an emission model is required.

COPERT and the Handbook of Emission Factors (HBFEFA) are
the two reference emission models in Europe [4]. COPERT
provides emission factors, functional relationships that predict the
quantity of a pollutant that is emitted over distance. It has been
shown that COPERT can estimate emissions on rural, urban or
highway scenarios [42, 43]. The pollutants that are traced in the
present paper are CO2 and NOx emissions.

4 Case study
4.1 Antwerp's ring road

The case study network for the simulation experiments is the ring
road around Antwerp, Belgium (Fig. 1). The ring road's
specifications where extracted from OpenStreetMap and refined,
resulting to a network consisting of 119 km of roads with 27
centroids (origin/destination points), 208 sections with variable
numbers of lanes and 117 intersections. There are no traffic lights
on the network. Due to the ring road shape, there are obvious paths
for each O/D pair, so no distinction has been made between user
equilibrium and system optimum, although this can amplify the
benefits of connectivity in different situations.

Traffic count data during the morning peak hour, where utilised
to produce the base scenario traffic demand. The Frank and Wolfe
algorithm [44], which is available as a built in tool in AIMSUN
was used to adjust a planning O/D matrix to the observed data. The
OD objects of the network are 27 and the rush hour demand
consists of 42,185 cars and 4899 heavy duty vehicles.

4.2 Scenarios

Three major factors have been identified, the level of traffic
demand, the market shares of manual vehicles, AV and CAV, and
the chosen time gap for the AVs when the car following. As the
technology matures, the developers and users may gain confidence
in it, and use lower headways in order to improve performance,
while keeping a low crash risk.

To estimate the impact of automation on the roads, all these
factors have been taken into account. For the mixture of vehicles,
21 different cases were studied, creating all possible combinations
of market penetrations of each vehicle type ranging from 0 to
100% in intervals of 20% as shown in Table 3. Three different
traffic demand cases, baseline, 80 and 120% of the baseline, and
three different desired time gap size choices: 1.1, 1.6 and 2.2 s
were used. In order to explore the entire space of the factors, the
full factorial experiment was used. This results in 189 different
scenarios that were tested. Each scenario was run for three hours
with the second hour being the network's peak hour. The first and
the last hours we loading and unloading periods with lower
demand equal to 20% of the observed peak hour demand and the
same proportions of the mix of vehicles. 

5 Results
5.1 Set up and metrics

Data about the state of the network were gathered for intervals of
10 min. The data was not collected for the first 20 min, which was
considered a warm up phase, to load the network with vehicles. As
noted above, the demand increased to the peak hour value after the
first hour of simulation, and then decreases again to the unloading
phase demand after 2 h of simulation. Because of the magnitude of
the network, the effects of the changes in the demand are
observable after some delay, even in uncongested conditions.
Therefore, data representing low demand refer to the interval from
the 20th minute to the 80th. The peak hour is represented by the
data from the 80th minute to the 140th.

The harmonic average speed for the whole network is used as
an indicative metric for the traffic flow status. The harmonic
average speed is calculated in km/h directly for every ten-minute

Fig. 1  Antwerp and the ring road model
 

Table 3 Mixture scenarios
Penetration rate of CAVs

0% 20% 40% 60% 80% 100%
Penetration rate of AVs 0% ✓ ✓ ✓ ✓ ✓ ✓

20% ✓ ✓ ✓ ✓ ✓

40% ✓ ✓ ✓ ✓

60% ✓ ✓ ✓

80% ✓ ✓

100% ✓
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interval as the average space mean speed of all the vehicles. It is
also useful to look at the density of vehicles in the network over
time. The two metrics are closely related and so because of space
limitations, the densities observed are not presented in detail.

5.2 Peak hour results

Fig. 2 presents the average harmonic speed for the peak hour
demand in ternary plots for various demand levels and desired time
gaps. In the figures, each corner represents the case of 100%
penetration rate for the specific vehicle type. The space within the
triangles represents different combinations of penetration rates of
CAVs and AVs in the mixture of vehicles. At every point inside the
triangle, the ratio of each vehicle type is in inverse proportion to
the distance to its corner. The ternary plots are organised so that
they have resulted by experiments with the same time gap for AVs
with all in the same row, and the same traffic demand with all in
the same column.

The first conclusion that can be drawn is that in every case the
introduction of AVs can negatively affect the network's
performance, even at low penetration rates. With AVs, headways
on the network are larger since human drivers are willing to take
risks and do not always keep the required gaps. In contrast, AVs
always keep the minimum desired gaps.

An observation has also been made that the situation is much
worse for AVs in bottlenecks when they have to merge or change
lanes. The gap needed by an AV to perform a lane changing
manoeuver is much larger than gaps accepted by human drivers
since AVs have to maintain the required gaps, and their maximum

deceleration is less than that of a manually driven vehicle, for
safety and comfort reasons. Furthermore, maximum acceleration is
smaller in AVs which is also an observation made in ACC vehicles
that are available commercially. As a consequence, the flow
downstream of a bottleneck is reduced, deteriorating the situation
upstream. It should be noticed that the ACC model used in the
simulations has also been tested for one section networks and the
capacity was not much smaller than the default case. This is also a
reason why it is suggested that the deterioration of the network's
condition is because of the AVs inefficiency in lateral manoeuvres.

The results on the impact of the introduction of CAVs to the
network depend on the CAVs penetration rate and the level of
demand in the scenario. As mentioned earlier CAVs that follow
AVs or manually driven vehicles react as AVs since they do not
have any information from other vehicles to make use of their
connectivity and cooperation functionalities. At low penetration
rates, the probability of a CAV following another CAV to form a
connected platoon is small. Therefore, most CAVs act as AVs,
demanding larger headways to car-follow or lane change. As a
result, at the small penetration of CAVs, and especially for the
larger desired time gap scenarios, the average speed in the network
decreases. However, with higher penetration of CAVs, gaps are
smaller, lane changes are easier and the traffic streams are more
stable and able to absorb oscillations without traffic breakdown
occurring. Consequently, the harmonic average speed is higher,
even for the scenarios with a high level of demand.

At low demand levels, manual vehicles can outperform CAVs
because they are in free flow conditions and for the manually
driven vehicles it is acceptable, and realistic not to abide by the

Fig. 2  Harmonic speed of the network for the peak hour
(a) Time gap 1.1 s and demand 80%, (b) Time gap 1.1 s and demand 100%, (c) Time gap 1.1 s and demand 120%, (d) Time gap 1.6 s and demand 80%, (e) Time gap 1.6 s and
demand 100%, (f) Time gap 1.6 s and demand 120%, (g) Time gap 2.2 s and demand 80%, (h) Time gap 2.2 s and demand 100%, (i) Time gap 2.2 s and demand 120%
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speed limits. Finally, since for some situations CAVs behave as
AVs, the value of the desired time gap has a significant effect on
the results.

The ACC vehicles that are already on the market have different
options for time gap choice by the driver. These time gaps are
chosen in order for the passenger to feel safe and comfortable. The
three different time gaps chosen for out simulations were proposed
in [3] and are representative of the values decided by real drivers
who took part in experiments. With the introduction of automation
time gaps are expected to be large, but as the technology matures,
and the public becomes more aware and familiar with it, it is
possible that time gaps can be set lower to values that are closer to
those that are indeed needed for the passengers’ safety. The results
from the simulations show a very large influence of the desired
time gap in the networks’ performance. Comparing Figs. 2c and e

or Figs. 2b and d, it can be deduced that the time gap choice is
almost as influential as the level of traffic demand. The larger value
of 2.2 s time gap is by far the most impactful on the network, as
even for the lower demand scenarios, the averages speeds
calculated are lower than the averages speeds for 1.1 s headways
for 100% AVs. The increase in the market penetration of CAVs that
is required in order to compensate for the effect of the large time
gap is around 60% when there are no AVs on the network. Thus,
with higher penetration rates CAVs can be beneficial, but with
lower penetration rates and large chosen headways, and with high
demand levels, the average speed on the network drops drastically.
For completeness, Fig. 3 shows the density results for a
representative case, with 1.6 s time gap and 100% demand that
further supports the derived conclusions. 

5.3 Loading phase

Fig. 4 shows the harmonic speeds in the network for 1 h of low
demand (from minute 20th–80th). During most of this time, the
traffic demand into the network is low. In the last 20 the demand
increases to the peak hour level, but due to the spatial extent, the
effect on the flow is not yet observed. Overall, the performance
with AVs in the traffic stream is again worse than with manual
vehicles or CAVs. For example, in the case of set gap of 1.1 s and
100% demand level (Fig. 2b) the average speed is 44.2 km/h for
100% share of AVs, 82.6 km/h for 100% share of CAVs and 65.6 
km/h for human-driven vehicles. However, in this case, the time
gap is more significant as a factor than the level of demand, which
is low in all cases until the last 20 min of the interval. For example,

Fig. 3  Representative density for time gap 1.6 s and demand 100%
 

Fig. 4  Harmonic speed of the network for the low demand
(a) Time gap 1.1 s and demand 80%, (b) Time gap 1.1 s and demand 100%, (c) Time gap 1.1 s and demand 120%, (d) Time gap 1.6 s and demand 80%, (e) Time gap 1.6 s and
demand 100%, (f) Time gap 1.6 s and demand 120%, (g) Time gap 2.2 s and demand 80%, (h) Time gap 2.2 s and demand 100%, (i) time gap 2.2 s and demand 120%
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for a 100% share of AVs, the average speed with a set gap of 1.6 s
is lower than that with a set gap of 1.1 s even when the former is
simulated with the lowest 80% demand level (Fig. 2d) and the
latter with the highest 120% demand (Fig. 2c).

The effect of the addition of CAVs to the traffic mix on the
harmonic speed is slightly negative. Human-driven vehicles have
the advantage on this metric as a consequence of their capability to
travel at speeds that are higher than the speed limit. Furthermore,
these vehicles are also able to accelerate harder, while CAVs are
limited to the comfortable acceleration range.

Summarising the results, a concern arises regarding the
intermediate effect of automation. It is projected that the move to
fully automated, connected and coordinated road transport will be a
matter of decades [45]. Once the transition is completed, it is
assumed that travel demand will increase from current levels.

Users that cannot drive a vehicle will have full access to the
network. Central or local controllers utilising the connectivity
capabilities can reroute traffic, manage bottlenecks and control lane
changing and merging. They, therefore, may increase the capacity
of road networks further than estimated by the present study.
However, the results reported here indicate that the benefits of
connectivity to traffic flow may not be realised until a high market
share is obtained. Furthermore, connectivity adds security risks to
the system. Communications may break down due to security
reasons, malevolent attacks, technology failures or natural
incidents. In these cases, it is possible that many of the users of the
network will not be able to drive their vehicles but move to AV
driving. This is likely to have detrimental effects on traffic flow. As
a worst-case scenario, in the case study results, turning from 100%
CAVs to 100% AVs in a network with high demand may cause the
average speed to drop from 72.8 to <22.6 km/h.

5.4 Speed over time

Fig. 5 shows the time series of the harmonic average speed for
various penetration rates of AVs and for the three different time
gap options. The figures assume that other vehicles are all human-
driven. With short set time gaps and low AV penetration rates, the
negative impacts are relatively small. For a 20% penetration rate,
the harmonic speed even slightly increases over the base scenario.
However, as the penetration rate of AVs increases, the impact on
speed becomes negative and more pronounced. In all cases, the
speed is lowest with the 100% AVs penetration rate. Furthermore,
the time period in which speeds are negatively affected is also
longer when the share of AVs is larger. With no AVs, the speed is
restored to free flow conditions 30 min after the peak demand
period ends. But, with 100% AVs, this takes about 50 min.
Similarly, the drop in the speed at the beginning of the peak
demand period is steeper with the higher AVs penetration rates.

The figure also shows the sensitivity of travel speeds to the
desired gap settings. At low levels of traffic demands, the
difference is not substantial. But, once the demand increases to its
peak hour level, the differences are clearly visible. The longer set
time gaps yield lower speeds. For example, for the case of 100%
share of AVs, the lowest speeds observed are 28.6, 21 and 15.6 
km/h, for set time gaps of 1.1, 1.6 and 2.2 s, respectively. Longer
time gaps are expected to be preferred from a safety point of view.
Therefore, the results suggest that varying time gaps, depending on
the traffic conditions, with shorter set gaps in congested sections
and longer set gaps for less congested parts of the trip may be
useful.

The corresponding results for CAVs penetration rates are
presented in Fig. 6. At high penetration rates, the results do not
depend on the set time gap. Most vehicles travel in platoons of
CAVs that can dampen oscillations and assist the flow at
bottlenecks. At low penetration rates, the CAVs are not able to
fully utilise the connectivity as there are not many other CAVs on
the network that they can communicate with. As a result, they
mostly operate in the same way as AVs, and negatively affect travel
speeds. For the longer set time gaps, in Figs. 6b and c, the speed is
lower with low penetration rates of CAVs, compared to the case
that they are not present in the vehicle mix. For the largest set time
gap, the speed improves over the case of only human-driven
vehicles only after the share of CAVs reaches 60%. In contrast, for
the shorter set time gap shown in Fig. 6a, the introduction of CAVs
in the network is always beneficial to travel speeds, even with the
lowest penetration rate of 20%. It should also be noted that the
results are dependent on the data items that are communicated
between vehicles and the quality of the control algorithms that
manage the cooperation between vehicles. Better control and
communications may allow better results both at all levels of
penetration rates. However, reviewing control algorithms and
testing them is outside the scope of this paper.

5.5 Environmental impacts

Regarding the pollutant emissions, the results for time gap 1.6 s are
presented in Fig. 7 in the form of ternary plots. At the lower level
of traffic demand, the most emissions per kilometre measured in

Fig. 5  Harmonic speed of the network for base demand and various AVs
penetration rates
(a) Time gap 1.1 s, (b) Time gap 1.6 s, (c) Time gap 2.2 s
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the case that all vehicles are human-driven. With the higher
demand levels, the introduction of AVs in the vehicle mix,
especially at high penetration rates, increases emissions. In
contrast, CAVs seem to decrease emissions. These findings can be
explained by the average speed on the network presented in Fig. 2.
For all the internal combustion engines, the quantity of emissions is
strongly correlated to the speed. There is an optimal interval that is
different for each type of engine and vehicle, and both lower and
higher speeds seem to emit bigger amounts of pollutants per
kilometre. This optimum interval for the presented scenario seems
to be for average speed around 60–70 km/h. At low traffic demand,
AVs and CAVs are bound to the speed limits, while human drivers
are not. Therefore, the latter pollutes more. In that light, it is
possible that automation can help increase the efficiency and lower

pollutant emissions if connectivity is utilised and the deterioration
of traffic flow because of AVs will be avoided.

6 Conclusions
This paper presents a simulation-based impact assessment, on a
realistic traffic network, of the anticipated introduction of
autonomous and connected automated vehicles. The case study
uses the ring road of Antwerp, a city in Belgium with the second
largest European port. A base travel demand for this network was
estimated from traffic count data. The state-of-the-art car following
models specifically developed for AVs and CAVs were used in the
simulation model. Lane changing behaviour was assumed to be
similar to that of human drivers, but using the acceleration and
reaction time characteristics of AVs and CAVs. The default models
implemented in the AIMSUN traffic simulation software were
used.

Different scenarios were defined and tested to account for the
impact of various mixtures of human-driven vehicles, AVs and
CAVs. Moreover, the tests were carried out for three different
traffic demands, 80, 100 and 120% of the base scenario, and for
three different desired time gaps for the AVs, 1.1, 1.6 and 2.2 s.
The resulting experimental design included a total of 189
scenarios.

The results concerning AVs showed that they can have a
negative effect on traffic speeds. With high penetration rates of
AVs, the average speed on the network decreases, while the density
increases. The desired time gap of the AVs proved to be having a
substantial influence on the results, in some cases more than the
traffic demand. These negative effects are attributed to the more
conservative driving of AVs compared to human drivers in
acceleration behaviour, but also in lateral movement, which is
affected by the acceleration bounds and speed limit. As a result,
AVs require larger gaps in order to lane change, they are forced to
decelerate more until they find an appropriate gap and therefore
cause delays to the traffic flow. At low levels of demand, vehicles
are moving at high speeds and the influence of the set time gap is
small. These results suggest that variable set time gaps that depend
on the traffic state: longer set time gaps can provide high levels of
safety at higher speeds. Shorter set time gap can support better
traffic speeds in dens traffic and at bottlenecks.

The introduction of CAVs to the vehicle mix proved to be
beneficial to travel speeds in some cases. At low penetration rates,
CAVs have small negative effects. In this case, they mostly act as
AVs since there are not many vehicles to exchange information
with. At the lower levels of traffic demands, human-driven vehicles
outperformed CAVs even on higher penetration rates due to the
strict observation of acceleration bounds and speed limits by
CAVs. However, with higher levels of demand and high CAVs
penetration rates, they were able to create platoons, dampen
oscillations and as results, support higher average speeds in the
network.

Automation and connectivity can be used together with various
optimisation algorithms to control the traffic and further enhance
the benefits to the network. Introduction of dedicated lanes for
these vehicles could also reduce the negative effects of their
presence on traffic flow. These strategies were not used in this
paper as the goal of the study was to screen the base scenarios and
identify the potential challenges and benefits. An important
challenge that emerges from the results is the need for smooth lane
changing and overtaking algorithms for AVs and CAVs.

Another important remark relates to the results that shows the
substantial advantage of CAVs over AVs in terms of traffic flow. It
suggests the importance of maintaining connectivity. In a fully
connected and automated environment, safety reasons, attacks,
communication failures and other reasons may interrupt
connectivity. This may cause CAVs to behave as AVs, which based
on the results may deteriorate traffic speeds significantly. Thus,
further research is advocated on optimal control of AVs and on
security and safety issues regarding CAVs.

The environmental impacts that have been studied where CO2
and NOx emissions per kilometre. In free flow conditions, human
drivers that are not bounded by the speed limits as strictly as AVs

Fig. 6  Harmonic speed of the network for base demand and various CAVs
penetration rates
(a) Time gap 1.1 s, (b) Time gap 1.6 s, (c) Time gap 2.2 s
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and CAVs produced the poorest results. High CAVs penetration
rates yielded lower emissions in all cases. In contrast, AVs reduced
traffic speeds and so forced the engines to work in less efficient
spaces. Thus, they increased emissions. For AVs, this strengthens
the argument that they should not use internal combustion engines.
However, it should be noted that their introduction also affects the
speeds of other vehicles, and so some of the negative impacts on
emissions would not be eliminated.

Future research will focus on the opportunities introduced by a
coordination at the system, segment or network level to better
manage the movements of vehicles in order to achieve system
optima in terms of multiple objectives: travel times, energy
consumption and emissions.
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