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Abstract: Traffic signal plan designs become more complex with developments in the fields of sensing and communication and the in-
troduction of features, such as transit priority or pedestrian actuation. Traffic signal optimization programs were developed mostly for the
basic parameters of pretimed traffic signal plans using analytical or simple traffic models. Simulation-based optimization for other parameters
related to actuated traffic signals has been very limited due to the high computational time associated with detailed traffic simulation models.
This paper presents the overall structure and the various components of a simulation-based system to optimize the parameters of complex
actuated traffic signal plans. The system framework incorporates a connection between a mesoscopic traffic simulation, MESCOP, traffic
signal control, and a genetic algorithm as the optimization method. The integrated system is demonstrated with applications to a fully actuated
signalized intersections with vehicle and pedestrian actuations and transit priority in Haifa, Israel. DOI: 10.1061/JTEPBS.0000363. © 2020
American Society of Civil Engineers.
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Introduction

Traffic signals at intersections are by far the most common means
to control urban traffic. Efficient design of traffic signal plans is a
cost-effective method to improve accessibility and mobility (Park
and Yun 2006). In recent years, increasingly complex signal plans
that involve functionalities for vehicle and pedestrian actuations,
transit priority, and coordination between adjacent intersections
are being used. These plans involve large numbers of parameters
that need to be set (e.g., minimum and maximum green times,
maximum pedestrian waiting times, gap times, and detector loca-
tions). Analytic and macroscopic optimization software, such as
HCM (2012), SYNCHRO (Husch and Albeck 2004), TRANSYT-7F
(Hale 2005), PASSER II (Chang and Messer 1991), PASSER V
(Chaudhary and Chu 2002) and MAXBAND (Little et al. 1981),
are generally unable to capture the stochastic nature of arrival pat-
terns and traffic flow and realistically represent detector states.

Stochastic optimization approaches, which rely on traffic sim-
ulation models to evaluate signal plans within an optimization
framework, are alternative options. Most of these studies (e.g., Foy
et al. 1992; Hadi and Wallace 1993; Park et al. 1999, 2000, 2001;
Rouphail et al. 2000; Yang and Liu 2008; Hu and Chen 2011;
Howell and Fu 2006; Geng and Cassandras 2012) optimized the
four basic parameters of pretimed plans (cycle length, green splits,
phase sequence, and offsets) to minimize delays or queue lengths.

Park and Yun (2006), Branke et al. (2007), Park and Lee (2009),
and Yun and Park (2012) applied the stochastic optimization
approach to additional parameters of actuated plans, such as mini-
mum and maximum green times, maximum vehicle red times, gap
time, and detector locations. All showed substantial potential for
improvements: Park and Yun (2006) showed a reduction of 15%–
18% in average delays compared to SYNCHRO plans. Branke et al.
(2007) improved stopping times by 34% and 70% for vehicles and
pedestrians, respectively, compared to an engineer’s design. Park
and Lee (2009) reduced travel times by 2%–4% compared to the
settings in the field.

Using simulation-based approaches, Park and Schneeberger
(2003) and Stevanovic et al. (2007) optimized control for multiple
intersections simultaneously using offsets. Park and Schneeberger
(2003) reduced travel times and delays by 17% and 36%, respec-
tively, compared to the uncoordinated plans. Stevanovic et al.
(2007) optimized offsets jointly with the other plan parameters.
Delays and stops were reduced by at least 5% compared to the best
SYNCHRO plans. Stevanovic et al. (2008) included in the optimi-
zation transit priority parameters the maximum green time exten-
sion and the maximum early green time provision to transit phases.
In a corridor of seven signalized intersections, they showed a 7%
reduction in person delay compared to the initial design. In a sub-
sequent study, Stevanovic et al. (2011) optimized a network of
70 intersections with transit priority.

A major drawback of the simulation-based optimization is the
high computational effort associated with the need to run thousands
of microscopic traffic simulations. Stevanovic et al. (2008, 2011,
2015) used parallel computing implementations, and they reported
run times in days and even weeks. To reduce the computational
effort, Wolput et al. (2015) developed a mesoscopic traffic simulation
model, CAPACITEL, to be used within traffic control optimization.
They optimized green splits and cycle lengths for different combi-
nations of transit detector locations, frequency of buses, lost time,
critical flow ratios, and phase sequencing. A linear regression func-
tion was then fitted to the optimization results. Adopting parameter
values from the regression lines improved average delays to vehicles
and buses by 29% and 22%, respectively, compared to signal
plans based on Akcelik’s formula. Balasha and Toledo (2015) also
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developed a mesoscopic traffic simulation model, MESCOP and
used it to evaluate different plans for an intersection with transit
priority and pedestrian actuation functions. Both studies showed
that the mesoscopic traffic simulations are computationally very
efficient compared to microscopic simulation alternatives.

In this paper, an integrated simulation-based optimization
system that embeds a mesoscopic traffic simulation model is pre-
sented. The system is demonstrated with applications to fully ac-
tuated control of intersections that include transit priority and
pedestrian actuations. Experiments are presented that show the
potential benefits of the joint optimization compared to treating in-
tersections separately and the effect of various characteristics of the
demand.

The main contribution of the research is in the integration of a
mesoscopic traffic simulation model within an optimization frame-
work for the signal control parameters. While studies of simulation-
based optimization of signal plans have been presented in the
literature, they used microscopic traffic simulations that are far
more complex and computationally expensive. Furthermore, pre-
vious simulation-based optimizations mostly addressed pretimed
or simple actuated control plans. In contrast, the control plans op-
timized in this paper involve complex transit priority functions,
account for pedestrian flows and their delays, and represent, in the
mesoscopic model, the movement of vehicles between intersection
by incorporating a platoon dispersion model.

The rest of this paper is organized as follows: The next section
describes the overall structure and the components of the simulation-
based optimization system. Next, two case studies and analysis of

their results are presented. Lastly, a discussion and conclusions are
provided.

Simulation-Based Optimization System

The simulation-based optimization framework consists of three
main components that interact with each other, as shown in Fig. 1:
a mesoscopic traffic simulation model, signal control logic and op-
timization algorithm. The mesoscopic model represents the move-
ments of vehicles, generates detector actuations, and reports these
to the control logic. The control logic generates signal indications
that in turn affect the movements of vehicles in the simulation. The
optimization algorithm invokes the simulation-control system with
different parameter values and collects from MESCOP measures of
performance that are used in the objective function.

Mesoscopic Traffic Simulation

MESCOP (Balasha and Toledo 2015) explicitly represents the
movement of passenger cars, transit vehicles, and pedestrians
through and between intersections. Vehicle movements are mod-
eled as events occur at detector locations and the stop line. A ve-
hicle enters the system when it arrives at the first decision point on
the approach. This point is the farthest among a detector location, a
point in which turning lanes open, or the stop line. The arrival of
vehicles at this point is modeled stochastically based on a Poisson
distribution of inter-arrival times. Travel times from the initial point

Fig. 1. Integrated simulation-based optimization overall structure.
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to the next decision point are modeled as normally distributed ran-
dom variables. Their mean is determined by the distance between
the two points and an assumed approach speed. The standard
deviation is set as a fraction of the mean. At the stop line, vehicles
are allocated to a lane-specific vertical queue based on their in-
tended turn movement. If multiple lanes are appropriate, they are
allocated to the shortest queue. In addition, they are released from
the queue at the saturation flow rate [the default value is 1,800 ve-
hicles/hour (vph)] when their light is green and according to the
first-in-first-out (FIFO) rule. In situations of queue spillbacks from
downstream sections, overflow of traffic on turning lanes, or block-
age of access to turning lanes due to queues on the through lanes,
the arriving vehicles cannot move to the next road section or enter
the lane they are allocated to. When a vehicle is released from the
stop line, its arrival time to the next decision point (if it exists) is
calculated based on the distance between the two points and
Pacey’s platoon dispersion model (Pacey 1956), which assumes
normally distributed vehicle speeds. Pedestrians’ arrival at cross-
walks is assumed to follow a Poisson process with an input arrival
rate. When the light for a given crosswalk is red, the first arriving
pedestrian activates the relevant push button, if one exists. Once the
light turns green, all waiting pedestrians cross the intersection at a
constant speed (the default value is 1.2 m=s). Pedestrians that arrive
when their light is green cross the intersection without any delay.

The simulation implementation is time-based with a step size of
one second to fit with the resolution of the control logic. Detectors
are actuated, either when a vehicle is present on them or when the
length of the queue extends beyond their location. Activation states
are provided to control logic functions.

Signal Control

The signal control logic is run every time step to determine the light
indications. It may use the information on current and previous
light indications (e.g., how long a certain light has been green)
and on the activation states of vehicle detectors and pedestrian push
buttons. The logic is defined using preprogrammed functions.
These include detection functions that request the states of detectors
and control functions to skip, extend, insert or terminate phases.
Examples of transit priority functions include the following:
• Arrival expectation—a function that predicts the arrival time of

a transit vehicle on a dedicated lane to the stop line. It is based
on the time and location that the vehicle was detected and an
assumed approach speed.

• Phase early termination—Extension of active phases may be
overridden to provide priority to a transit vehicle approaching
the intersection.

• Phase insertion—Activating a transit phase-out of the normal
phase sequence.

• Early transit phase start—The transit phase is planned to start a
few seconds before the transit vehicle is expected to arrive at the
stop line so that it does not need to stop or slow down, even if it
arrives earlier than expected.

• Priority cancellation—occurs when the transit vehicle is de-
tected on a checkout detector located downstream of the stop
line. Priority may also be canceled if a transit vehicle is not de-
tected at the stop line a certain time after it was expected.

• Compensation—a function that guarantees a certain minimum
green time to specific movements. It measures the cumulative
green time provided to a movement within a predefined period
of time (often defined in terms of a number of cycles). If needed,
the green time is extended to meet the minimum threshold.

• Queue length override—a function that disables transit priority
functions when a certain phase is active and the queue on the

relevant (minor) approach exceeds a certain value over a prede-
fined period of time.

Optimization

The control logic includes many parameters related to signal tim-
ings (e.g., minimum and maximum green and red durations), transit
priority functions, maximum allowed pedestrians waiting times,
and system layout parameters (e.g., locations of detectors). The op-
timization is used to set their values. It should be noted that the
control logic is applied every second and results in different control
actions depending on the current state of lights and detectors. How-
ever, the control parameters described above remain constant for
the entire analysis period.

Various performance measures, such as delays or travel times of
vehicles and pedestrians, queue lengths, throughputs, and number
of stops, may be used as objective functions for the optimization.
In this paper, the expected value of the average person delay is
used, following several studies that suggested it in this context
(Stevanovic et al. 2011; He et al. 2012; Christofa et al. 2013). Thus,
the optimization problem is formulated as follows:

min
θ
E½dðq; θÞ� ¼ 1

R

�X
r

P
i

P
n dnrNiδnriP

i

P
n Niδnri

�
ð1Þ

s.t.

θL ≤ θ ≤ θU ð2Þ

Xp
j¼1

ðGmaxj þ TjÞ ≤ C ð3Þ

Gminj ≤ Gmaxj ∀ j ð4Þ

where d = average person delay; q = vector of the design flows
input to the model; θ = vector of decision variables (control logic
parameters); θL and θU = corresponding lower and upper bounds,
respectively. The expected delay is obtained by averaging R rep-
lications. dnr = delay to vehicle (or pedestrian) n in replication r;
Ni = number of travelers in a vehicle of type i (by definition 1 for a
pedestrian); δnri = indicator variable that takes the value 1 if vehicle
n is of type i (car, various bus types, pedestrian) in replication r,
and 0 otherwise. Gmaxj and Gminj = maximum and minimum green
duration of phase j, respectively; Tj = inter-green time of phase j;
and C = cycle length.

The optimization is executed off-line considering all control
parameters and the entire period of interest at once. The problem
presented is simulation-based and consequently may have multiple
local minima. A genetic algorithm (GA) (Holland 1992) was used
in the case studies presented in this paper, following several studies
that have shown that it is an effective method to optimize signal
plans (e.g., Kovvalli and Messer 2002; Park and Yun 2006;
Stevanovic et al. 2007). There were 30 generations with a popula-
tion of 100 points and 20 replications used, for a total of 60,000
simulation runs. Crossover and mutation probabilities were set to
0.7 and 0.03, respectively. The rank selection method (Kovvali and
Messer 2002) that assigns crossover probabilities for points based
on their fitness rank was used. The combination of the search al-
gorithm and a large number of generations increases the probability
that a globally optimal solution is found.
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Case Study 1: Transit Priority

Layout and Flows

The simulation-based optimization system was applied to the
planned control at Palmer intersection in Haifa, Israel, which is
shown schematically in Fig. 2, and it is located in the heavily con-
gested downtown area. HaAtsmaut Avenue is the main arterial in
the area. There are six vehicle movements in the intersection: Two
bus rapid transit (BRT) movements (2, 6) on dedicated lanes, four
nontransit vehicle movements (1, 3, 5, 7), and six signalized pedes-
trian crosswalks (a through g). The planned control of this inter-
section is fully actuated, with presence detectors on the minor
approaches that are used for demand (D1, D5), extension (E1,
E5) and queue detection (Q1) tasks. The demand detectors are lo-
cated at the stop line. The extension detectors are located about
12 m upstream of the intersection. The queue detector Q1 serves
to alleviate the concern that the queue would block a roundabout
that is located upstream of it. BRT detectors (DPT21, DPT22,
DPT62) identify an approaching BRT vehicle and predict its arrival
time to the stop line. For eastbound vehicles, this prediction is up-
dated when they are detected at DPT22. DPT21 is located 350 m
upstream of the stop line. DPT22 and DPT62 are located 100 m
upstream of the stop line. A BRT stop exists upstream of detector
DPT62. This makes predictions of expected travel times to the stop

line less reliable because it is more difficult to predict the dwell
times at stops. For this reason, a far detector was not placed on
the westbound approach in this intersection. Alternatively, an addi-
tional detector at the exit from the stop could be used, and the con-
figuration of the detectors may affect the optimal control settings.
In the simulation, the prediction error distribution can be widened
to capture the larger variability in travel times to the stop line.
Both BRT approaches also include priority cancellation detectors
downstream of the intersection (DPT23, DPT63). The four pedes-
trian crosswalks on the arterial are activated by push buttons
(Pd;Pe;Pf;Pg). In cases that push buttons do not exist, minimum
green times must be provided to the relevant phases in every cycle.

The design traffic flows, presented in Table 1, were estimated
from traffic counts for the morning peak hour (7 to 8 a.m.). The
total flow is 3,295 vph, representing a saturation degree of about
0.6. Also, 30 BRT vehicles per hour arrive in each direction, and
occupancies of 50 and 1.2 passengers were assumed on transit and
nontransit vehicles, respectively.

Control Logic

The movements in the intersection are organized in three signal
phases (A, B, and C) as shown in Fig. 3. The minor phases B
and C are activated only if vehicle presence is detected on D1 and
D5, respectively, or if the pedestrian push buttons (Pf or Pg for

2
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Fig. 2. Palmer intersection.
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phase B, Pd or Pe for phase C) are activated. The right turn move-
ment in phase B must yield to pedestrians crossing crosswalk g, and
the cycle length is fixed. The remaining green time, after phases B
and C are served, to the end of the cycle is allocated to phase A
(complementary green time).

BRT signal priority may be provided using phase extension or
early phase termination (recall) depending on the time within the
cycle that the transit vehicle is expected to arrive at the stop line and
the currently active phase. Phase A may be extended until the BRT
vehicle crosses the intersection if constraints on its maximum green
time, maximum queue length at Q1, or maximum pedestrian wait-
ing time are not violated. Alternatively, it may be terminated early
so that phases B and C can be served before the BRT vehicle arrives
at the stop line. The minor phases may also be terminated early if a
BRT vehicle is identified, except for phase B when a queue is de-
tected on Q1. Finally, a compensation mechanism dictates that
phase B receives a certain minimum cumulative green time over
several cycles to avoid overprioritizing the BRT vehicles. The en-
gineering report presenting the complete details is available from
the authors.

The control logic includes 14 parameters: The cycle length and
the minimum and maximum green times for each of the three
phases (7 parameters); The maximum red time for pedestrian sig-
nals (1 parameter); The early green time for transit priority, which
in order to provide a smooth passage to the BRT vehicle, indicates
how long before the expected arrival of the BRT vehicle to the stop
line the transit phase would start (1 parameter); The compensation
parameters that define the minimum cumulative green time that

must be provided to phase B, and the number of cycles within
which it is measured (2 parameters); The distance of the queue de-
tector from the stop line and the time duration that a vehicle is con-
tinuously present on the detector that activates the queue condition
(2 parameters). The locations of other detectors are not varied; The
maximum time gap between activations of a detector that triggers
the extension of the current phase (1 parameter).

The control plan was evaluated under three different sets of
design parameters:
1. The initial design that was developed for the same conditions by

the traffic engineers using INBAR—an Israeli commercial soft-
ware (TRI 2013).

2. Full optimization of the values of all control logic parameters.
3. Partial optimization, which only included the cycle length and

green splits. The other parameters are fixed at their values in the
initial design. The partial optimization design is a basis to eval-
uate the benefits of optimizing additional parameters.

Results

Table 2 compares the average delays for the various road users with
the three designs. The result shows a reduction in the average per-
son delay of 21% and 28% from the initial design to the partial and
full optimization designs, respectively. The reduction is mostly in
the delays to nontransit vehicles and pedestrians. With full optimi-
zation, but not with the partial one, this reduction occurs without an
increase in the delays to BRT vehicles. The results also show the
benefits of optimizing additional design parameters beyond the
cycle time and green splits. The average person delay is reduced
by an additional 9% from the partial to the full optimization design.

Table 3 presents the parameter values in the initial, partial and
full optimization designs. Parameter values in bold are those that
were optimized in each case. Overall, the parameter values changed
substantially in a manner that allocates more green time to pedes-
trians and nontransit vehicles. The cycle length decreased from
110 s in the initial design to 72 s in the optimal design. Some juris-
dictions require that cycle times are constrained to increments of 5
or 10 s. This could be incorporated into the optimization that was
not used in this example. The green time to phase A is divided to
complementary green (the remaining time at the end of the previous
cycle after phases B and C are served is allocated to phase A) and
initial green time (green time to phase A in the current cycle based
on its minimum and maximum green time and detector states). The
shorter cycle decreases the complementary green times to phase A.
With the initial design, the additional green times to phase A are
underutilized, as shown in Fig. 4. The figure shows the discharge
flow rates of movement 7 (phase A). In the initial design, phase A
receives 73 s green time in a cycle of 110 s. Vehicles are discharged
with the saturation flow rate only in the first 24 s (33% of the
green time). The remaining green time is underutilized. In the full
optimal design, the green time decreased to 42 s in a cycle of 72 s.
Thus, the proportion of green time allocated to the phase is
slightly reduced and the green time utilization is improved.

Table 1. Traffic flows at the Palmer intersection

Movement Traffic flow (vph)

1L 115
1T 144
1R 45
2T 30
3T 1,058
5L 59
6T 30
7T 1,713

 

Fig. 3. Control phases at Palmer intersection.

Table 2. Comparison between delays with three different designs

Road users

Average person delay (s) % change

Initial design Partial optimization design Full optimization design Initial to partial Initial to full Partial to full

BRT 1.54 1.97 1.53 28 −1 −22
Other vehicles 18.48 14.75 14.17 −20 −23 −4
Pedestrians 24.31 17.95 15.95 −26 −34 −11
All 14.41 11.43 10.40 −21 −28 −9
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The queue is discharged at the saturation flow during the first 20 s
(48% of the green time).

The minimum green time to phase A increased in the full optimal
plan from 11 to 19 s, ensuring that the queues of vehicles in move-
ments 3 and 7 are completely dissipated, regardless of the comple-
mentary green time. In contrast, the maximum green time to phase A
decreased from 51 to 37 s. Phase A may be extended only to provide
priority to BRT vehicles. Shorter maximum green times to phase A
help avoid underutilization of the intersection after the queue of
nontransit vehicles has dissipated and reduced delays to vehicles
in the minor approaches and to pedestrians. Furthermore, shorter

maximum green times increase the flexibility of the control to tran-
sition use the recall strategy to provide BRT priority: With the full
optimal design, phase A is extended in 25% of the cycles and recall is
activated in 75%.With the initial plan, phase A is extended in 88% of
the cycles and recall is applied only in 12% of the cycles.

The full optimal minimum green times for phases B and C were
both set to 5 s, which is the lowest value that allows pedestrians
with an assumed speed of 1.2 m=s. to safely cross a single cross-
walk in this intersection. It is also sufficient for vehicles that are
queued between the stop line and the extension detector to release
from the intersection. Longer minimum green times then reduce the
flexibility to apply recall when BRT vehicles are identified. The full
optimal values of maximum green time to phases B and C are 13
and 12 s, respectively. These values are sufficient to accommodate
longer queues that may result from the early termination of these
phases to provide transit priority to phase A.

The optimal compensation settings for phase B require at least
12 s of green time within four consecutive cycles. This constraint
may not be satisfied only if phase B is skipped in at least two of the
cycles. The compensation mechanism was activated in 31% of the
cycles with the initial design, but in less than 1% of the cycles with
the optimal design. Nevertheless, the green time to phase B in the
optimal design decreased by a total of only 38 s per hour. Thus, the
results suggest that the compensation mechanism could be elimi-
nated without negatively affecting performance.

The maximum pedestrians’ red time parameter decreased to
110 s in the optimal design, contributing to the reduction in pedes-
trian delays presented in Table 2. This constraint may, in some
cases, limit the extension of phase A. The early green parameter,
which was not implemented in the initial design, was set to 5 s in
the optimal design. This reduces BRT delays by allowing them

Table 3. Parameter values in the initial and optimized designs

Design parameter Initial
Partial
optimal

Full
optimal

Change
initial to
full (%)

Cycle length (s) 110 82 72 −35
Minimum green phase A (s) 11 15 19 73
Maximum green phase A (s) 51 30 37 −27
Minimum green phase B (s) 2 6 5 150
Maximum green phase B (s) 17 11 13 −24
Minimum green phase C (s) 8 5 5 −38
Maximum green phase C (s) 8 13 12 50
Maximum pedestrians red (s) 138 138 110 −20
Early green start (s) 0 0 5 —
Cumulative green time (s) 27 27 12 −56
Compensation period (cycles) 4 4 4 0
Queue length (vehicles) 15 15 27 80
Maximum queue time (s) 5 5 15 200
Gap time (s) 3 3 3 0

Fig. 4. Flow discharge rate in phase A with the (a) initial; and (b) optimal designs.
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smoother movement if they arrive at the stop line earlier than ex-
pected. This does not have any noticeable effect on the delays of
nontransit vehicles or pedestrians because of the low traffic demand
levels on the minor approaches. Finally, there was no change in
the gap time values between the initial and full optimal designs.

This result is not surprising because of the strong relations between
the gap time and the location of the extension detectors.

The progress of the GA of the full optimization is shown in
Fig. 5. The value of the best solution in each generation stabilized
after about 10 generations, and convergence has been achieved ap-
proximately at generation 20 when the difference between the mean
and the best person delay has stabilized. The optimization took
about 5 h, and comparable optimization based on microscopic traf-
fic simulation would not be computationally feasible, with an esti-
mated running time of about a week.

Case Study 2: Coordinated Intersections

Layout, Flows, and Control Logic

This case study concerns the simultaneous control of three adjacent
intersections along a large collector road (HaEtzel St.) in Haifa. The
three intersections and traffic channelings are shown schematically
in Fig. 6. Intersection 1 connects the collector to a major arterial
(6–7 in the drawing) that has two BRT movements with dedicated
lanes. There are three BRT detectors in each direction. BRT stops
are located immediately upstream of the northbound stop line and
150 m upstream of the southbound stop lime. Extension detectors
are located on the major approaches to the three intersections
(movements 1–4, 12–13, 15–16, 22–25). Demand detectors are lo-
cated on the minor approaches to all intersections (movements 5, 6,
11, 14, 21, 26). Pedestrian push buttons are placed on the cross-
walks crossing the arterial in intersection 1, the collector in inter-
section 3, and all crosswalks in intersection 2.

The peak hour traffic flows in the system are presented in Table 4.
These values were estimated from traffic count measurements and

Fig. 5. Convergence properties of the genetic algorithm.

Fig. 6. Schematic structure of the network of three intersections.

Table 4. Origin-destination flows in the network (vph)

O/D 1 2 3 4 5 6 7 8

1 — 272 120 8 161 235 472 64
2 112 — 300 1 28 41 83 11
3 143 292 — 1 19 28 64 8
4 75 30 9 — 42 4 9 1
5 156 61 19 47 — 41 81 11
6 88 34 11 13 36 — 1,400 106
7 228 90 28 33 95 1,400 — 55
8 38 15 5 6 16 104 58 —
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represent degrees of saturation of about 0.7 in each of the three
intersections. In intersection 1, the largest demands are on the main
arterial (6–7). In the other two intersections, the largest demands are
those in the direction of intersection 1. In addition, 15 BRT vehicles
per hour cross intersection 1 in each direction. In the simulation, ve-
hicles are generated with negative exponential inter-arrival times and

the origin-destination matrix rates. Their movements to and be-
tween intersections are determined by the models within the
simulation.

The three intersections are controlled jointly and share the same
cycle time with offsets to allow green light bands for through traffic
along the collector in both directions. It should be noted that the
optimization aims to minimize the total delays of all users and does
not maximize bandwidth or other measures of coordination. Thus,
coordination is possible if it supports the objective, but it is not
strictly enforced. Functions of phase demand and extension, pedes-
trian push button requests, and transit priority and compensation
(only in intersection 1) are operated in a similar manner to that
of case study 1. The control logic for all three intersections includes
84 parameters, and the engineering report presenting the complete
details is available from the authors.

Results

The results of optimization of all 84 parameters jointly are com-
pared to the base design, which is implemented in the field. Fig. 7
shows the average delays to the various road users in the two de-
signs, and the person delay decreased by 35%. This is mostly due to
a decrease (38%) in the delay to vehicle passengers that constitute
77% of all users. In contrast, the delays to BRT passengers and
pedestrians increased. However, their delays remain relatively
low, and they are only 18% and 5% of the users, respectively.

In the control plan, the most influential differences are that the
cycle time increased from 120 to 150 s and that green times for the
major movements in the main intersection (movements 1 and 3) and
those along the collector (movements 5, 15, 25) increased. These
increases are partly a result of the lower lost times (by 7%) due
to larger cycle times and partly at the expense of the minor move-
ments. The cumulative green times for the movements in intersection
1 with the base and optimal control designs are shown in Fig. 8.

Queue lengths, in particular, along with the collector, are impor-
tant because of the risk of queue spillback and blockage of up-
stream intersection. Fig. 9 shows the distributions and averages
of queue lengths in the movements along the corridor in the high
demand direction toward intersection 1 (movements 5 and 15). In
movement 15, the average queue length decreased from 16.9 ve-
hicles in the base design to 4.9 vehicles in the optimal one. The
maximum queue length also decreased substantially. The differen-
ces were smaller in movement 5. The average queue length
decreased from 11.3 vehicles in the base design to 7.7 vehicles

Fig. 7. Average delays and their 95% confidence intervals for the var-
ious road users in the base and optimal designs.

Fig. 8. Cumulative green times and their 95% confidence intervals in
intersection 1 in the base and optimal designs.

Fig. 9. Cumulative distribution and average queue lengths in movements 5 and 15.
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in the optimal design, but the maximum queue length slightly
increased.

The improvements in vehicles’ delays and queues come at
the expense of the BRT vehicles. As seen in Fig. 7, their delay in-
creases by 12 s, and this is a result of a reduction in the priority

coverage in the optimal design and an increase in the compensation
mechanism requirements. The priority coverage is defined by the
fraction of time within the cycle in which BRT priority is possible
if all demand detectors and pedestrian push buttons are activated.
Priority may be provided in three ways: extension of the green time
to the BRT movement, early termination of the green time to other
phases, or insertion of the BRT phase out of sequence. The BRT
priority provision control logic showing these options is shown in
Fig. 10. Fig. 11 shows the priority coverage in the base and optimal
design. It decreases from 84% and 82% for movements 1 and 3,
respectively, in the base design to 58% and 52% in the optimal
design. The phase insert option was practically eliminated altogether,
and it should be noted that the base design is aimed to maximize the
coverage. With the optimal design, the relative weights assigned to
the delays of different road users determine the level of BRT priority
and coverage.

The compensation mechanism guarantees minimum green times
to the minor movements in intersection 1 over a given number of
cycles. For movement 5, this value increased from 25 s in the base
design to 68 s every cycle in the optimal one. For movement 6, it
slightly increased from 12 to 13 s over two cycles. As a result, BRT
priority, which was never denied in the base design due to compen-
sation constraints, was denied in 1.7% of the cycles in the optimal
design.

The computation time for the optimization was about 10 h with
a single PC and using ten replications for each point. This is again
far shorter than would be required if a microscopic traffic simula-
tion model would have been used.

The obtained results are optimal based on the input and model-
ing assumptions in the simulation model, and it is useful to evaluate
their sensitivity to these assumptions. A comprehensive sensitivity
analysis is beyond the scope of the current work. Nevertheless, the
sensitivity to changes in the level of demand of the allocation of
green times to the movements was examined. The results for inter-
section 1 are shown in Fig. 12. The optimal cycle time with all
demand levels was 150 s, and as demand increases, the total green
time to movement 5 increases that serves the collector traffic at the
expense of movements 1 and 3 along the arterial. The added green
time to movement 5 serves the additional demand along the

Fig. 10. BRT priority provision control logic.

Fig. 11. BRT priority coverage in the base and optimal control plans.
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collector and prevents queue spillbacks and excess delays in the
two minor intersections.

Summary

This paper presented the structure and application of a simulation-
based optimization system for actuated traffic signal plans. This
system incorporates a mesoscopic traffic simulation model that rep-
resents vehicle and pedestrian movements and an implementation of
the detailed control logic. The simulation model is embedded within
an optimization function that uses a GA to optimize the parameter
values of actuated traffic signal plan based on prespecified perfor-
mance measures. The system was applied in two case studies to op-
timize actuated signal plans with transit priority. The results showed
potential for substantial improvement in the average person delay.
They also demonstrated the usefulness of optimizing additional
parameters of the signal plan beyond the cycle length and splits.
The run-time advantages of the mesoscopic simulation model would
be further magnified if optimizations are repeated under different
conditions of the demand and other characteristics of the intersection.

The detailed results of the case studies are relevant to their spe-
cific characteristics such as movements, demands, and detector
locations. However, they cannot be easily generalized. Following
the approach of Wolput et al. (2015), a potential future research
direction is the use of the simulation-based optimization system
to investigate different control plans, specifically, those that involve
transit priority functionalities to produce more general guidelines
for strategy selection and to perform sensitivity analysis to different
assumptions made in the models. This would involve constructing
an experimental design to analyze the impact of different control
strategies, travel demand, intersection layouts, and transit vehicle
travel directions on the performance. More general experiment set-
tings would also require integration of a traffic model for evaluation
of the control plan performance that would be independent of the
one used within the optimization. This has been done in Yun and
Park (2012).

One specific detail of the case studies that may affect the im-
plementation is that the BRT movements do not conflict. In cases
that they conflict, the control logic would need to be modified, and
the transit movement would be allocated to different phases.
Furthermore, evaluation of the feasibility of using the transit prior-
ity functions (e.g., phase insertion, phase early termination, early
transit start) would require different timing calculations for each of
the phases and consideration for the provision of green time and the

conflicting transit movement. This would increase the number of
parameters to be optimized. However, the optimization framework
and types of functions that are used within the control logic would
not change.

Other specific assumptions and details of the implementation,
such as that of Poisson arrivals for both vehicles and pedestrians,
can be modified to provide better calibration of the model to real-
world observations. The current implementation also assumes that
transit vehicles receive priority travel in dedicated lanes. Transit
priority without dedicated lanes is not common, but possible.
The main difficulty would be in estimating when the bus would
be ready to release from the stop line without knowledge of queue
lengths. Case studies to evaluate the value of such practice could be
undertaken. Another enhancement could involve representation of
advanced detection technologies and the information they provide,
such as speed measurements, within the control logic.
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