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ABSTRACT
This research presents the data collection, specification and estima-
tion of a route choice model for intercity truck trips, with a focus
on toll road usage. The data was obtained from driver-validated and
enhanced GPS records. A mixed logit model with a path-size fac-
tor is specified. It accounts for heterogeneity among drivers using
distributed coefficients for travel time and its variability. The esti-
mation results show wide heterogeneity among drivers based on
employment type and availability of electronic toll collection tags.
Toll value of time and toll value of reliability distributions are derived.
The model application is demonstrated on several trip corridors.
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1. Introduction

Truck traffic accounts for about 9% of the distance driven on highways in the USA. The
total truck flows have been increasing steadily. They are expected to increase a further
43% between 2015 and 2045 (BTS 2017). Truck traffic has a substantial effect on traffic flow.
Therefore, understanding trucks’ route choices is important in order to forecast truck traffic
and model traffic and freight systems. Specifically, trucks, through higher annual distance
traveled and higher toll rates, often contribute a significant share of revenues in toll roads
(Bain and Polakovic 2005). However, forecasts of trucks’ use of toll roads have been shown
to overestimate actual use (Bain 2009). Thismay result in loss of revenue for the developers.

Substantial literature on truck route choices focuses on value of time (VOT), namely
the trade-off between the cost and travel time (e.g. Wynter 1995; Jong 2000; Kawamura
2000; Bergkvist 2001; Smalkoski and Levinson 2005; Zamparini and Reggiani 2007; Ismail,
Sayed, and Lim 2009; Miao, Wang, and Adams 2011). While these are consistently impor-
tant determinants of trucks’ route choices, they are not the only important ones. Other
factors that have been found to affect truck route choices include measures of the travel
time reliability (e.g. Jovicic 1998; Small et al. 1999; Kurri, Sirkia, and Mikola 2000; Austroads
2003; Jong et al. 2004; Danielis, Marcucci, and Rotaris 2005; Fowkes and Whiteing 2006;
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Toledo et al. 2013), travel distance (Knorring, He, and Kornhauser 2005; Quattrone and
Vitetta 2011; Wood 2011; Toledo et al. 2013; Hess et al. 2015), road types and character-
istics (e.g. Hunt and Abraham 2004; Hyodo and Hagino 2010; Arentze et al. 2012; Rowell,
Gagliano, andGoodchild 2014; Hess et al. 2015; Tahlyan et al. 2017), facilities along the road
(Arentze et al. 2012; Feng, Arentze, andTimmermans2013; Rowell, Gagliano, andGoodchild
2014), type of freight service (Austroads 2003).

Beyond the explanatory variables, several authors addressed the effect of similarities
among routes due to overlap. Quattrone and Vitetta (2011), Hess et al. (2015) and Tahlyan
et al. (2017) used Path-size logit (PSL) and C-logitmodels to capture the effect of similarities
among overlapping route alternatives, showing improvement in model fit over the model
that does not include these terms. Hess et al. (2015) developed an error componentsmodel,
in which correlations among routes stem from similarities in road types being driven. In
their estimation results, this approach yielded better fit to the data compared to PSL.

The need to address the existence of a heterogeneity in route choice preferences among
truckers has also been noted. To capture this, Kurri, Sirkia, and Mikola (2000), Danielis,
Marcucci, and Rotaris (2005) and Fowkes and Whiteing (2006) estimated different route
choice parameters for different sub-populations of drivers based on their industry. Feng,
Arentze, and Timmermans (2013) and Rowell, Gagliano, and Goodchild (2014) estimated
latent classmodels, in which classmembership wasmostly explained by truck size or travel
distance. Quattrone and Vitetta (2011) and Kim, Pasco, and Kothapalli (2017) used fuzzy
logic structures, and Kawamura (2000) and Toledo et al. (2013) used random coefficient
models to estimatedistributedVOTs. All foundwideheterogeneity inpreferences.Marcucci
and Gatta (2012) compared different methods to capture heterogeneity in the context of
airport choices. They found that a mixed logit model with random coefficients in the utility
function outperformed other approaches.

In terms of data sources, in recent years there has been a shift from using stated prefer-
ences (SP) data, which has been the prevailing source of data for estimation of truck route
choicemodels, to revealed preferences (RP),mostly from large-scale GPS records (e.g. Knor-
ring,He, andKornhauser 2005;Quattrone andVitetta 2011;WangandGoodchild 2014;Hess
et al. 2015; Tahlyan et al. 2017). Beyond the better response realism, these data offer advan-
tages in terms of accuracy and sample size. However, data derived from GPS records often
does not include information about the driver and trip circumstances, or about alternatives
to the chosen route.

This paper reports on research to collect data and develop a route choice model for
truck drivers thatmake intercity trips, with a focus on toll road usage. The developedmodel
accounts both for correlations among alternatives due to overlap and for heterogeneity in
preferences in VOT and towards toll road use among drivers. The data used in the study
was collected using GPS loggers that were installed in trucks that traveled throughout the
USA and Canada. These data were verified by the drivers using a web interface and com-
bined with drivers’ socio-economic and shipments characteristics that were also collected
through the interface.

This work extends the literature on truck route choices in several directions. The data
collection combines route tracking using GPS with the use of a web interface to solicit
additional information on the drivers and their trips. Most previous models only used vari-
ables related to route attributes, levels of service and costs that can be derived from the
GPS traces and map databases. The data collection method used in this study, supports
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model specifications that are able to capture systematic differences in preferences among
driver groups based on their characteristics, such as their years of experience and employ-
ment type, and additional terms, such as availability of toll tags that are derived from the
responses on the web interface. The model also accounts for unobserved heterogeneity
through the specification of distributed individual-specific travel time and travel time relia-
bility coefficients. In the context of truck route choices, this has been previously done with
SP data, but not with GPS traces.

The use of GPS records collected from trucks undertaking intercity travel over a longer
period of time provides data on awide geographic scale. This is in contrast withmost previ-
ous studies that focusedon specific regionsor corridors. The result is abetter representation
of the non-recurring travel patterns of trucks, unlike those of commuters. Furthermore,
it increases the variability in the values of the explanatory variables and improves the
efficiency of the parameter estimates. However, the wide geographic coverage makes it
difficult to both generate alternative routes and to estimate their attributes, which are
required for the modeling task. This problem has not received adequate attention. Some
previous truck routing research using GPS traces focused on specific corridors (e.g. Knor-
ring, He, and Kornhauser 2005; Wang and Goodchild 2014) and so used judgement to
pre-define a small number of reasonable routes and extracted their attributes from the
map database. Quattrone and Vitetta (2011) andHess et al. (2015) generated network-wide
routes using the labeling and link-elimination approaches, respectively. However, neither
used navigation map databases to estimate the values of attributes, including those used
to generate routes. The former used a coarse national traffic assignment model. The latter
estimated travel times based on assumptions on the travel speed on various road types.
This paper proposes using openly available capabilities of commercial navigation map
databases for the tasks of generation of routes and estimation of their characteristics.

The remainder of this paper is organized as follows. The next section presents the overall
route choicemodelingmethodology. Section 3 presents the data collection andprocessing
methodologies and reports descriptive statistics of the resulting dataset. Section 4 presents
the specification details and estimation results of the truck driver route choicemodel. Next,
the application of the model is demonstrated with specific truck trips. Finally, the main
findings are summarized and discussed together with future research directions.

2. Route choice model

Amixed logitmodel with a path-size factor is proposed to predict the route choices of truck
drivers. In order to make the route choice model applicable to trips that differ from the
ones that were used to estimate themodel, the utility specifications are generic (i.e. do not
include anyparameters that are specific to an alternative). Furthermore, routes in the choice
set may partially overlap. The similarity in the common segments causes the error terms of
overlapping routes tobe correlated. FollowingBen-Akiva andBierlaire (1999) andRamming
(2002), a path-size (PS) variable is used to capture the effects of the similarity among routes
in the model:

PSint =
∑
a∈�int

(
la
Lint

)
1∑

j∈Cnt δajnt
(1)

where, PSint is the path-size value for route i and trip t of driver n. Lint is the length of the
route. la is the length of link a that belongs to the set of links�int that comprises route i and
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trip t of driver n. δajnt is an indicator variable, which takes value 1 if link a is part of route j,
and 0 otherwise.

It should be noted that several nonlinear PS formulations that were proposed in the lit-
erature (using a power parameter γ , see e.g. Prato 2009) were also tried. The formulation
in Equation 1 yielded the best fit. The estimated coefficient of the PS term did not change
substantially with other formulations. The utility functions are therefore given by:

Uint = Vint(Xint ,βn) + βPS ln PSint + εint (2)

where Uint is the utility of alternative route i of driver n in trip t. Vint is the systematic part of
the utility function. Xint and βn are the explanatory variables and the corresponding coeffi-
cients, respectively. βPS is the coefficient of the path-size term. εint is an error term, which is
assumed to be independently and identically drawn from the Gumbel distribution.

The probability that driver n chooses route i in trip t is given by:

Pn(it|βn) = exp(Vint(Xint ,βn) + βPS ln PSint)∑
j∈Cnt exp(Vjnt(Xjnt ,βn) + βPS ln PSjnt)

(3)

Previous research has shown large heterogeneity in route tastes among truck drivers
(e.g. Kawamura 2000; Toledo et al. 2013). Ignoring this taste heterogeneity can lead to
inconsistent estimates of the model coefficients and deteriorate prediction power (Ben-
Akiva, Bolduc, and Park 2008). In order to capture taste heterogeneity, the coefficients of
two variables in the model are assumed to be distributed in the drivers’ population: the
log of travel time and the square of the travel time range. Both are assumed to follow log-
normal distributions (with a negative sign in the utility function) in order to ensure that they
are always negative, which indicates that drivers prefer shorter travel times and lower travel
time variability. The distributions are assumed to be correlated with each other. Therefore,
their joint distribution is given by:

ln
([

βLnTT ,n

βttRangeSq,n

])
∼ N

([
μβLnTT

μβttRangeSq

]
,

[
σ 2

βLnTT
σβLnTTβttRangeSq

σβLnTTβttRangeSq σ 2
βttRangeSq

])
(4)

where βLnTT ,n and βttRangeSq,n are the coefficients of log of travel time and the square of the
travel time range for individual n, respectively. βLnTT and βttRangeSq are the corresponding
mean parameters of the lognormal distributions. σ 2

βLnTT
and σ 2

βttRangeSq
are the variances of

the distributions, and σβLnTTβttRangeSq is their covariance.
The random coefficients are assumed to vary among drivers but are constant in all the

observations from the same driver. Thus, they capture inter-participant and assume no
intra-participant heterogeneity. Although this is the common approach to modeling het-
erogeneity (Hess and Rose 2009), it may also be possible to relax this assumption (e.g. Hess
and Rose 2009; Becker et al. 2018) using amore complexmodel structure. Estimation of this
model may be more difficult and require a simpler utility specification.

Under these assumptions, the conditional probability of the chosen alternative in trip t
is given by:

Pn(Yt|βn) =
∏
i

[Pn(it|βn)]Yint (5)

where Yint is equal 1 for the chosen alternative, and 0 otherwise.
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The conditional joint probability of all the observations from the same driver is given by:

Pn(Y1 . . . YT |βn) =
T∏

t=1

Pn(Yt|βn) (6)

The unconditional joint probability is given by:

Pn(Y1 . . . YT ) =
∫∫

βn

Pn(Y1 . . . YT |βn)f (βn)dβn (7)

where, f (βn) is the joint distribution of the individual-specific parameters, given in
Equation (4).

The intergral in equation(7) may be evaluated using simulation:

Pn(Y1 . . . YT ) = 1
R

R∑
r=1

Pn(Y1 . . . YT |βnr) (8)

where, βnr are coefficients drawn in replication r from the distribution in equation (4). R is
the number of replications.

Finally, the loglikelihood function to be maximized is given by:

LL =
∑
n

ln(Pn(Y1 . . . YT )) (9)

3. Data collection and processing

This section presents the data collection and processing that led to the final dataset that
was later used in model estimation.

3.1. Data collection

The study collected trucks’ GPS data and elicited additional information from the drivers
through a web interface. Truck drivers were recruited to participate in the experiment in
roadside intercepts or by phone calls to lists of drivers in areas of Texas, Indiana, Ontario,
New Jersey andMassachusetts. The trucks of recruited drivers were equippedwith GPS log-
gers that continuously collected data on the location and movement of the trucks and
transmitted this information through wireless networks to an application server. At the
server, theGPS traceswerematched to road segments on aGeographic Information System
(GIS)mapand stop locationswere identified. The resulting routes and stopswerepresented
to the drivers on a personal web interface. The drivers were then asked to provide addi-
tional information about their trips (e.g. schedule for delivery or pickup, characteristics of
the freight being transferred) and the stops they made (e.g. pick-up, delivery and other
activities). Figure 1 shows an example of the web interface. A truck’s route is shown. One of
the stops along the route is highlighted and a question about this stop is displayed. At the
end of the tracking period, which was up to a month, the drivers completed an exit survey
soliciting their socio-economic characteristics. The drivers were compensated up to $100
for their participation. The compensation rate dependedon theperiodof participation (one
to fourweeks) andonproviding the additional information requested. Additional details on
the data collection methodology and tools are presented in Ben-Akiva et al. (2016).
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Figure 1. Trip, stops and the related questions displayed on the personal webpage.

3.2. Data processing

In total data from 107 drivers was collected. It covers 2,255 driving days. 12,617 stops were
detected. These stops were not only for loading and drop-off, but also for rest, service, fuel,
depots, visit home and so on. These data were processed in preparation for the model-
ing task to generate a database with a choice set of alternative routes for each trip, their
attributes and the characteristics of the driver and shipment for the trip and identify the
chosen route. To that end, he following steps were taken:

(1) Identification of trips: for the analysis, trips were defined as travel between loading
points as origins and the following drop-off points as destination stops. In cases when
multiple loading or drop-off stops were identified in a sequence, the trip was defined
from the last loading stop to the first drop-off stop in the sequence. Trips with substan-
tial portions of missing GPS data gap or missing information from the drivers about
stops were removed.

(2) Choice set generation: A labeling approachwas used to generate a choice set of route
alternatives. Four available navigation applications were used: Google maps, Bing,
MapQuest, and INRIX. Labeled routes were generated by running route recommen-
dation queries in these applications with different options that they support: routes
with or without tolls, preferring or avoiding highways, shortest distance or travel times
based on free flow or time-dependent conditions. This approach allowed generating
alternative routes with the level of detail of navigation map databases at a wide geo-
graphic scale. Using transportation planning models would not yield the same level
of detail. The use of other generation approaches, such as simulation or link elimina-
tion, would require accessing andmanipulating a navigationmap databasewith travel
times and other relevant attributes. However, these would be prohibitively expensive
toobtain. For example, Hess et al. (2015) advocateusingnavigationmaps for routegen-
eration. They used a link elimination approach. But, they did not have access to travel
time information and so compromised on assuming average speeds for different road
classes to calculate travel times. The routes that were accumulated from the various
queries were evaluated to remove duplicate routes. Alternative routes with overlap
of over 80% of their length were considered duplicates. A similar overlap threshold
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was recommended by Ramming (2002). It reflects the interest in inter-urban travel, for
which the network is relatively sparse. Trips for which a single route was generated or
when none of the generated routes had at least 80% overlap with the GPS observed
route were discarded.

(3) Route attributes: For the resulting sets of routes, their attributes were collected from
various sources:
(a) Time-dependent travel times and travel time variability for trucks were queried

from the INRIX database.
(b) Tolls were calculated from tables of point-to-point tolls by vehicle type on major

toll roads in North America. These tables were extracted from the websites of
various road operators.

(c) Network attributes such as distances and road classifications were extracted from
the OpenStreetMap (OSM) GIS database.

(4) Chosen route: As noted above, the observed GPS routes were matched to a naviga-
tion map database. The matching accuracy is expected to be high because of the high
frequency of the GPS records and the inter-urban nature of trips, which means that
the road network is relatively sparse. Among the routes that were generated, the route
that had the highest overlap with the matched routes (at least 80% of its length) was
determined to be the chosen route.

3.3. Descriptive statistics

The resulting dataset, which was used for model estimation included a total of 1,021 trips
made by 99 drivers. 9,902 alternative routes were generated for these trips. On average
there are 9.7 routes per trip. This is a relatively large number for an inter-urban network.
Due to their experience, it is plausible that professional truck drivers are knowledgeable
about a larger number of alternative routes. For shorter truck trips, which are more likely
to use dense urban networks, Hess et al. (2015), generated an average of 15 routes per trip.
Frejinger (2007) shows that optimal route choice estimation results are obtained when the
full universal choice set is included, which is expected to be large. Bovy (2009) shows that
addition of irrelevant routes to the choice set should not affect the estimation results. How-
ever, this argument is not supported by empirical results (Prato and Bekhor 2007; Bliemer
and Bovy 2008).

Descriptive statistics of these routes and drivers are shown in Table 1. The table sep-
arately shows statistics for the chosen routes and for the full route choice set. A wide
variability exists in all variables: travel times, distances, types of roads being driven and
tolls. The reported travel times are the time-dependent expected values from the INRIX
database. The travel time range is defined by the difference between the longest and short-
est expected travel times reported over the day. Thus, it captures the within-day variability
in travel time and can be viewed as a proxy to the congestion levels and risk of delays. As
can be expected, the statistics show that on average, the chosen routes are shorter than
alternative routes in terms of travel times, travel time ranges and travel distances. In con-
trast, chosen routes are more likely to involve tolls compared to other routes. While 31% of
chosen routes involve tolls, only 24% of all generated routes do. As a result, the mean toll
for chosen routes is higher than that of the other routes. Another difference between cho-
sen and other routes is in their road class composition. Road segments that comprise the
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Table 1. Descriptive statistics of the routes and drivers in the estimation dataset.

Route attributes

Minimum Median Mean Maximum Std. dev.

Number of routes 2 10 9.70 22 14.05
Travel time (hours) Chosen 0.02 2.23 4.05 45.48 5.22

All 0.02 3.23 5.46 70.27 6.55
Travel time range (hours) Chosen 0 0.08 0.14 0.93 0.15

All 0 0.13 0.17 1.13 0.14
Distance (km) Chosen 0.5 192.3 381.8 4651.6 521.5

All 0.5 243.1 450.8 6547.0 606.4
Toll cost (USD) Chosen 0.0 0.0 1.9 244.1 12.0

All 0.0 0.0 1.2 244.1 7.6
Fraction on major interstate roads Chosen 0.00 0.00 0.24 1.00 0.43

All 0.00 0.00 0.12 1.00 0.32
Fraction on highways Chosen 0.00 0.84 0.69 1.00 0.34

All 0.00 0.22 0.35 1.00 0.36
Fraction on trunk roads Chosen 0.00 0.00 0.08 1.00 0.18

All 0.00 0.01 0.09 1.00 0.15
Fraction on primary or secondary roads Chosen 0.00 0.02 0.19 1.00 0.20

All 0.00 0.27 0.47 1.00 0.25
Fraction on tertiary or unclassified roads Chosen 0.00 0.01 0.04 0.89 0.10

All 0.00 0.03 0.09 1.00 0.15

Driver characteristics
Employment type fractions Hired: 0.65; Owner-operator: 0.33; Unknown: 0.02
Years of experience fractions 0–1: 0.01; 1–2: 0.02; 3–5: 0.01;

6–9: 0.16; 10+: 0.79; Unknown: 0.01
Fraction of trucks with toll tags Yes: 0.76; No: 0.23; Unknown: 0.01

route are classified in four categories based on the US administrative system implemented
in OSM. Chosen routes tend to heavily use highways (e.g. Interstate, freeways and other
divided and grade separated roads), whereas other generated routes also use lower class
roads, especially primary and secondary ones (e.g. US and state roads).

The sample characteristics are consistent with industry statistics. About two-third of the
drivers are hired drivers, and the rest are owner-operators. This is comparable with esti-
mates by Global Insight (2005) that 30% of heavy truck drivers are owner-operators. The
vastmajority are experienced drivers: 95%have at least 6 years of experience and 80%have
been driving trucks for ten years or more. Themedian drivers’ age in the sample is 50 years.
Costello and Suarez (2015) report that the industry’s median is 49 years. Finally, 76% of the
trucks are equipped with electronic toll collection tags, which make using toll roads sim-
pler. The sample may be subject to self-selection. However, the effect of self-selection bias
is expected to beminor as there is no evident connection between volunteering to partici-
pate in the survey and route choice behaviors. For a detailed presentation of self-selection
bias and techniques to mitigate it see the review in Mokhtarian and Cao (2008).

4. Model specification and estimation

Table 2 lists the variables used in the final specification of themodel. The independent vari-
ables that are of interest capture the trade-offs between travel times, costs, distances and
variability of travel times. The travel cost considered is the direct toll cost. The model also
captures the effect of the use of a toll road, regardless of the toll cost. The travel time vari-
ability is captured by the square of the difference between theminimumand themaximum
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Table 2. Definitions of variables used in the model specification.

Variable Definition

SPtt Dummy variable: 1 if route is shortest travel time route, 0 otherwise
LSnhwy Dummy variable: 1 if route has the least distance driven on non-highway roads, 0 otherwise
TollRoute Dummy variable: 1 if route involves tolls, 0 otherwise
tt110% Dummy variable: 1 if route is up to 10% longer than shortest travel time route, 0 otherwise
nhwy+30 Dummy variable: 1 if the non-highway distance on the route is up to 30 kilometers longer than route with

least non-highway distance, 0 otherwise
HiredTag Dummy variable: 1 if driver is a hired driver for a company and truck is equipped with an electronic toll

collection tag, 0 otherwise
HiredNoTag Dummy variable: 1 if driver is a hired driver for a company and truck is not equipped with an electronic toll

collection tag, 0 otherwise
lnTT Log of travel time (hours)
ttRangeSq Square of the difference between lowest and highest travel times within the day (hours)
Toll Toll amount (2014 USD)
Dist Length of route (100-kilometers)
Hired Dummy variable: 1 if driver is a hired driver for a company, 0 otherwise
Experience10 Dummy variable: 1 if driver has over 10 years of experience, 0 otherwise
Road1 Fraction of route distance that used class 1 roads (highways)
Road2 Fraction of route distance that used class 2 roads (Trunk roads)
Road3 Fraction of route distance that used class 3 roads (primary and secondary roads)
Road4 Fraction of route distance that used class 4 roads (Tertiary and Unclassified roads)
MajorIS Dummy variable: 1 if a third or more of the route is on major Interstate roads, 0 otherwise.
Google Dummy variable: 1 if route was recommended by Google, 0 otherwise.
Bing Dummy variable: 1 if route was recommended by Bing, 0 otherwise.
Mapquest Dummy variable: 1 if route was recommended by Mapquest, 0 otherwise.
Inrix Dummy variable: 1 if route was recommended by Inrix, 0 otherwise.

travel times that were measured over the day in the time-dependent travel time data. This
measures the variability of travel times over the day. A measure of the variability of travel
time at a time of day period may be more appropriate for the route choice model. How-
ever, it would require a much richer source of data, which may not be readily available in
the context of a large geographic area.

The first four variables listed in the table are labels, identifying specific routes as having
thebest value in someattribute: shortest travel time, the shortest distance, the least number
of non-highway kilometers and as being a route involving tolls. The next group of variables
are related to routes that are near-best, that is within a certain distance metric from the
best routes, with respect to an attribute: routes that are up to 10% and 5% longer than
the shortest in terms of travel time or distance, respectively, and routes that involve up
to 30 more non-highway kilometers compared to the route with the least non-highway
distance. Routes that are included in these categories may be perceived as better based on
their superior properties in the specific attributes. The tolerance allowed in these near-best
values reflects people’s imperfect knowledge of the values of these attributes, and their
inherent variability. The thresholds usedwith these variables were selected, after some trial
and error, such that they provide the best fit to observed choices.

Attributes of the routes were also interacted with characteristics of the driver in order to
capture the different sensitivities of the various groups of drivers. In the final model, these
characteristics are the type of driver (whether the driver is an owner-operator or a hired
driver), existence of an electronic toll tag in the truck, and the level of experience the driver
has (less or over 10 years).

The routes used in the model were generated using four navigation systems that incor-
porate different route planning capabilities (with and without tolls, avoiding or preferring
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highways and so on). For each route, dummy variables for the system(s) that generated
it are introduced. These are meant to implicitly capture the underlying criteria that the
navigation systems use when making their route recommendations.

The utility functions for the resulting model are given by:

Uint = βSPttδ
SPtt
int + βLSnhwyδ

LSnhwy
int + βtt110%δtt110%int + βnhwy+20δ

nhwy+20
int

+ βtollHiredNoTagδ
hiredNoTag
nt δtollRouteint − βLnTT ,n ln TTint − βttRangeSq,nttRangeSqint

+ (Toll/Dist)int(βtollPerMile + βtollPerMileHiredTagδ
HiredTag
n )

+ Distint(βdist + βdistHiredδ
Hired
n + βdistExperiance10δ

Experiance10
n ) + βroad2fr

road2
int

+ βroad3fr
road3
int + βroad4fr

road4
int + βmajorISδ

majorIS
int + βGoogleδ

Google
int

+ βBingδ
Bing
int + βMapquestδ

Mapquest
int + βInrixδ

Inrix
int + βPS ln PSint + εint (10)

Proposedmodelswereestimatedusing theMLOGITpackage (Croissant 2012) in theR statis-
tical software. The method of simulated maximum likelihood was used with 10,000 Halton
draws. Themodel estimation results are presented in Table 3. To further evaluate the effect
of the various groups of variables, Table 4 presents estimation results of models that omit
specific groups of variables from the full model:

(1) A model that excludes all route dummy variables (labels and maps sources). It only
retains the variables related to the characteristics of the route alternatives.

(2) A model that excludes all systematic heterogeneity variables that capture differences
among driver types and availability of ET toll tags

(3) A model that excludes random heterogeneity in travel time and travel time hetero-
geneity

Overall, the estimates are consistent with prior expectations. The signs for the coeffi-
cients of travel time, toll cost and squared travel time range are all negative. These imply
that increases in the values of these variables for a specific route alternative reduce the
utility of that route and the probability that it is chosen.

The label variables in themodel capture the preference of drivers to routes that are best
or near best with respect to some attribute. The coefficients of these variables are mostly
positive. Drivers prefer routes that are shorter in terms of travel time and that involve as
little driving on non-highway roads as possible. For these variables, routes that are near-
best are also preferred to those that are not. This may be capturing screening criteria that
drivers use in order to reduce the set of alternative routes that they consider inmaking their
final selection. These effects are stronger than the preferences for the best routes with the
corresponding criteria. Theymay also reflect the imperfect information drivers have on the
exact attributes for the various routes and measurement errors. The model fit is reduced
substantially when these variables are excluded from themodel. The parameters of several
of the other variables become insignificant.

A toll route dummy variable is significant only when interacted with hired drivers with
no tags. The coefficient is negative, suggesting avoiding toll routes. Thismay reflect policies
or decisions of the companies that do not provide drivers with tag, strongly discouraging
the use of toll roads. For other driver types, no significant result was found, which indicates
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Table 3. Estimation results.

Parameter Estimate t-statistic p-value

Shortest travel time (βSPtt ) 0.316 3.16 0.002
Least non highway distance (βLSnhwy) 0.281 2.46 0.014
Travel time within 10% (βtt110%) 0.332 2.26 0.024
Non highway distance plus 30 (βnhwy+30) 0.853 5.03 < 0.001
Toll route – Hired No tag (βtollHiredNoTag) −1.276 −2.78 0.005
Log Travel time (βlnTT ) −1.860 39.8 < 0.001
Std – log travel time 0.525 14.2 < 0.001
Travel time range squared (βttRangeSq) −0.703 1.69 0.090
Std – travel time range squared 2.045 5.99 < 0.001
Covariance – travel time and range 0.814 2.27 0.023
Toll per km (βtollPerKm) −0.127 −2.09 0.037
Toll per km – Hired with tag (βtollPerKmHiredTag) 0.106 1.71 0.087
Distance (βdist ) −1.160 −35.9 < 0.001
Distance - Hired (βdistHired) −0.654 −26.2 < 0.001
Distance – Experience 10 (βdistExperience10) 1.021 35.7 < 0.001
Road class 2 (βroad2) −0.945 −1.80 0.072
Road class 3 (βroad3) −2.179 −5.68 < 0.001
Road class 4 (βroad4) −5.091 −6.46 < 0.001
Major interstate (βmajorIS) −0.556 −2.67 0.008
Google (βGoogle) 0.564 4.16 < 0.001
Bing (βBing) 1.230 9.56 < 0.001
Mapquest (βMapquest ) 0.602 5.84 < 0.001
Inrix (βInrix ) 0.449 4.18 < 0.001
Ln (Path Size) (βPS) −0.474 −2.77 0.006
|Observations: 1,021 Adjusted rho square: 0.594
Initial log-likelihood:−2,222.10 Final log-likelihood:−877.69

that, everything else being equal (including the cost), they do not have a strong preference
for or against toll roads.

The toll costs are normalized in the model by the distance. As expected, it has a neg-
ative effect on the utility of the route. The variable was also interacted with indicators for
hired drivers and for owner-operators, bothwith andwithout ETC toll tags. A differencewas
found only for hired drivers who drive trucks that are equippedwith ETC tags. Compared to
the other driver types, they have a significantly lower coefficient for the toll cost (in absolute
value), which indicates that they are almost indifferent to the toll costs.

The coefficient of the travel distance is negative, as expected. This variable also cap-
tures indirect costs that are strongly correlatedwith it, such as fuel andwear. Interactions of
this variable with hired driver status and with trucking experience of over 10 years are also
included in the model. The coefficient for hired drivers is negative, which means that they
are more sensitive to increasing travel distances compared to owner-operators. For experi-
enced drivers, the coefficient of this interaction is positive, indicating that these drivers are
less sensitive to travel distances compared to less experienced drivers.

Variables of the interaction of both toll and distancewith driver characteristics re used in
the model. These capture systematic heterogeneity in preferences. When these are elimi-
nated from themodel, themodel fit, expressed by the adjusted rho squaremeasure slightly
decreases. Themarginal effect of the toll cost variable is substantially smaller. The loss of the
systematic heterogeneity also increased the randomheterogeneity in themodel, expressed
by an increase in the variances of the randomheterogeneity parameters for travel time and
its variability.
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Table 4. Estimation results for reduced models.

Parameter Excluding labels
Excluding systematic

heterogeneity
Excluding random
heterogeneity

Shortest travel time (βSPtt ) - 0.307 0.328
Least non highway distance (βLSnhwy) - 0.259 0.287
Travel time within 10% (βtt110%) - 0.362 0.358
Non highway distance plus 30 (βnhwy+30) - 0.789 0.851
Toll route – Hired No tag (βtollHiredNoTag) - - −1.317
Log Travel time (βlnTT ) −2.776 −1.797 −1.808
Std – log travel time 0.301 0.879 -
Travel time range squared (βttRangeSq) −0.551 −0.433 −0.818
Std – travel time range squared 0.143 3.373 -
Covariance – travel time and range 1.971 0.844 -
Toll per km (βtollPerKm) −0.078 −0.017 −0.076
Toll per km – Hired with tag (βtollPerKmHiredTag) 0.061 - 0.063
Distance (βdist ) −1.728 −1.094 −1.726
Distance – Hired (βdistHired) −0.745 - −0.995
Distance – Experience 10 (βdistExperience10) 1.202 - 1.475
Road class 2 (βroad2) −2.941 −1.067 −0.945
Road class 3 (βroad3) −4.582 −2.258 −2.178
Road class 4 (βroad4) −8.181 −5.230 −5.072
Major interstate (βmajorIS) - −0.596 −0.571
Google (βGoogle) - 0.580 0.564
Bing (βBing) - 1.219 1.224
Mapquest (βMapquest ) - 0.609 0.604
Inrix (βInrix ) - 0.441 0.449
Ln (Path Size) (βPS) −1.294 −0.492 −0.476
Adjusted rho square 0.534 0.590 0.592
Final log-likelihood −1021.60 −890.51 −884.44

Parameters significant with p-value< 0.05 are in bold.

Travel times and the variability of travel times (captured by the travel time range, as
discussed above) are included in the model with logarithmic and square transformations,
respectively. These provided the best fit compared to other functional forms. The coeffi-
cients of these two variables were estimated as random parameters that follow a bi-variate
log-normal distribution with estimated values:

ln
([

βLnTT ,n

βttRangeSq,n

])
∼ N

([
1.860
0.703

]
,
[
0.276 0.814
0.814 4.184

])
(11)

With this distribution themean, median and standard deviation of the log of travel time
coefficient are 7.371, 6.422 and 5.133. The corresponding values for the coefficient of travel
time range square are 16.355, 2.019 and 80.363, respectively. The signs to the coefficients
corresponding to log of travel time and travel time range squared are negative, because
the two attributes are given negative signs in the utility function. The coefficient of travel
time range squared has a very large variance. This indicates a high degree of heterogeneity
among drivers with respect to the preference to avoid routes with high time variability.
Replacement of the randomparameters with fixed ones has amarginal effect on themodel
fit. But, several of the remaining parameters are insignificant, including those that capture
systematic heterogeneity.

The estimates suggest significant trade-offs among travel time, travel time variability
and toll costs. The estimation of random travel time and travel time variability coefficients
leads to distributions of toll VOT and value of reliability (VOR). The use of nonlinear forms
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Figure 2. Toll VOT distributions for different driver types.

also makes their trade-offs dependent on the route travel time and travel time variability
values. Furthermore, since the toll cost is interactedwith driver characteristics, toll VOT also
depends on the type of driver andownership of ETC tag. The toll VOT reflected in thismodel
is given by (variables and their units are as defined in Table 2):

VOTn = βLnTT ,nDistn

ttn(βtollPerMile + βtollPerMileHiredTagδ
HiredTag
n )

(12)

The toll VOR is the trade-off between travel time variability and the toll cost. It is given by:

VORn = 2βttRangeSq,nttRangenDist

βtollPerMile + βtollPerMileHiredTagδ
HiredTag
n

(13)

To illustrate the variability of VOT and VOR, a 5-hour trip at an average speed of 90 kilo-
meters per hour and a with variability of 0.2 h is assumed. For this case, the estimated VOT
and VOR distributions, for hired drivers with ETC tag and all other drivers (hired drivers
without ETC tag and owner operators) are plotted in Figures 2 and 3, respectively.

For the scenario described above, the median VOTs and VORs and their interquartile
ranges (IQR) were calculated. Bliemer and Rose (2013) recommend calculation of medians
over means when the range of parameters in the denominator of VOT includes zero. The
calculations are based on the K&R method (Krinsky and Robb 1986, 1990) that uses sim-
ulation of the parameter values. This method was applied by Bliemer and Rose (2013) for
discrete choice models with random parameters. See Gatta, Marcucci, and Scaccia (2015)
for a review and evaluation of VOT confidence intervals estimation methods.

For hired drivers with ETC tags, the median toll VOTs is 272 $/Hr. The IQR is 164–469
$/hr. For all other drivers, the median is 46 $/Hr and the IQR is 29–78 $/hr. Using the same
assumptions, the median toll VOR for hired drivers with ETC tags is 174 $/Hr. The corre-
sponding IQR is 38–766 $/hr. For all other drivers, the median toll VOR is 30 $/Hr. The
IQR is 7–129$/hr. The VOTs and VORs for hired drivers with ETC tags are high because
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Figure 3. Toll VOR distributions for the different driver types.

the coefficients suggest that they are practically indifferent to the toll cost. Therefore, the
denominators in the VOT and VOR expressions may be very small, which explains their
wide IQRs. The standard deviation of the travel time variability coefficient is very large. This
reflects a high level of heterogeneity amongdrivers in their toll VOR,which suggests against
the use of deterministic VOR.

The path-size variable is designed to capture the effect of overlap among routes. Its coef-
ficient is expected to be positive and theoretically equal 1. But, with the relatively sparse
inter-urban network, attractive routes tend to overlap with other routes in the choice set.
This is amplifiedby theuseof thenavigationapplications togenerate routes. Therefore, pre-
ferred routes tend to have high levels of overlap and lower path-size values, which explains
the negative estimate of the value of the coefficient of this variable. A similar result, with a
similar interpretation, was reported in Frejinger and Bierlaire (2007). Several othermethods
to capture the effects of overlap among routes have been proposed in the literature, each
with several alternative correction factors. Most notably, the C-logit model (Cascetta et al.
1996), which uses commonality factors instead of path-size variables to capture similarities
among routes. Starting from a different set of behavioral assumptions about the choice
process, the quantum utility model (Vitetta 2016) obtains an interference term, which is
another type of correction factor. A C-logit model was estimated. It yielded a slightly worse
maximum likelihood of −878.29. The estimated commonality factor (CF) coefficient was
1.109 (p-value<0.001). Other parameter values did not substantially differ from the path-
size logit model results reported in Table 3. This result is consistent with earlier studies (e.g.
Ramming 2002; Prato 2014) that did not find substantial differences in the performance of
models with different correction factors.

5. Model application

In order to demonstrate the use of themodel, it is applied to evaluate the fraction of various
driver groups that are expected to use a toll road alternative in several specific trips. In each
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Table 5. Attributes of the alternative routes.

San Antonio – Dallas Toledo – Chicago Hamilton – Peterborough

Attribute Route A Route B Route A Route B Route A Route B

Distance (Kms) 434 457 391 396 203 204
Peak travel time (Hr) 4:26 4:20 4:48 3:56 2:42 2:25
Off-peak travel time (Hr) 4:05 3:58 4:19 3:40 2:03 2:11
Travel time variability (Hr) 0:21 0:22 0:29 0:16 0:39 0:14
Toll – Tag ($) 0 22.92 0 70.48 0 99.07
Toll – no tag ($) 0 25.31 0 72.95 0 149.07
Road class 1 0.9958 0.9849 0.4167 0.9954 0.8622 0.6995
Road class 2 0 0 0.0555 0 0.0915 0
Road class 3 0.0040 0.0149 0.5220 0.0023 0.0457 0.3000
Road class 4 0.0002 0.0002 0.0058 0.0023 0.0006 0.0005

case two alternative routes are considered. It should be noted that the application with
only two alternatives is useful to illustrate the effects of the various variables in the model.
However, in an application, routes should be generated using the same method that was
used in the estimation. The route choice fractions are predicted for different driver groups
and conditions along several dimensions: Peak and off-peak period travel, truckers that are
hired drivers or owner-operators and truckers with and without ETC tags. The situations
evaluated are:

(1) A hired driver, with a toll tag, driving during the peak period. This is the base case.
(2) Same as the base case, but with travel during the off-peak period.
(3) Same as the base case, but the truck is not equipped with an ETC tag.
(4) Same as the base case, but the driver is an owner-operator.
(5) Same as the base case, but the driver is an owner-operator and the truck is not

equipped with an ETC tag.

Three corridors are used in the analysis. The relevant attributes of the routes in each
corridor are shown in Table 5:

(1) SanAntonio TX –Dallas TX (Texas corridor): Route A is a non-toll route that uses I-35.
Route B is a tolled alternative that uses SH-130 toll road to bypasses Austin TX. The two
alternatives are shown in Figure 4. Route B is longer by distance but offers travel times
and travel time reliability savings. Both routes almost exclusively use highways.

(2) Toledo OH – Chicago IL: Route A is a non-toll route that uses lower class roads (US-20
and state road IN-2) for large parts of the trip. Route B uses the tolled highways (I-80/90
and Chicago Skyway). The two alternatives are shown in Figure 5. The two routes are
similar in distance, but the toll road offers lower travel times and better travel time
reliability.

(3) Hamilton ON – Peterborough ON (Ontario corridor): This route crosses the Toronto
metropolitan area. Route A is a non-toll route that uses the highways system that
crosses the city (ON-403, QEW, ON-427, ON-401 and ON-115). Route B uses a toll road
to cross the city (ON-407ETR) and connects via regional roads to the highway system.
The two alternatives, which are roughly equal in distance, are shown in Figure 6. Route
B uses class 3 roads to connect between the toll road and highway system. The travel
time on the free route is shorter in the off-peak period, but longer in the peak period.
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Figure 4. Alternative routes for the San-Antonio TX – Dallas TX trip (Google Maps 2017).

Figure 7 presents box plots of the probabilities of choosing route B (the toll route) for
each drivers’ segments in each of the three corridors. The different values were generated
by drawing values from the distributions of the random coefficients. The expected values
of the probabilities are marked with an ‘x’ sign. The plots demonstrate the high variability
in preferences that is manifested in the random coefficients. With respect to the expected
values of the probabilities, only the Ontario corridor shows differences in the route choice
fractions between the peak and the off-peak periods. This is largely because it is the only
corridor that exhibits large differences in travel time savings between the two periods. In all
cases, hireddriverswith trucks that are equippedwith ETC tags are themost likely to use the
toll routes. Thosewithout ETC tags are the least likely to use toll roads. For owner-operators,
the presence of ETC tags does not substantially affect their probability of choosing the
tolled route. Among the corridors, a largemajority of drivers are predicted to use the tolled
route in the Toledo – Chicago corridor, which offers large travel times savings, improved
reliability and higher-class roads. In the other corridors, the tolled route choice probabil-
ities are much lower. In the Texas trip this is due to the minimal travel time savings and
longer distance. In Ontario, the tolled route also offers smaller travel time savings, and only
in the peak period. It also makes more use of lower-class roads.

The toll elasticity of demand captures the effect of changes in the toll cost on the prob-
ability of choice and market share of an alternative. Figure 8 presents the (negative of) toll
elasticity of demand for the toll route alternatives in the various segments and corridors.
The elasticity is in general low, demonstrating low sensitivity of the demand to the toll cost.
In particular, the price elasticity of the demand for toll roads for hired drivers with ETC tags
is very low. It is highest for hired drivers in trucks without ETC tags. The Ontario trip exhibits
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Figure 5. Alternative routes for the Toledo OH – Chicago IL trip (Google Maps 2017).

Figure 6. Alternative routes for the Hamilton ON – Peterborough ON trip (Google Maps 2017).

a different behavior. There, the demand by owner-operators is elastic. This is a result of the
high toll cost and relatively short trip in this corridor. This combination makes the value of
the cost per distance variable high and influential in the model.

6. Summary and conclusions

The research represents an attempt to better understand the route choices that intercity
truck drivers make. A data collectionmethodology based on GPS data and user verification
through a web interface was developed and implemented. The RP data collected was used
to develop a route choicemodel that accounts for the attributes of the trip (e.g. travel time,
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Figure 7. Probabilities of choosing route B (the toll route) for various driver segments.

Figure 8. Toll (negative) elasticity of demand.

travel time range, distance, and classes of the roads used) and the characteristics of the
truck drivers (e.g. owner operators and hired drivers, trucks with and without ETC tags, and
trucking experience).

For various driver types, random coefficients for both travel time and travel time vari-
ability were used in order to capture the heterogeneity of preferences. Both are significant
in the model and show large standard deviations of the coefficients. These suggest large
differences in preferences among drivers. The model captures inter-participant hetero-
geneity. The large values estimated suggest that it may be useful to also model intra-
respondent heterogeneity. Appropriatemodels and estimation techniqueswere proposed,
for example, by Hess and Rose (2009) and Becker et al. (2018).

Large differences in toll VOT and toll VORwere also found between owner operators and
hired drivers with or without ETC tags. Based on the estimation results and model applica-
tion, the willingness to pay for tolls is substantially higher for hired drivers with ETC tag
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compared to the other drivers (i.e. owner operators and hired drivers without ETC tag).
The underlying reason may relate to that hired drivers with ETC tag do not need to pay
for tolls out of their pockets. In addition, the equipment of ETC tags improves the conve-
nience of using toll facilities and may also imply that the trucking companies encourage
toll road usage. In contrast, Toll VOT and toll VOR for hired drivers without ETC tag and
for owner operators are similar. It may be that companies that do not provide ETC tags to
hired drivers may also not cover the toll cost, so the hired drivers show similar behavior as
owner-operators that bear the toll costs themselves. These results imply that differentiated
toll pricing based on driver type and ETC equipment can increase the toll road use.

Another set of variables that were found to affect route choices are the road classes.
Drivers showed strong preference towards higher class roads, and in particular highways
(class 1). Routes that extensively use lower-class roads are considered substantially inferior.
In terms of travel distance, hired drivers were found to be more sensitive to the travel dis-
tance compared to owner-operators. Experienced drivers put much lower weight on the
travel distance in choosing their routes compared to less experienced drivers.

The model was applied to predict individuals’ choices of routes in real-world corridors
under different scenarios. Toll road operators may find the results instructive to predict use
of tolled and toll-free roads by different population groups. It may also help design incen-
tives and personalized tolling policies and marketing efforts to affect these choices based
on the driver’s characteristics.

The model suffers several weaknesses. There may exist a sampling bias as participation
was encouraged by providing the drivers with monetary incentives, which may contribute
to a lower estimate of VOT and VOR than the population. A choice set generation technique
was used to ensure that a variety of route information can be obtained. But, the alternatives
recommended by navigation engines largely overlap with one another.

Several directions for future research may be suggested. Other model structures such
as latent class models and error component models may be considered as suggested in
Marcucci and Gatta (2012). Other approaches for capture the effects of route overlap could
also be tested. In addition, intra-driver heterogeneity in route choices may be investigated.
In the current study, this was not possible due to insufficient number of data points for
individual drivers.

Most drivers in the sample do not make fixed trips. As a result, there were not many
opportunities in the data to observe repeated route choices on similar origins and destina-
tions. If participants would be tracked over longer periods, these could be observed, and
support modeling of dynamic behaviors, such as tendency to keep to the same route. Fur-
thermore, the estimated model is based on the random utility theory with a mixed error
structure. Other models that are not based on random utility may also be useful in this
context. Examples include random regret (Chorus 2010; Prato 2014), fuzzy logic (Lotan
and Koutsopoulos 1993; Henn 2000; Ridwan 2004) and quantum utility model (Vitetta
2016).
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