
Research Article

Transportation Research Record

2021, Vol. 2675(8) 643–656

Ó National Academy of Sciences:

Transportation Research Board 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/03611981211000357

journals.sagepub.com/home/trr

Car Following and Microscopic Traffic
Simulation Under Distracted Driving

Sunbola Zatmeh-Kanj1 and Tomer Toledo1

Abstract

Microscopic simulation models have been widely used as tools to investigate the operation of traffic systems and different

intelligent transportation systems applications. The fidelity of microscopic simulation tools depends on the driving behavior
models that they implement. However, current models commonly do not consider human-related factors, such as distraction.

The potential for distraction while driving has increased rapidly with the availability of smartphones and other connected and

infotainment devices. Thus, an understanding of the impact of distraction on driving behavior is essential to improve the rea-
lism of microscopic traffic tools and support safety and other applications that are sensitive to it. This study focuses on car-

following behavior in the context of distracting activities. The parameters of the well-known GM and intelligent driver models

are estimated under various distraction scenarios using data collected with an experiment conducted in a driving simulator.
The estimation results show that drivers are less sensitive to their leaders while talking on the phone and especially while

texting. The estimated models are implemented in a microscopic traffic simulation model. The average speed, coefficient of

variation of speed, acceleration noise and acceleration and deceleration time fractions were used as measures of perfor-
mance indicating traffic flow and safety implications. The simulation results show deterioration of traffic flow with texting and

to some extent talking on the phone: average speeds are lower and the coefficient of variation of speeds are higher. Further

experimentation with varying fractions of texting drivers showed similar trends.

There is no universally agreed definition of driver dis-

traction. The definitions in the literature vary. One is:

‘‘driver distraction occurs when a driver is delayed in the

recognition of information needed to safely accomplish

the driving task because some event, activity, object or

person within or outside the vehicle compelled or tended

to induce the driver’s shifting attention away from the

driving task’’ (1). Alternatively, driver distraction is

defined as: ‘‘a shift in attention away from stimuli critical

to safe driving toward stimuli that are not related to safe

driving’’ (2). Driver distraction, in all its forms, has been

found to affect driver performance, especially at the

operational and tactical levels (3, 4). At these levels, driv-

ers are required to make continuous and timely deci-

sions, within fractions of seconds, to safely control their

vehicles (5). Thus, secondary tasks, even for short dura-

tions, and especially those that involve visual, auditory,

biomechanical (physical) and cognitive distractions,

might lead to failures in drivers’ performance and conse-

quently to crashes (6). Visual distraction, such as reading

a text message, which causes drivers to take their eyes off

the road, was found to involve substantial increase in

crash risk since the driving environment may change rap-

idly (7). Auditory distraction occurs when drivers focus

their attention on auditory signals rather than on the

road environment, such as when listening to the radio or

music. Biomechanical or physical distraction occurs

when drivers remove one or both hands from the steering

wheel for extended periods of time to physically manipu-

late an object. Cognitive distraction occurs when drivers

look at the road but fail to see, that is, they do not per-

ceive what they see (8, 9). This happens because second-

ary tasks compete over the limited central processing

resources in the brain. Carsten and Brookhuis (10) found

that when drivers are cognitively distracted, their car-

following behavior is impaired, while their lane-keeping

performance improved. The latter is a result of a ‘‘tunnel

vision’’ effect in which drivers focus their attention on

the center of the road. In a driving simulator study,

Muhrer and Vollrath (11) found that cognitive distrac-

tion negatively influences the anticipation of the beha-

vior of other drivers, while visual distraction deteriorates
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the perception and reaction to unexpected events. They

found that the minimum time to collision was smaller

with visual distraction than with cognitive distraction.

Car-following behavior is one of the main building

blocks of microscopic simulation models. It is defined as

when the subject vehicle follows the vehicle in front of it

(the leader) and reacts to its actions. Gazis et al. (12)

developed the GM model which considers a non-linearity

in the effect of the spacing and the subject vehicle speed

on the sensitivity of the response to the stimuli, which is

the speed difference with respect to the leader. Over the

years, many studies followed this line of research, trying

to improve the model in different ways, such as suggest-

ing various stimuli and objectives for the driver (e.g.,

keeping desired spacing or headways, desired speeds, lim-

its on maximum accelerations), differentiating para-

meters for acceleration and deceleration decisions, and so

on. For thorough reviews see Brackstone and McDonald

(13), Toledo (14), Hamdar (15), and Treiber and Kesting

(16), among others. Despite the wide range of proposed

models, they mostly represent an idealized environment,

which does not account for human factors and errors.

Saifuzzaman and Zheng (17) term these ‘‘engineering

models’’ and argue that they lack in their inability to cap-

ture human factors.

Few studies have dealt with the development of driver

models that explicitly incorporate human factors, and

specifically distraction. Relevant theoretical behavioral

frameworks were proposed by Fuller (18, 19), Hamdar

(15), and Schomig and Metz (20). Even fewer studies

have attempted to translate these theories into car-

following specifications. Yang and Peng (21) and

Przybyla et al. (22) assume that distracted followers

maintain their previous speeds rather than react to their

leaders. Distraction episodes and their durations are ran-

domly drawn from their assumed distributions. Yang

and Peng (21) also introduce perception errors and time

delays in their model, which extends a variant of the GM

car-following model. Przybyle et al. (22) use Newell’s

model for car following. Their analysis is focused on

crash rates, and so they do not evaluate microscopic level

accelerations. Hoogendoorn et al. (23) incorporate the

task capability interface (TCI) model within the intelli-

gent driver model (IDM) car-following model. TCI

assumes that driving performance is negatively affected

when the task demand is higher than the driver capabil-

ity. The latter is affected by distraction. In the modified

IDM, free flow speeds, desired spacings and maximum

accelerations are all affected by the difference between

task demand and driver capability. The authors demon-

strate the sensitivity of traffic flow to varying TCI mea-

sures, but do not discuss how these may be estimated

from data. Van Lint et al. (24) use a similar model within

the OpenTrafficSimulation model. They use an assumed

distribution for distraction values, which varies both

within and between drivers. The distraction value affects

desired speeds and reaction times. They also do not show

how the parameters of this model may be estimated.

Saifuzzaman et al. (25) apply modifications to the GM

and IDM to capture the TCI. In their model task, diffi-

culty is captured by the ratio between task demand and

driver capability. Its expression depends on the vehicle’s

speed, pacing, desired headway and a risk factor. It

affects the maximum acceleration and deceleration in the

GM and the desired spacing in the IDM. They estimate

the modified model using driving simulator data that

was collected with and without distraction. Van Lint and

Calvert (26) present a comprehensive framework, also

based on TCI, to incorporate human factors, including

distraction, into driving models. In their model, task

saturation, which is influenced by distraction, affects var-

ious errors that the driver may make. They demonstrate

how this framework is incorporated with a version of the

IDM and propose functional forms for the various com-

ponents of the model. They demonstrate their model

with an application to distracted driving and show that it

produces conceptually plausible results. However, they

do not discuss methods and data needs for model

estimation.

The approaches described above that explicitly

incorporate human factors within driving behavior are

conceptually desirable and useful, certainly in the con-

text of driving performance. However, they also have

limitations: methods and data to test their functional

form and estimate their parameters may be difficult to

collect; in application, they may be computationally

expensive and require inputs (e.g., on distributions of

human traits, frequencies and durations of various

types of distractions) that are not readily available.

This study focuses on engineering-level car-following

behavior in the context of distracting activities. The

parameters of the well-known GM and IDM are esti-

mated under various distraction scenarios using data

collected in a driving simulator. The best fit estimated

models are implemented in a microscopic traffic simu-

lation model. The simulation model is then used in a

case study of an urban arterial in Haifa, Israel. The

impact of the distracting activities on traffic flow are

evaluated using performance measures that are derived

from the simulation results.

The rest of this paper is organized as follows: the next

section describes the simulator experiment and presents

summary statistics for the collected data. Next, the method

to estimate the parameters of the car-following models

under the various distraction conditions and the estimation

results are presented. This is followed by the implementa-

tion of the best estimated car-following models within

the microscopic traffic Simulation TRANSMODELER
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and results of a case study to evaluate the effects on traffic

flow. Finally, the results are discussed in a conclusion

section.

Driving Simulator Experiment

A laboratory experiment using a driving simulator was

developed to collect data on driving behavior while

undertaking different distracting activities. The simula-

tion scenarios included a two-lane rural highway. Lane

and shoulder widths were 3.75m and 1.5m, respectively.

The sections were designed on a level terrain and with no

intersections. The scenarios were designed with daytime

and good weather conditions which allowed good visibi-

lity. Drivers were instructed to drive as they would nor-

mally in the real world. They were told not to pass the

vehicle in front. This was also indicated by the markings

on the road. Following previous studies (27, 28) drivers

were given between 5 and 10min training to become

familiar with the simulator.

A scenario took about 4min to complete. Each sce-

nario was composed of six sections with different speeds

for the vehicle in front of the subject. The leader speed in

each section was constant, and different from that of the

preceding and following sections. The speed transition

from one section to the next was determined by a con-

stant acceleration (or deceleration) rate, which was ran-

domly selected in the range 0.4 to 2.5m/s2. Four levels of

speed ranges were used: 20–40, 40–60, 60–80, and 80–

100km/h. The realized lead speed was drawn from a uni-

form distribution over the speed range within the specific

level. The duration of constant speed sections was 40 s

when the speed was in the range of 20 to 80km/h, and

30 s when the speed was over 80 km/h. Figure 1 shows an

example of the leader vehicle speed profile from one of

the scenarios in the experiment.

Vehicles in the opposing direction traveled at a con-

stant speed of 70 km/h. In the event that the driver is

involved in a crash, for example a rear-end crash with

the lead vehicle, the driver hears a sound of crashing, the

windshield breaks, and the subject vehicle comes to a full

stop. Then, the lead vehicle disappears and the scenario

continues from the same point the crash occurs, with a

new lead vehicle.

Twenty-four different scenarios were generated.

Drivers drove four different scenarios each. In each one

of the scenarios, the drivers were engaged in one of four

distraction conditions. In all cases the activities took

place throughout the driving scenario:

1. Making a cell phone call (hand-held): drivers

received a phone call at the beginning of the sce-

nario and were engaged in a conversation with

the experimenter, in which they were asked sev-

eral general questions.

2. Sending and receiving text messages: drivers

received messages with general questions to their

own cell phones and were requested to reply to

those messages.

3. Eating a snack: the participating drivers were

requested to eat a snack, such as potato chips,

while driving.

4. No distracting activities (control case): the driver

did not have any secondary tasks beside the pri-

mary task of driving.

The order of the activities within the experiment was ran-

domly chosen.

The simulator used in this experiment, STISIM (29),

is a fixed-base interactive driving simulator, which has a

60° horizontal and 40° vertical display. The changing

alignment and driving scene were projected onto a screen

in front of the driver. The simulator updates the images

at a rate of 30 frames per second.

Participants were recruited using billboard advertise-

ments at the Technion campus. Participation was volun-

tary, with screening criteria that the participant holds a

driving license and drives on a regular basis. Participants

were compensated with a voucher for a coffee shop at a

value of about 6 USD. In total, 101 participants (68

males, 33 females) completed the simulator experiment.

Their ages ranged from 18 to 57 years (mean=27.8;

standard deviation=8.3 years). On average the drivers

had a driving license for 4 years.

The collected data include observations of the detailed

trajectories of individual vehicles in various situations.

These include speed and acceleration of the subject vehi-

cle and the leader with resolution of 0.5 s. Only the data

of the acceleration and deceleration sections were used to

estimate the car-following models. This was done to

avoid overfitting of the acceleration functions in the con-

stant speed sections, where control errors the accelera-

tions, which both theoretically and in the data tend to

zero. The estimation dataset included a total of 5,610,

4,113, 4,327, and 5,301 observations for the control, text-

ing, eating, and calling scenarios, respectively. Table 1

presents summary statistics for the data with the control

and various distraction conditions.

Car-Following Models

GM Model

The GM model is based on the sensitivity-stimulus

framework, which assumes that the driver reacts to sti-

muli from the environment. In the GM model, the sti-

mulus is the leader relative speed (the speed of the
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leader less the speed of the subject vehicle). The sensi-

tivity depends on the vehicle’s speed and the distance

between the two vehicles. The original formulation

accounts for reaction time, but not for broader hetero-

geneity in behavior among drivers. The formulation

below accounts for serial correlation because of driver-

specific terms. Including reaction time in the specifica-

tion, in addition to driver-specific heterogeneity, may

lead to identification issues. Furthermore, microscopic

traffic simulation models generally do not explicitly

model reaction time. Therefore, it is omitted in the

following functional form. However, a nonlinear sti-

mulus is used:

E antð Þ=a
Vnt

b

DXnt
g DVnt

l ð1Þ

where E antð Þ is the expected value of the acceleration

applied by driver n at time t. Vnt is the speed of the subject

vehicle. DXnt is the spacing between the subject vehicle

and its leader. DVnt =Vnÿ1, t ÿ Vnt is the leader relative

speed. a, b, g and l are parameters.

Figure 1. An example of the speed profile of the lead vehicle.

Table 1. Summary Statistics of the Data for Model Estimation

Statistic Condition Speed (m/s) Acceleration (m/s2) Relative speed (m/s) Spacing (m) Headway (s)

Mean Control 13.43 0.10 0.61 35.93 2.80
Texting 12.75 0.09 0.63 39.35 3.19
Eating 13.06 0.12 0.50 35.59 2.86
Calling 12.89 0.16 0.55 32.42 2.61

Median Control 12.45 0.07 0.34 30.47 2.47
Texting 12.01 0.06 0.57 33.60 2.78
Eating 12.46 0.11 0.30 30.63 2.43
Calling 12.08 0.15 0.34 26.65 2.31

Standard deviation Control 5.01 0.76 2.90 20.46 1.46
Texting 4.37 0.79 3.63 22.29 1.72
Eating 4.43 0.76 2.99 19.61 1.53
Calling 4.87 0.85 2.96 19.87 1.42

Minimum Control 3.02 22.98 215.01 7.70 0.52
Texting 2.54 23.00 215.01 0.26 0.02
Eating 1.75 23.00 215.81 7.61 0.61
Calling 2.79 23.00 215.41 0.49 0.04

Maximum Control 24.96 3.17 21.01 99.89 9.88
Texting 25.00 3.20 17.14 100.00 9.93
Eating 25.00 3.19 17.89 99.57 9.95
Calling 25.00 3.19 20.83 99.87 9.95
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The applied acceleration includes the expected value

and error terms. It is assumed that the error term is com-

prised of two components: The first is a driver-specific

term that does not vary over time. It captures heterogene-

ity in the behavior, including indirectly in reaction times.

The second is a generic random term:

ant =E antð Þ+mn + ent ð2Þ

where mn is the driver-specific error term. ent is a random

term. It is assumed that the two error terms are indepen-

dent of each other, and that both follow normal distribu-

tions: mn;N 0,sm

ÿ �

and ent;N 0,seð Þ.
Finally, it is hypothesized that the response to the sti-

muli is positive (acceleration) for positive leader relative

speeds, that is, when the leader is faster than the subject

vehicle and negative (deceleration) for negative leader

relative speeds. Furthermore, it is asymmetric, with dif-

ferent sets of parameters in the two cases. The accelera-

tion is therefore given by:

ant =
aaccnt if DVntø 0

adecnt otherwise

(

ð3Þ

where aaccnt and adecnt are the car-following acceleration and

car-following deceleration, respectively.

IDM

The IDM assumes that drivers maintain a safe following

distance from the leader and at the same time attain a

desired speed V0:

E antð Þ= amax 1ÿ Vnt

V0

� �4

ÿ DX � Vnt,DVntð Þ
DXnt

� �2
" #

ð4Þ

DX �(Vnt,DVnt)=DX0 + T0Vnt +
VntDVnt

2
ffiffiffiffiffiffiffiffiffiffiffiffi

amaxb
p ð5Þ

where amax is a maximum acceleration parameter. DX � is
the desired spacing. DX0 and T0 are the minimum spacing

and time headway, respectively. DVnt =Vnt ÿ Vnÿ1, t is the

(negative) leader relative speed. b is a comfortable decel-

eration parameter.

In the context of distraction, Hoogendoorn et al. (30)

and Van Lint and Calvert (26) used the IDM to incorpo-

rate mental workload, task demand, and awareness in

car-following behavior.

The acceleration that the vehicle applies included

individual-specific and generic error terms, introduced in

the same way as shown in Equation 2.

Model Estimation

The parameters of both models were estimated using the

maximum likelihood method applied on the acceleration

observations in trajectory data. For the GM model, the

conditional probability density function of the observed

accelerations is given by:

f (antjmn, acc,mn, dec)= facc(antjmn, acc)
d DVntð Þ

fdec(antjmn, dec)
1ÿd DVntð Þ ð6Þ

where the subscripts acc and dec indicate the acceleration

and deceleration regimes, respectively. d DVntð Þ is an indi-

cator for the sign of the relative speed, which determines

the active regime:

d DVntð Þ= 1 if DVntø 0

0 otherwise

�

The conditional probability density functions for the

acceleration and deceleration regimes are given by:

facc antjmn, acc

ÿ �

=
1

se, acc

f
ant ÿ a Vnt

bacc

DXnt
gacc DVnt

lacc ÿ mn, acc

se, acc

 !

ð7Þ

fdec antjmn, dec

ÿ �

=
1

se, dec

f
ant ÿ a Vnt

bdec

DXnt
gdec

DVnt
ldec ÿ mn, dec

se, dec

 !

ð8Þ

For the IDM, the conditional probability density func-

tion of the observed accelerations is given by:

f antjmnð Þ= 1

se

f

ant ÿ amax 1ÿ Vnt

V0

� �4

ÿ DX � Vnt,DVntð Þ
DXnt

� �2
� �

ÿ mn

se

0

B

B

@

1

C

C

A

ð9Þ

With both models, the conditional probability density for

the sequence of T observations of the same driver is given

by:

f an1, :::, anT jmn, acc,mn, dec

ÿ �

=
Y

T

t= 1

f antjmn, acc,mn, dec

ÿ �

ð10Þ

The unconditional joint probabilities of the observations

for a driver are given by:
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f an1, :::, anTnð Þ=
ðð

mn, acc mn, dec

f an1, :::, anTn jmn, acc,mn, dec

ÿ �

dmn, accdmn, dec ð11Þ

Finally, the likelihood functions are given by:

L=
Y

N

n= 1

f an1, :::, anTnð Þ ð12Þ

The model parameters were estimated by maximization

of these functions. The unconstrained optimization was

done using the maxLik package in R and using the

BFGS quasi-Newton optimization method it imple-

ments; see Henningsen and Toomet (31) for details.

Estimation Results

GM Model

As noted above, separate models were estimated for each

of the distraction conditions (control, texting, eating,

talking on the phone) that were used in the simulator

experiment. The results for the GM models are presented

in Table 2. The hypothesis of equality of the parameters

among the four conditions was tested using likelihood

ratio tests. The results are shown in Table 3. The hypoth-

esis that the parameters are similar for all four conditions

is rejected with a p-value less than 0.001. The hypothesis

of equality of parameters is rejected also for all pairs of

conditions, except the control and eating conditions for

which the p-value is 0.062. To illustrate these results and

the differences among the conditions, Figures 2 and 3

show the effect on the mean accelerations and decelera-

tions of the changes in the explanatory variables: leader

relative speed, spacing and subject’s speed, respectively.

In each figure, one of the variables varies while the others

are held at their base value. These base values are: rela-

tive speed = 5 (or 25) m/s, subject speed =15m/s, and

spacing = 25m.

As expected, the constant sensitivity terms (a) are pos-

itive for car-following acceleration and negative for car-

following deceleration. They are significantly smaller

with texting and somewhat smaller for cell phone use

compared with the control. Somewhat surprisingly, they

are larger with eating.

The parameter associated with the stimulus (relative

leader speed) is positive for both acceleration and decel-

eration. Its magnitude is much larger when it is negative

(i.e., the subject is faster) compared with when it is

positive (i.e., the leader is faster). This is expected since a

negative relative speed stimulus may have safety implica-

tions, whereas a positive relative leader speed stimulus

only suggests a possible speed advantage to the driver.

The GM model assumes that drivers respond to the

leader relative speed. This response, as demonstrated in

Figures 2 and 3, is much lower in absolute value for text-

ing, compared with the control and two other conditions

in both acceleration and deceleration conditions. This

may be a result of the visual distraction associated with

texting (7).

The estimated coefficients of the spacing are positive

for car-following deceleration and negative for car-

following acceleration. For deceleration, this is expected

since the underlying safety concern increases when the

spacing is smaller, and so drivers would tend to apply

stronger decelerations when the spacing is smaller. In the

case of acceleration, as the spacing increases, drivers are

able to apply strong accelerations. Similar to relative

Table 2. Estimation Results of Gipps’ Model (GM)

Parameter

Estimated value (standard errors)

Control Texting Eating Calling

Car-following acceleration
Constant (a) 0.170 (0.042)*** 0.046 (0.020)* 0.184 (0.055)*** 0.129 (0.034)***

Speed (b) (m/s) 20.282 (0.112)* 20.646 (0.212)** 20.080 (0.140) 20.269 (0.112)*

Spacing (g) (m) 20.290 (0.084)*** 20.777 (0.164)*** 20.085 (0.118) 20.405 (0.101)***

Relative speed (l) (m/s) 0.496 (0.056)*** 0.298 (0.089)*** 0.562 (0.076)*** 0.373 (0.060)***

sm 0.266 (0.020)*** 0.238 (0.020)*** 0.257 (0.029)*** 0.289 (0.023)***

se 0.605 (0.013)*** 0.656 (0.015)*** 0.631 (0.015)*** 20.708 (0.013)***

Car-following deceleration
Constant (a) 21.438 (0.549)** 20.052 (0.032) 23.122 (1.200)** 20.306 (0.079)***

Spacing (g) (m) 0.926 (0.122)*** 0.201 (0.088)* 1.121 (0.124)*** 0.439 (0.060)***

Relative speed (l) (m/s) 1.366 (0.131)*** 1.392 (0.261)*** 1.141 (0.149)*** 1.135 (0.119)***

sm 0.156 (0.021)*** 0.345 (0.031)*** 0.202 (0.029)*** 0.276 (0.031)***

se 0.777 (0.015)*** 0.810 (0.018)*** 0.743 (0.017)*** 0.849 (0.015)***

Log-likelihood 25385.02 24575.09 24561.64 26205.39

Note: * p\0.05, ** p\0.01, *** p\0.001.
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Table 3. Tests for Equality among Distraction Conditions of Parameters in Gipps’ Model (GM)

Compared models Unrestricted model log-likelihood Restricted model log-likelihood Degrees of freedom p-Value

All conditions 220727.14 220891.52 33 \0.001
Control—Texting 29960.11 10039.19 11 \0.001
Control—Eating 29946.66 29956.13 11 0.062
Control—Calling 11590.41 11649.78 11 \0.001
Texting—Eating 9136.73 9197.01 11 \0.001
Texting—Calling 10780.48 10837.17 11 \0.001
Eating—Calling 10767.03 10818.05 11 \0.001

Figure 2. Effects of different variables on mean car-following deceleration in Gipps’ model (GM).

Figure 3. Effects of different variables on mean car-following acceleration in Gipps’ model (GM).
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speeds, the effect of this parameter is lower in the texting

condition compared with the control, both in accelera-

tion and deceleration. In deceleration, it is also lower in

the calling condition. Thus, in these two conditions, driv-

ers are less responsive to the spacing.

The estimated coefficient of the subject’s speed in the

acceleration model is negative. Drivers accelerate at a

lower rate when their speed is higher. As with the other

variables, the sensitivity of the acceleration to the sub-

ject’s speed is lower in the texting condition compared

with the control and two other conditions. The speed

parameter was not significant for deceleration, and there-

fore was dropped from the specification. This result is

consistent with that of Gazis et al. (12) and Ahmed (32).

IDM

Estimation results of the IDM are presented in a Table

4. In all models, the comfortable deceleration estimate

was unrealistically large. This caused the third term in

the desired spacing expression to tend to zero. In this

case study, this result is reasonable. The term that was

removed is relevant in cases when the subject approaches

a slower leader. This was not the case in the current

experiment design. The term was therefore removed and

the models re-estimated without it. For completeness,

this paper reports also the results for the full control

model with this term. The differences in the estimates of

the remaining parameters are small.

The overall effects of the various distracting activities

are similar to those found with the GM model. The max-

imum acceleration parameter is lower for the calling and

texting conditions compared with the control and eating,

indicating a lower level of response to the surroundings.

Desired speeds are also lower, which is consistent with

the expected impact of the lower attention dedicated to

the driving task. With both calling and texting, the mini-

mum spacing and desired headway parameters are very

close to zero and statistically insignificant. Thus, the

model shows that drivers in these conditions in practice

do not respond to the spacing to the leader or to the

speed difference. These effects are evident in Figure 4,

which shows the effect of spacing and subject’s speed on

the mean acceleration. In both texting and calling condi-

tions, the mean acceleration is not affected by the space

headway. The effect of speed on the acceleration is also

much lower in these two conditions compared with the

control and eating conditions.

Overall, the estimation results of the two models show

differences in the car-following behavior among the vari-

ous conditions. Specifically, driving while texting is sig-

nificantly different from the other three conditions. In

this condition, and to a lesser extent in the talking condi-

tion, accelerations are much less sensitive to the relevant

variables of subject’s speed, relative speed, and spacing

compared with the other conditions. This result is in line

with previous studies that showed lower ability to per-

ceive and react to the environment in driving, especially

with visual distraction (e.g., 6, 7, 33–35).

Micro-Simulation Implementation

The microscopic traffic simulation model

TRANSMODELER was used to evaluate the effect of

distracted car following on traffic flow. The GM model

is the default car following in TRANSMODELER. The

parameter estimates presented above, after additional

calibration that will be described below, were used in the

simulations. The modified simulation model was applied

to a case study of a 6 km arterial corridor in Nesher,

Israel, for which TRANSMODELER has been previ-

ously calibrated. The corridor includes 17 signalized

intersections. The simulation was run for the morning

peak period from 7:45 to 9:30 a.m. The trip demand for

this corridor was estimated from turning movement

counts that were available for all intersections. A total of

12,909 vehicles per hour use this corridor during the

morning peak hour. In the simulations, the first 15min

Table 4. Estimation Results of the Intelligent Driver Model (IDM)

Parameter

Estimated value (standard errors)

Control (full) Control Texting Eating Calling

Maximum acceleration (amax) (m/s2) 0.443 (0.032)*** 0.447 (0.034)*** 0.104 (0.022)*** 0.336 (0.046)*** 0.238 (0.024)***

Desired speed (V0) (m/s) 25.848 (1.105)*** 24.167 (0.629)*** 18.457 (1.394)*** 23.986 (1.154)*** 22.333 (1.094)***

Minimum space headway (DX0) (m) 10.680 (0.316)*** 9.262 (0.642)*** 0.007 (0.291) 4.970 (0.913)*** 0.008 (2.127)
Desired time headway (T0) (s) 0.539 (0.032)*** 0.739 (0.063)*** 0.002 (0.021) 1.331 (0.133)*** 0.105 (0.202)
Comfortable deceleration (b) (m/s2) 17.778 (1.206)*** NA NA NA NA
sm 0.347 (0.021)*** 0.384 (0.021)*** 0.305 (0.022)*** 0.379 (0.027)*** 0.339 (0.035)***

se 0.685 (0.007)*** 0.698 (0.007)*** 0.750 (0.008)*** 0.690 (0.007)*** 0.807 (0.008)***

Log-likelihood 25487.98 25583.33 24747.26 24657.18 26489.63

Note: *p\0.05, **p\0.01, ***p\0.001. NA = not available.
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and the last 30min were used as warm-up and cool-down

periods, with 50% of the peak hour demand. The statis-

tics reported in the results are for the vehicles departing

in the peak hour from 8:00 to 9:00 a.m.

The car-following models were estimated with data

that was collected from a driving simulator. The litera-

ture shows that driving simulators are useful to study

driving behavior but that drivers’ sensitivity to stimuli

from the environment may be lower than in the real

world. Therefore, multiplication factors were added to

the sensitivity parameters of each model:

E antð Þ= ua
Vnt

b

DXnt
g DVnt

l ð13Þ

where u are sensitivity multiplication factors, which differ

between acceleration and deceleration.

The values of these two factors were calibrated such

that the weighted difference between the average link

speeds and flows obtained in the simulation with the pre-

viously calibrated TRANSMODELER parameters and

the parameters that were estimated for the control condi-

tion are minimized:

min
u

X

i

X

t

V ctl
it uð Þ ÿ V

def
it uð Þ

� �2

s2

V , it

+
qctlit uð Þ ÿ q

def
it uð Þ

� �2

s2
q, it

2

6

4

3

7

5

ð14Þ

where V
def
it and q

def
it are the average speeds and flow,

respectively, on link i in time period t (15 min intervals)

in the simulation with the default parameters. V ctl
it uð Þ and

qctlit uð Þ are the corresponding values in the simulation

with the control cases parameters and the sensitivity mul-

tiplication factors u, sV , it, and sq, it are the standard

deviations of speeds and flow, respectively.

The objective above was minimized with u=

14:38, 11:74½ � for acceleration and deceleration, respec-

tively. These sensitivity multiplier values were then used

in the simulations with the car-following models for all

distraction conditions. As expected, they exhibit higher

sensitivity in the real world, but their magnitudes are

higher than expected. Several explanations may contrib-

ute to this result. Previous studies comparing inferences

of driving behaviors from simulators and from field data

(e.g., 36, 37) showed that they differ not only in the scale

of the response but also in sensitivity to speeds and head-

ways, which is higher in field observations. In this work,

only the scale parameter is adjusted. Thus, it also cap-

tures the mean sensitivity differences to these variables.

Furthermore, the adjustment is made against a model

using the default parameter values, which were calibrated

under different road geometry and flow conditions. Both

Vasconcelos et al. (38) and Papadimitriou and

Choudhury (37) found differences in car-following para-

meters for different field sites and recommended site-

specific calibration. Similarly, there are also differences in

these characteristics between the simulator scenarios and

traffic simulation scenario. Finally, it should be noted

that it is generally accepted that driving simulators pro-

vide relative but not absolute validity of the responses;

see Mullen et al. (39) for detailed review and discussion.

In the traffic simulation experiments, first, all drivers

were assumed to be in one of the distraction conditions:

Figure 4. Effects of different variables on mean car-following acceleration in the intelligent driver model (IDM).
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either 100% are eating, talking, texting, or not engaged

in any secondary activity (control). As will be shown

below, traffic flow and safety measures of performance

were substantially worse for the texting scenario.

Therefore, scenarios with varying percentages of the driv-

ers that are involved in texting (20%, 40%, 60%, 80%)

were run next. The remaining drivers were assumed to

not be involved in any distracting activity. In each case,

five simulation replications were run.

Several measures of performance were calculated from

the simulations to indicate traffic flow and safety in each

case. The measures used are:

1. Average speed, which measures the traffic flow

level of service. Many studies have also shown its

positive association with increases in the likeli-

hood of road crashes and their severity (e.g.,

40, 41).

2. Coefficient of variation (COV) of the speed,

which captures speed variability. This has been

shown to be positively associated with higher

crash rates (e.g., 42, 43). It is calculated as the

weighted average of the COVs for all the links in

the network:

COVV =
X

i

X

t

sV , it

Vit
qit

P

i

P

t

qit
ð15Þ

3. Acceleration noise, which is defined as the stan-

dard deviation of the acceleration. It measures the

smoothness of traffic flow (e.g., 44–48).

4. Time fraction in acceleration and deceleration,

which indicates the variability in acceleration.

Higher values of braking time are associated with

increased crash risk. It is calculated as the fraction

of time that the deceleration is larger than 0.25m/

s2. Similarly, the deceleration time fraction is

when the acceleration is larger than 0.25m/s2.

These boundary values represent normal accelera-

tion and deceleration, and so were selected to

eliminate low acceleration or deceleration situa-

tions (48, 49).

Simulation Results

Table 5 shows the measures of performance values for

the scenarios with 100% of drivers undertaking the vari-

ous distracting activities. The texting and talking on the

phone activities reduce the average travel speed com-

pared with the control and cause an increase in the COV

of speed. Both these effects are largest for texting. As

was seen in the estimation results, with these activities,

drivers are less responsive to their environment. For both

the average speed and speed COV, the differences among

the scenarios are all statistically significant with p-

value\ 0.001.

In contrast to these, the acceleration noise is smaller for

the texting scenario. This again stems from the lower

responsiveness of the drivers to their leader while texting.

The acceleration noise is also affected by the level of con-

gestion and the resulting travel speeds: With increased

congestion (and lower speeds), vehicles have fewer

opportunities to accelerate. The congestion levels differ

among the four conditions, and so the results may be

misleading. To account for this effect, Figure 5 presents

the time fractions in acceleration and deceleration for

various ranges of travel speeds. Generally, the fraction

of time in both acceleration and deceleration are close to

zero in low speeds and increase with speed. With all

speed ranges, the acceleration fraction is smallest and the

deceleration fraction is largest with texting. Compared

with the control case, the differences while texting are

statistically significant (p-value\ 0.001) for all speed

ranges over 20 km/h, for both acceleration and decelera-

tion time fractions. There are no significant differences

among the other three conditions. This indicates lower

ability of the driver to smoothly control their speed.

These results are consistent with the findings of Farah

et al. (43).

The results above show that texting has the largest

effect on driving behavior and the emergent traffic flow

characteristics. Therefore, additional experiments were

conducted with varying fractions of drivers that are

engaged in texting. It is assumed that the other drivers are

not distracted (behave according to the control model).

The results are presented in Table 6 and Figure 6. The

average speed and acceleration noise decrease and the

COV of speed increases when the fraction of drivers

Table 5. Performance Measures and Their Standard Errors by Distracting Activities

Average speed
(standard error) (km/h)

Speed coefficient of variation
(standard error)

Acceleration noise
(standard error) (m/s2)

Control 22.2 (0.48) 0.92 (0.04) 0.47 (0.02)
Eating 27.2 (0.72) 0.78 (0.03) 1.04 (0.02)
Calling 13.7 (0.73) 1.13 (0.04) 0.29 (0.02)
Texting 7.6 (0.38) 1.67 (0.01) 0.05 (0.01)
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engaged in texting increases. Compared with the control

(no texting drivers), the differences in average speeds are

significant (p-value\ 0.001) for all fractions of texting

drivers that were used in the experiment. The differences

in COV of speeds are significant for all fractions of texting

drivers (p-value\ 0.001), except for 0.2 (p-value=0.161).

These results are expected given the lack of response by

drivers to their leaders when texting, therefore, there is

greater congestion at intersections and the drivers take

longer to complete the simulation.

The time fractions in acceleration and deceleration as

a function of the fraction of drivers that are engaged

in texting are shown in Figure 7. The acceleration time

fraction decreases and the deceleration time fraction

Figure 5. Time fractions in (a) acceleration and (b) deceleration by speed ranges and distraction activity.

Table 6. Performance Measures and Their Standard Errors by Fractions of Texting Drivers

Fraction of drivers
texting

Average speed (standard
error) (km/h)

Speed coefficient of
variation (standard error)

Acceleration noise
(standard error) (m/s2)

0 22.2 (0.48) 0.92 (0.04) 2.2 (0.04)
0.2 19.9 (1.23) 0.99 (0.03) 2.3 (0.17)
0.4 13.5 (0.84) 1.19 (0.1) 1.9 (0.14)
0.6 11.1 (0.29) 1.42 (0.135) 1.47 (0.17)
0.8 11.0 (0.55) 1.6 (0.03) 1.2 (0.04)
1.0 7.6 (0.37) 1.67 (0.01) 0.9 (0.19)

Figure 6. The (a) average of speed and (b) cofficient of speed (COV) by fractions of drivers texting.

Zatmeh-Kanj and Toledo 653



increases with an increase in the fraction of texting driv-

ers. The effects are more pronounced at higher speeds.

Compared with the control case (no texting drivers), the

differences between the time fractions are statistically sig-

nificant ( p-value\ 0.001) for all speed ranges 20–40 km/

h or above in acceleration and for all speed ranges 40–

60 km/h or above in deceleration. These results again

indicate lower response of drivers to their leaders.

Conclusion

In this study, the GM and IDM car-following models

were re-calibrated using data from a simple car-following

scenario within a driving simulator to study drivers’ per-

formance while engaging in distracting activities: texting,

talking on the phone, or eating, and a control scenario

with no distracting activity. Data on the longitudinal and

lateral movements of the vehicles were recorded in the

experiment.

Estimation results of car-following models for the dif-

ferent distractions show differences in car-following beha-

vior among the various conditions. Specifically, driving

while texting is significantly different from the other three

conditions. In this condition, both accelerations and decel-

erations are much less sensitive to the relevant variables of

subject’s speed, relative speed, and spacing compared with

the other conditions. These results are consistent across the

two models. This indicates lower ability to perceive and

react to the driving environment, which is in line with pre-

vious studies (e.g., 6, 7, 33–35, 50).

The microscopic traffic simulation model

TRANSMODELER was used to evaluate the effect of

distracted car-following on traffic flow. The average

speed, COV of speed, acceleration noise, and accelera-

tion and deceleration time fractions were used as mea-

sures of performance indicating traffic flow and safety.

The simulation results show deterioration of traffic flow

with texting and, to some extent, talking on the phone:

average speeds are lower and the COVs of speeds are

higher. Further experimentation with varying fractions

of texting drivers showed similar trends.

The current study has several limitations, namely, the

study was conducted in a virtual simulator environment,

where drivers may behave differently compared with

real-life driving (28). Distractions were defined with spe-

cific setups. For example, both talking and texting used

hand-held devices. Different setups may affect the results.

Future study should also aim to analyze naturalistic data

to further confirm the results of this study. The model

specifications used in the study account for driver hetero-

geneity, but do not explicitly include reaction times,

which may also capture differences among distraction

conditions.
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