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ABSTRACT
Car-following models are the cornerstones of microscopic traffic simulation tools and intelligent transporta
tion systems, but the applicability of car-following models to disordered traffic have not been investigated in 
detail with longer trajectory dataset. To address this gap, two car-following models namely, Intelligent Driver 
Model (IDM) and Full Velocity Difference Model (FVDM) are calibrated using trajectory data collected on an 
urban arterial road in Chennai, India using Unmanned Aerial Vehicles. The raw data are smoothed for noise 
removal and the car-following pairs are identified based on the lateral overlap and following duration. The 
models are calibrated by minimizing the deviations between the observed and simulated longitudinal gaps 
between leader and follower using genetic algorithm. The obtained errors are between 2.5% and 19.5%, 
which are comparable with standard ranges of error reported in literature. The optimal parameter values 
represent the distinct characteristics of disordered traffic in comparison with the homogeneous traffic.
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Introduction and background

Microscopic traffic flow models are commonly used to explain 
collective phenomena such as traffic instabilities, breakdowns, and 
propagation of stop-and-go waves. Car-following models capture 
the longitudinal dynamics of vehicles and describe the actions of 
individual vehicles in response to the surrounding traffic. The ear
lier car-following models are categorized as stimulus-response 
models, psychophysical models, and collision avoidance models 
(Brackstone and McDonald 1999). The stimulus-response models 
were developed to predict the response of the follower to the stimuli 
with respect to leader, i.e., change in headway and relative speeds. 
General Motors (GM) car-following model (Chandler, Herman, 
and Montroll 1958) and its variant models (May and Keller 1967; 
Heyes and Ashworth 1972) are the notable stimulus response mod
els. The safety-distance models or collision-avoidance models 
(Kometani 1959) are built upon the assumption that the follower 
tries to maintain a safe distance with the leader and adapts its speed 
accordingly to avoid collision. Gipps model (Gipps 1981) is the 
mostly used collision avoidance car-following model, especially for 
microsimulation of traffic. Psychophysical models are developed 
based on the assumption that the actions performed by the drivers 
are based on their ability to perceive the relative speeds and relative 
distance with the vehicle ahead (Wiedemann 1974). Other car- 
following models, including optimal velocity models and desired 
measures models, have gained popularity in modeling vehicular 
movements due to their simple formulations and realistic out
comes. Optimal velocity model (OVM) assumes that the follower 
maintains an optimal speed dependent on the relative distance with 
the leader. The acceleration of follower is based on the deviation 
from its optimal speed (Bando et al. 1995). There are different 
versions of OVM such as two velocity difference model (Ge at al.,  
2008) and full velocity difference model (Jiang, Wu, and Zhu 2001; 
Jin et al. 2010). The intelligent driver model (IDM) is a desired 

distance model developed based on the assumption that the drivers 
perform actions (acceleration) due to the difference between their 
current state of motion and their desired state such as speed, 
spacing, etc. (Treiber, Hennecke, and Helbing 2000). IDM is 
a collision-free model in a single lane traffic with continuously 
differentiable acceleration function.

Car-following models are developed based on specific 
assumptions on driving behavior and each model has 
a specific set of parameters which should be identified accu
rately to use for practical purposes. Calibration is the approach 
to obtain the set of parameters that minimizes the difference 
between the observed and model predicted values. Several 
attempts have been made to calibrate different car-following 
models under homogeneous traffic conditions as seen in devel
oped countries (Brackstone and McDonald 1999; Ossen and 
Hoogendoorn 2005; Brockfeld and Wagner 2005; Kesting and 
Treiber 2008; Kurtc 2020). Drivers in different countries drive 
different types of vehicles, have different driving styles, and are 
bound by different traffic regulations and driving cultures 
(Treiber and Kesting 2013; Daamen, Campanella, and 
Hoogendoorn 2013). For example, disordered traffic (e.g., 
Indian traffic) is characterized by wide variations in the operat
ing characteristics of vehicles, weak lane discipline, aggressive 
driving, large diversity in driver behavior, inadequate road 
design, poor access management, presence of roadside side 
frictions (e.g., bus stops, on-street parking) dynamic effective 
road width, and continuous vehicular entry, exit and turns. The 
weak lane discipline provides additional degree of freedom for 
vehicular movement (both lateral and longitudinal components 
for the position, velocity, and acceleration) and results in sig
nificant inter-/intra-vehicular interactions. Hence, a car- 
following model that works well for homogeneous traffic may 
not perform well when applied to disordered traffic. 
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Nevertheless, some of the researchers made attempt to calibrate 
few car-following modes for disordered traffic conditions 
(Asaithambi et al. 2018; Raju, Arkatkar, and Joshi 2020).

The data for calibration of car-following models are obtained 
from various sources such as field observations (NGSIM 2005; 
Kanagaraj et al. 2015; Krajewski et al. 2018), driving experi
ments (Ranjitkar, Nakatsuji, and Kawamua 2005) and instru
mented vehicles (Kesting and Treiber 2008) in homogeneous 
and disordered traffic. After the selection of data collection 
method, defining the measure of performance (MoP) and good
ness of fit (GoF) and the choice of optimization algorithm plays 
a significant role in the calibration process. MoP is the variable 
that characterizes the car-following behavior and its field 
observed values are compared with the values obtained by the 
calibrated model. The spacing between leader and follower 
(leader’s back bumper to follower’s front bumper) was chosen 
as the MoP in previous studies (Kesting and Treiber 2008; 
Kurtc 2020). The optimization algorithms such as genetic algo
rithm, interior point algorithm, simulated annealing, downhill 
simplex, and optquest/multistart are the commonly used opti
mization algorithms to calibrate car-following models 
(Ranjitkar, Nakatsuji, and Kawamua 2005; Kesting and Treiber  
2008; Raju, Arkatkar, and Joshi 2020; Kurtc 2020). Among the 
different algorithms, Genetic Algorithm is the most used 
because it can prevent local minima and reach the global opti
mum with a stochastic global search method (Saifuzzaman et al.  
2015). In most of the previous studies, car-following models are 
customarily calibrated using macroscopic traffic data (e.g., 
speed, density) instead of microscopic data, leading to a loss 
of accuracy and realism (Ravishankar and Mathew 2011; 
Asaithambi et al. 2018).

With the above motivation, the main aim of the study is to 
systematically calibrate two car-following models, namely, 
Intelligent Driver Model (IDM) and Full Velocity Difference 
Model (FVDM) under disordered traffic using trajectory data. For 
this purpose, traffic data are collected from a road stretch of length 
605 m, located on an urban arterial road in Chennai city (India). 
The optimal parameters of this model will be determined using 
a non-linear optimization technique, genetic algorithm. Three types 
of error measures are considered since the fit errors may not work 
as a good base for the assessment of models. Moreover, it is decided 
to minimize the objective function with respect to vehicle gaps since 
it automatically reduces the average speed errors. This study will 
provide better insights on vehicle-following behavior of drivers in 
disordered traffic and determining the best model for use in dis
ordered traffic.

In the next section, the two car-following models under inves
tigation is discussed. The third section presents the details of data 
collection, extraction of trajectory data and its smoothing proce
dure. In the fourth section, the methodological approach for the 
non-linear optimization problem is described. Fifth section dis
cusses the results of the work followed by section on conclusions 
and an overview for further work.

Car-following models under investigation

Car-following models are used to reproduce the longitudinal 
dynamics of vehicles which model the actions such as acceleration 
and deceleration of each driver as a response to the neighboring 
traffic and includes various regimes such as free flow, following the 
leader, and approaching standing vehicles. In this study, two car- 
following models such as IDM and FVDM, the widely used models 
in previous studies, are considered for calibration. These models are 
formulated as ordinary differential equations and, subsequently, 

time and space are treated as continuous variables, and character
ized by an acceleration function, _v ¼ dv

dt which depends on real 
speed v(t), gap s(t) and speed difference with the leader ∆v(t). 

Intelligent driver model

Intelligent driver model gives acceleration of the follower as an 
output, which is dependent on driver’s desired measures (desired 
speed and desired distance with respect to leader). IDM is capable 
of modeling different driving regimes such as accelerating from 
standstill, following, approaching and free flow. The general math
ematical formulation of the IDM model is: 

This formulation combines: 1) acceleration strategy  

vfree
:
¼ a 1 � v

v0

� �δ
� �

for a desired speed (v0) on a free road 

with maximum acceleration (a) as the parameter, and 2) 
a braking strategy vbrake

:
¼ � a s�

s which dominates if the cur
rent gap (s) is lesser than the desired minimum gap: 

where
_v ¼ Acceleration of the follower, a ¼ Maximum acceleration,
v ¼ Speed of the follower, 
v0 ¼ Desired speed,
s� ¼ Desired distance,
s ¼ Longitudinalgapbetweenleaderfollower;
Δv ¼ Speed difference with the leader, s0 ¼ Minimum spacing;
T ¼ Desired or safety time gap, b ¼ Comfortable deceleration 

Minimum spacing (s0) in congested traffic is only dominant 
when speeds are low. In equation 3, the dominating term is vT in 
stationary traffic that correlates to following the leader maintaining 
a constant desired time gap T. The final term is dominant only in 
non-stationary traffic and executes an intelligent driving behavior 
as well as a braking approach which, mainly in all situations, limits 
braking deceleration to the comfortable deceleration. Nevertheless, 
IDM brakes stronger than b when the gap becomes too small. All 
the IDM parameters (v0, T, s0, a, b) are characterized by positive 
values.

Full velocity difference model

Full velocity difference model is an extended version of optimal velocity 
model. In this model, follower’s acceleration depends on the optimal 
velocity which is a function of spacing vopt sð Þ) and speed difference 
with the leader Δv. The mathematical description of FVDM is given as: 

where τ = adaptation time, which explains the adaptation to a new 
speed due to changes in v and s. The important influence of Δv is 
captured by the sensitivity parameter λ. 

where
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_v ¼ Acceleration of the follower, v ¼ Speed of the follower,
vopt sð Þ ¼ Optimal velocity of the follower, 
τ ¼ Adaption time;
Δs ¼ Transition width;Δv ¼ Speed difference with the leader;
vo ¼ Desired speed; β ¼ Form factor;
γ ¼ Sensitivity to speed difference;
s ¼ Longitudinal gap between leader _follower:

The parameter v0 describes the desired speed in free flow traffic 
conditions. Transition width Δs determines the transition regime 
varies from vopt → 0 to vopt → v0 if the distance to the leader turns 
out to be large. In contrast to the IDM, the FVDM is not completely 
an accident-free model.

Trajectory data collection and extraction

The trajectory data are found to be a very good source of micro
scopic traffic data. The process of data collection and extraction in 
the present study is described in the following subsections:

Study section

The road section selected for this study is located on an urban 
arterial (six-lane divided) road namely Rajiv Gandhi Salai in 
Chennai city, India. Length of the study stretch is 700 m of which 
605 m (upto the stop line of the downstream intersection which is 
signalized) are covered in the video as illustrated in Figure 1(a).

Data collection using unmanned aerial vehicles

In this study, it is proposed to track vehicles on a longer section to 
capture their behavior under different traffic situations. For this 
purpose, we have used DJI Phantom 4 Pro unmanned aerial vehi
cles (UAVs) to capture the vehicles from a top-view. Four UAVs 
were deployed to cover 605 m in such a way that sufficient over
lapping of 15–30 m is ensured between any successive UAVs which 
will help to stitch the trajectories of vehicles (Figure 1b). The traffic 
videos were recorded in March 2018 with a resolution of 4 K (4096 
x 2160). The video survey was conducted by flying the drones in six 

flights of 15–18 minutes each. In total, around 1.5 hours of data was 
obtained excluding the take-off, routing and landing times and 
hence, the data collection process was not continuous (in each flight 
15 minutes data is continuous). To ensure the stable recording, 
drones with gimble support are deployed thereby limiting their 
hovering and rotations.

Trajectory data extraction

As a first step of trajectory data extraction, the raw videos need to be 
stabilized. The base frames are the first frames of each camera, and 
they are rotated in such a way that the road alignment matches the 
horizontal axis of the frame. Then, the rest of the frames are 
matched with their respective base frame using feature detection 
algorithm for which SURF technique of OpenCV (Bradski and 
Kaehler 2008) is adopted. A perspective homograph matrix for 
each frame is estimated based on the matched features and they 
are used for stabilizing the frames.

Once the videos are stabilized, the vehicle trajectories are 
extracted independently from all the four cameras using a semi- 
automated extraction tool that is developed using MultiTracker 
algorithm of OpenCV (Bradski and Kaehler 2008). The algorithm 
requires drawing bounding boxes around each vehicle in one frame 
and for the successive frames, the vehicles will be tracked automa
tically as shown in Figure 2. In case of tracking failure, the algo
rithm enables us to interfere and draw a new bounding box from 
the failed frame. The extracted data consist of vehicle ID (indepen
dent across cameras), frame number, vehicle type, length, width, 
longitudinal, and lateral position of vehicles.

Coordinate mapping and stitching

The extracted trajectory data of vehicles which are in image coor
dinates must be converted to real world coordinates. For this 
purpose, 60 ground control points are obtained from a total station 
survey on the site. The base images of all the cameras are imported 
to ArcGIS and georeferenced using the ground control points. 
From the stitched image, a control point from each corner of each 
camera is established and they are used to estimate the homograph 
matrix independently for each camera using the following formula: 

Figure 1. (a) Layout of the study stretch (b) Pictorial representation of the video data collection set-up using four drone cameras.
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where hij are parameters to be estimated. With the estimated 
matrices, the extracted data of vehicles are converted from image 
pixels to ground coordinates.

The starting time of recording of all the four cameras were not 
exactly same and the lag times between all successive cameras were 
found out. With these lag times, the vehicles’ lateral, and long
itudinal positions were matched on the overlapping sections and 
vehicle IDs were replaced by that of the matching vehicle of another 
camera. Thus, the trajectories of same vehicles across the cameras 
were stitched together.

Trajectory smoothing

The extracted trajectory data generally contain measurement 
errors which are interpreted as random noise on the positional 
location of vehicles and these errors may be further magnified 
in the differentiation process when estimating the values of 
speeds and acceleration. From Figure 3, it can be observed 
that most of the acceleration values calculated from raw data 
are beyond ±6 m/s2 due to small time step which indicates that 

the driver is evidently changing between hard acceleration and 
hard deceleration within a second, which seems to be unrealis
tic. The speeds also demonstrate an unrealistic behavior, which 
shows that drivers do not smoothly accelerate or decelerate. 
Hence, once the position data are extracted, they need to be 
smoothed to overcome missing observations to minimize the 
instantaneous peaks in the raw data.

In the present study, the symmetric exponential moving 
average filter (sEMA) was used to smoothen the raw data 
(Thiemann, Treiber, and Kesting 2008). In comparison with 
moving average smoothing, sEMA performs better, as the 
weightage given to a data point decreases with increase in its 
distance from the smoothing window center. Also, sEMA has 
lesser number of parameters in comparison with Kalman filter 
(Zheng et al. 2020).

Let xβ(ti) denotes the observed position of vehicle β at time ti, 
where i = 1 . . . Nβ and Nβ indicates the number of data points in the 
trajectory. The smoothing operation is performed by using data 
point indices rather than times because the data points are equidi
stant in time with interval (dt). The smoothing kernel is given by 
g tð Þ ¼ exp � t

T

� �
, where T indicates smoothing width. The smoothed 

positions, xβ are expressed as: 

where 

Figure 2. Snapshot of vehicle tracking process.

Figure 3. Problems of raw data: a) Speed profile, and b) Acceleration profile.
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�xα tið Þ ¼ Smoothed position for vehicle β at time step ti , 
i ¼ 1; 2; . . . ::Nβ;

Nβ ¼ No: of data points in vehicle β0s trajectory , tk, Δ ¼ T
dt ;

T ¼ Smoothing width;

dt ¼ Timeintervalbetweendatapointsof trajectory 1=10sð Þorsamplingrate;

The same smoothing width T can be applied to all data sets, and Δ is 
the equivalent smoothing width measured in data points for the 
particular data set. Smoothing window width (D) is selected as three 
times as the smoothing kernel width for any data point which is not 
closer to the trajectory boundary. For the points closer to the 
boundaries, the smoothing width is decreased to ensure that the 
smoothing width is always symmetric.

After performing the smoothing mechanism, smoothed posi
tions will be obtained and then, differentiated to obtain speeds 
and accelerations using central difference method as follows: 

where 

.
Next step is to choose the smoothing width T and sampling rate. 
The original time resolution of the raw data is 0.1 s and the 
smoothing operation has been applied to the raw data at different 
sampling rates of 0.1, 0.2, 0.3, 0.4, and 0.5, s. Figure 4 shows the raw 
and smoothed acceleration profiles at different sampling rates for 
a smoothing width of 0.5. It is observed that as the sampling rate 
increases, the spikes in the acceleration profiles are decreasing and 
observed to be smoother. Still, more smoother profiles can be 
obtained by increasing the sampling rate, but the real dynamics of 
the vehicles cannot be captured properly since the real data may be 
averaged out. Hence, the sampling rate is fixed as 0.5 s for further 
analysis. Some of the researchers also tried different smoothing 
width and adopted 0.5 s for smoothing process (Thiemann, 
Treiber, and Kesting 2008).

The plots of longitudinal speeds and accelerations are shown in 
Figure 5 for sample trajectories of the data set with raw data and 
smoothed data for the final values of 0.5 s sampling rate and 0.5 
smoothing width. The effect of smoothing on speed and accelera
tion profiles can be clearly visualized in these figures.

Traffic Characteristics

The volume to capacity ratio (V/C ratio) of the collected traffic data 
is around 0.65, thatcorresponds to moderate traffic conditions. The 
traffic stream comprises 50% of two wheelers, 40% of cars and 10% 
of other categories (auto-rickshaws, buses, trucks, light commercial 
vehicles). For the calibration purpose, a total of 500 vehicle trajec
tories have been extracted. The statistics on longitudinal speeds of 
different categories of vehicles are given in the Table 1. The mini
mum speed of vehicles is zero due to the effect of downstream traffic 
signal.

Calibration methodology

The optimal parameters for the considered car-following models 
need to be obtained. The equations of the models (Equations 2 and 
4) have non-linear acceleration functions corresponding to non- 
linear optimization problem that has to be solved numerically.

Simulation set-up

The observed gaps, speeds and accelerations can be compared with 
the simulated trajectories obtained by car-following models con
sidering the leading vehicle as an externally controlled input. The 
simulation is initialized with the observed values from the data i.e., 
vsim

fol t ¼ 0ð Þ ¼ vdata
fol 0ð Þ; ssim

fol t ¼ 0ð Þ ¼ sdata
fol 0ð Þ and the input variables 

associated with the leader are always assigned from the observed 
data. Acceleration of the follower is computed using the car- 
following model, and its’ speeds and positions are estimated using 
the equations of motion. The gap to the leading vehicle is obtained 
by calculating the difference between the simulated position ðfront 
bumper) of follower xsim tð Þ and the observed position (rear bum
per) of the leader xlead

data tð Þ: 

where
Ssim tð Þ ¼ Simulated gap to the leading vehicle, 

l ¼ Length of leader
This simulated gap can be directly compared with the observed 

gap Sobs tð Þ:

Objective function

The calibration process aims to minimize the difference between 
observed and simulated variable of interest. Any variable such as 
acceleration, speed, relative speed or relative distance can be used as 
the MoP. In this study, the gap between the front bumper of the 
follower and rear bumper of the leader (clear gap) has been used as 
the MoP for the objective function. The error between the simu
lated gap (ssimÞ and observed gap (sobsÞ is the quantitative measure 
needed for the objective function to perform parameter optimiza
tion. Three different error measures such as relative error, absolute 
error, and mixed error are considered for the calibration of car- 
following model. The formulations are given below: 

The relative error is weighted by the inverse of observed distance 
and this measure is more sensitive to small distances than to large 
distance. The absolute error measure is given by: 
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In the case of absolute error, since the denominator is summated 
over the whole time series interval, it is less sensitive to slight 
deviations in the observed data. Nevertheless, the absolute error 
measure is more sensitive to significant differences for large 

distances. To overcome the limitations of these error functions, 
mixed error which is a combination of relative error and absolute 
error functions is also used:  

Figure 4. Raw and smoothed acceleration profiles at different sampling rates: a) 0.2 s, b) 0.3 s, c) 0.4 s, and d) 0.5 s at smoothing width 0.5.

Figure 5. Raw data and smoothed a) longitudinal speed and b) longitudinal acceleration, at 0.5 sec sampling rate and 0.5 smoothing window.
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Optimization with genetic algorithm

To solve non-linear optimization problem, a popular evolution
ary global search algorithm, genetic algorithm is applied. The 
process of implementation of genetic algorithm is explained 
here:

● An individual is a set of parameters of a car-following model 
and collection of N such individuals is population.

● Objective function (Equations 13, 14 or 15) is used to 
obtain the fitness score of the individuals in every 
iteration.

● Based on the value of fitness, two individuals (parents) are 
randomly selected and combined (crossover) to produce an 
offspring i.e., a new individual, which is then added to the 
population.

● Individuals, except those with high fitness values, will undergo 
mutations based on mutation probability.

● Modified population is considered as a new generation and is 
fed into the next iteration.

The algorithm is terminated based on the maximum number of itera
tions and the maximum iterations without improvement in the solu
tion. The resulting solution contains the optimized value of 
parameters.

Boundary values of parameters

The optimization algorithm requires the possible range of para
meter values to be predefined for an efficient search. The parameter 
constraints of the two car-following models considered for calibra
tion have been adopted (Thiemann, Treiber, and Kesting 2008) as 
follows:

● IDM parameters: Desired Speed (v0) = [1, 30] m/s; Minimum 
Spacing (s0) = [0.1, 8] m; Maximum Acceleration (a) = [0.1, 
6] m/s2; Comfortable Deceleration (b) = [0.1, 6] m/s2; Desired 
Time Gap (T) = [0.1, 5] s; Acceleration exponent (δ) = [1, 40]

● FVDM parameters: Desired Speed (v0) = [1, 30] m/s; 
Transition Width (ΔsÞ = [0.1, 10]; Form Factor (β) = [0.1, 
10]; Adaption time (τ) = [0.05, 20] s; Sensitivity Coefficient 
(γ) = [0, 3].

In addition to the above constraints, the backward movement of 
vehicles in the simulation has been eliminated by setting the nega
tive simulated speeds to zero. Also, in case of FVDM, some set of 
parameters may lead to collision (negative spacing) during simula
tion and hence, a huge penalty has been added to the objective 
function, so that the optimization algorithm would not consider 
such solutions to be optimal.

Calibration results

Extraction of leader-follower pairs

The smoothed trajectory data has been further processed to extract 
the leader-follower pairs. The car-following periods of leader- 
follower pairs are identified based on the following criteria:

● Leader should be present in front of the follower and should 
laterally overlap with the follower.

● Lateral gap with nearest non-overlapping leaders and adjacent 
vehicles should be at least 1 m (Mallikarjuna, Tharun, and Pal  
2013) to suppress the interactions from surrounding vehicles.

● Duration of following time should be at least 12 seconds (Zhu 
et al. 2018; Anand et al. 2019) to ensure that the car-following 
stayed long enough to be analyzed.

The vehicles moving without an overlapping leader and not 
being influenced significantly by the other surrounding vehicles 
(within 1 m lateral gap) are considered to be without leaders. 
The trajectories of the pairs satisfying the above criteria are 
plotted to assure the following behavior through visualization 
(Figure 6). Then, the starting and terminating time step of each 
following periods is recorded. The pairs exhibited different 
driving regimes such as steady state following (Figure 6a), shy
ing away (Figure 6b), approaching, and stopping (Figure 6c). 
The vehicles without leaders have also been considered for 
calibration (Figure 6d). The acceleration values beyond the 
range of ±4 m/s2 (within which most of the data points are 
present) are removed after selecting the car-following samples 
from the dataset to avoid unrealistic values.

Car-following periods for analysis

The present study is carried out to calibrate car-following models for 
urban arterial roads. A total of around 500 trajectories have been 
extracted from the videos recorded in the study stretch. It is possible 
that the same leader-follower pair may have multiple car-following 
periods. Each of those segments is considered as a sample car- 
following period. 86 car-following periods are obtained from the 
trajectory data, satisfying the criteria of car-following behavior. The 
dominant class wise leader-follower pairs in the trajectory data are 
Car-Car (23) and TW-Car (12).

Optimal parameters

IDM
The calibration results for the IDM model considering three objective 
functions, relative error, mixed error and absolute error 
(Equations 13 to 15) are presented in Table 2. The obtained errors 
are in the range of 2.5% to 9%, which agrees with the earlier studies of 
the IDM model (Kurtc and Treiber 2016) and it is observed that the 
variations in parameter values for different objective functions is not 
much significant. The desired speed values obtained are approxi
mately 61 kmph (17 m/s), which are (1) lesser than desired speed 
values obtained in previous studies under homogeneous traffic con
ditions (Ciuffo, Punzo, and Montanino 2014). The possible reason is 
that the traffic stream consists of combination of both fast moving 
and slow-moving vehicles (wide mix of vehicles), which results in 
lower desired speed values, (2) higher than desired speed values 
(approximately 40 kmph) reported in a previous study under dis
ordered (Indian) traffic conditions (Raju, Arkatkar, and Joshi 2020). 

Table 1. Speed characteristics of vehicles in the study section.

Vehicle Type

Longitudinal Speed (m/s)

Mean Min. Max.

TW 7.7 0.0 23.6
Car 7.7 29.3
Auto 6.9 15.7
LCV 6.2 17.5
Van 8.1 22.2
MCV 5.6 14.8
Bus/Truck 6.4 15.8
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This can be attributed due to fact that the vehicular composition in 
the study section has higher proportion of cars (40%) as compared to 
the earlier study (27%).

The values of minimum spacing (0.27 to 0.5 m) and 
desired time gap values (0.24 to 0.38 s) are lower when 
compared with the earlier studies in homogeneous traffic 
conditions (Kesting and Treiber 2008; Ciuffo, Punzo, and 
Montanino 2014). Vehicles moving under non-lane discipline 
traffic conditions, tend to keep lesser headways with the lea
ders and seek for an opportunity to overtake or perform 
lateral shift (wherever gaps are available) which would result 
in lower values, or this could be the result of data incomple
teness which means that representative samples are needed for 
each regime: cruising, free flow, approaching, standstill, etc. 
Moreover, this needs to be further investigated with more 
following samples composed of different types of leader- 
follower pairs. The other parameters agree with earlier studies 
under homogeneous and disordered traffic conditions. 
Acceleration exponent values (1.03 to 3.42) obtained are 
found to be reasonable in disordered traffic.

It is observed that among the three objective functions, the absolute 
error function gives the value of 2.77% whereas the relative error 
function gives an error value of 8.85%. Since, mixed error is 
a combination of relative and absolute error, it is not sensitive to the 
difference between the observed and simulated gaps. Hence, the opti
mal parameter values obtained with respect to mixed error function are 
used for simulating the longitudinal gaps of follower with respect to the 
leader.

FVDM
The calibration results of FVDM by considering three objective 
functions are given in Table 1. The objective function values are 
in the range 8.5% to 19.5%. In the case of FVDM, few para
meter values across different objective functions vary, unlike 
IDM. This shows that for the disordered traffic data considered, 
the parameters of FVDM are more sensitive to error functions, 
in comparison with the IDM parameters. Both IDM and FVDM 
models exhibit similar desired speed values which are 
consistent.

The adaption time values (0.3 to 0.58) are very less when com
pared with homogeneous traffic conditions (Kesting and Treiber  
2008). This is because drivers exhibit aggressive behavior and react 
quickly to adapt optimal speed, particularly two wheelers. Further 
investigation along these lines needs to be done. Transition width 
(3.64 to 5.68 m) are observed to be lesser compared to homoge
neous traffic (Kesting and Treiber 2008). This implies that the 
vehicles in disordered traffic have higher optimum speed for the 
same form factor and spacing compared to homogeneous traffic. 
Vehicles often perform lane changes or lateral shifts whenever it is 
possible and maintain higher speeds, especially two wheelers 
because of their higher maneuverability. The above results may 
also be due to data incompleteness which needs to be further 
explored.

The parameter, form factor values agree with the values 
reported in earlier studies. Figure 7 shows the comparison of 
the simulated gap resulting from the calibrated parameters of 
IDM and FVDM models with the observed gap. Figure 7a 

Figure 6. Following periods extracted from trajectory data – Sample of few leader-follower pairs representing (a) steady state following (b) shying away (c) approaching 
and (d) vehicle without leader and approaching signal.
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represents the car-following pairs in steady state, Figure 7b 
represents the shying away behavior during following, where 
the gap increases with time and the approaching behavior is 
observed in Figure 7c. The observed and simulated gaps of 
a vehicle moving without leader approaching traffic signal is 
shown in Figure 7d. It can be observed from the figures that 
IDM is better fit for all the scenarios compared to FVDM.

Compared to the FVDM, the IDM has significantly smaller 
errors (4.24%), which implies that it could perform better than 
the FVDM in different traffic situations. Therefore, the IDM is 
a more suitable car-following model for microscopic traffic 
simulation tools in disordered traffic, which is also supported 
by other literature. However, from the microscopic perspective, 
any car-following model with errors between approximately 15 

Table 2. Optimal parameters from calibration of IDM and FVDM.

Parameters Boundary values Relative Error Mixed Error Absolute Error

IDM
Error (%) - - 8.85 4.24 2.77
Desired Speed (m/s) V0 [1,30] 17.35 17.79 15.26
Minimum Spacing (m) S0 [0.1,8] 0.27 0.34 0.5
Comfortable Deceleration (m/s2) b [0.1,6] 0.53 0.47 0.68
Maximum Acceleration (m/s2) a [0.1,6] 0.81 0.88 0.84
Desired Time Gap (s) T [0.1,5] 0.38 0.29 0.24
Acceleration exponent δ [1,40] 3.42 1.03 1.82
FVDM
Error (%) - - 19.31 12.4 8.57
Desired Speed (m/s) V0 [1,30] 17.56 16.18 15.31
Transition Width (m) ΔS [0.1,10] 5.68 5.62 3.64
Form Factor β [0.1,10] 0.75 1.2 2.44
Adaption Time (s) τ [0.05,20] 0.3 0.62 0.58
Sensitivity coefficient γ [0,3] 1.59 0.61 0.74

Figure 7. Observed and predicted gaps (based on mixed error function) with IDM and FVDM for representing (a) steady state following (b) shying away (c) approaching and 
(d) vehicle without leader and approaching signal.
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and 25% can be used (Brockfeld and Wagner 2005). These 
errors probably may be due to random component in driver 
behavior which means certain behavior cannot be predicted and 
has no noticeable pattern.

Summary and conclusions

The present study aims to investigate car-following models 
such as Intelligent Driver Model (IDM) and Full Velocity 
Difference Model (FVDM) in disordered traffic using tra
jectory data collected from an urban arterial road in 
Chennai city, India using Unmanned Air Vehicles. The 
raw trajectory data has been smoothed using Symmetrical 
Exponential Moving Average technique to remove the 
noises. The car-following pairs are extracted from the tra
jectories based on lateral overlap, and following period. The 
optimal parameters of the IDM and FVDM are obtained 
using Genetic Algorithm considering spacing between lea
der and follower as the measure of performance in the 
objective function. The optimization is carried out based 
on three different objective functions i.e., error measures. 
Calibration errors are obtained in the range of 2.5%–19.5%, 
and these results are consistent with the range of errors 
obtained in previous studies. The optimal parameter values 
of minimum spacing and desired time gap in IDM, and 
adaptation time and transition width in FVDM are found 
to be lesser compared to homogeneous traffic conditions. 
This is believed to be due to ease in lateral shift, driver 
aggressiveness, maintaining lesser gaps and higher maneu
verability of two wheelers or these values may be obtained 
due to data incompleteness. This needs further examination 
with more datasets that consists of all traffic regimes. Other 
parameters of the models are found to be logical and con
sistent. The comparison of observed and simulated gaps 
shows that both IDM and FVDM produces trajectories 
that are closer to observed data However, IDM performs 
better than FVDM in predicting the following behavior of 
vehicles in disordered traffic.

The models such as IDM and FVDM have been fre
quently used in microscopic traffic modeling of homoge
neous traffic. However, the application of these models 
under disordered traffic to model car-following behavior of 
vehicles is still under investigation. The present study in an 
initial step toward it, in order to obtain the useful insights 
on evaluating the suitability of these models and to find 
solution for data issues. The present study can be further 
extended by considering different parameters for dominat
ing vehicle categories in the traffic stream to capture the 
variations in their behavior which in turn will improve the 
accuracy of simulation models.

The adopted methodology can also be applied to calibrate 
other car-following models to explore the suitability of better 
models for disordered traffic. Moreover, the calibration can be 
performed with different datasets collected from other loca
tions to address the data transferability issues. The study of 
car-following behavior considering different parameters for 
different regimes is the another challenging research problem 
which can be addressed as a further scope of the present 
study.
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